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Abstract

Graph and Subspace Learning for Domain Adaptation

by

Le Shu

Doctor of Philosophy in Computer and Information Sciences

Temple University in Philadelphia, October, 2015

Researcher Advisor: Longin Jan Latecki

In many practical problems, given that the instances in the training and test may be

drawn from different distributions, traditional supervised learning can not achieve good

performance on the new domain. Domain adaptation algorithms are therefore designed to

bridge the distribution gap between training (source) data and test (target) data. In this

thesis, I propose two graph learning and two subspace learning methods for domain adap-

tation.

Graph learning methods use a graph to model pairwise relations between instances and

then minimize the domain discrepancy based on the graphs directly. The first effort we

make is to propose a novel locality preserving projection method for domain adaptation

task, which can find a linear mapping preserving the intrinsic structure for both source and

target domains. We first construct two graphs encoding the neighborhood information for

source and target domains separately. We then find linear projection coefficients which have

the property of locality preserving for each graph. Instead of combing the two objective

terms under compatibility assumption and requiring the user to decide the importance of

each objective function, we propose a multi-objective formulation for this problem and

solve it simultaneously using Pareto optimization. Pareto optimization allows multiple

objectives to compete with each other in deciding the optimal trade-off. We use generalized

eigen-decomposition to find the pareto frontier, which captures all possible good linear

projection coefficients that are preferred by one or more objectives. The second effort is to
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directly improve the pair-wise similarities between instances in the same domain as well

as in different domains. We propose a novel method to solve domain adaptation task in

a transductive setting. The proposed method bridges the distribution gap between source

domain and target domain through affinity learning. It exploits the existence of a subset

of data points in target domain which distribute similarly to the data points in the source

domain. These data points act as the bridge that facilitates the data similarities propagation

across domains. We also propose to control the relative importance of intra- and inter-

domain similarities to boost the similarity propagation. In our approach, we first construct

the similarity matrix which encodes both the intra- and inter- domain similarities. We

then learn the true similarities among data points in joint manifold using graph diffusion.

We demonstrate that with improved similarities between source and target data, spectral

embedding provides a better data representation, which boosts the prediction accuracy.

Subspace learning methods aim to find a new coordinate system, in which the domain

discrepancy is minimized. In this thesis, we refer to subspace-based method as those which

model the domain shift between two subspaces directly. Our first effort is to propose a

novel linear subspace learning approach for domain adaptation. Our key observation is

that in many real world problems, such as image classification with blurred test images or

cross domain text classification, domain shift can be modeled by a linear transformation

between the source and target domain (intrinsically linear transformation between two sub-

spaces underlying the source and target data). Motivated by this observation, our method

explicitly aligns the data in two domains using a linear transformation while simultaneously

finding a subspace which preserves the most data variance. With explicit data alignment,

the subspace learning is formulated as minimizing of a PCA-like objective, which consists

of two variables: the basis vectors of the common subspace and the linear transformation

between two domains. We show that the optimization can be solved efficiently using an

iterative algorithm based on alternating minimization, and prove its convergence to a local

optimum. Our method can also integrate the label information of source data, which fur-
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ther improves the robustness of the subspace learning and yields better prediction. Existing

subspace based domain adaptation methods assume that data lie in a single low dimen-

sional subspace. This assumption is too strong in many real world applications especially

considering the domain could be a mixture of latent domains with significant inner-domain

variations that should not be neglected. In our second approach, the key idea is to assume

the data lie in a union of multiple low dimensional subspaces, which relaxes the common

assumption above. We propose a novel two step subspace based domain adaptation algo-

rithm: in subspaces discovery step, we cluster the source and target data using subspace

clustering algorithm and estimate the subspace for each cluster using principal compo-

nent analysis; in domain adaptation step, we propose a novel multiple subspace alignment

(Multi-SA) algorithm, in which we identify one common subspace that aligns well with

both source and target subspaces, and therefore, best preserves the variance for both do-

mains. To solve this alignment problem jointly for multiple subspaces, we formulate this

problem as solving an optimization problem that minimizes the weighted sum of multiple

alignment costs. A higher weight is assigned to a source subspace if its label distribution

has smaller distance, measured by KL divergence, compared to the overall label distribu-

tion. By putting more weights on those subspaces, the learned common subspace is able to

to preserve the distinctive information.
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Chapter 1

Introduciton
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As human beings, we are able to adapt and apply efficiently our past experience to new

scenarios, but how can we reproduce this skill for an artificial learning system?

1.1 Supervised Learning, Unsupervised Learning, Semi-

Supervised Learning

The learning algorithms can be roughly divided into three main categories based on the

type of information contained in the training data: supervised learning, unsupervised learn-

ing and semi-supervised learning. Supervised learning analyze the previously collected

labeled training data and produces an inferred function, which can be used for mapping

unlabeled test data [11, 19, 76, 64]. Unsupervised learning is to find hidden structure in

unlabeled data [43, 57, 63, 73, 85]. Since the data given to the learner are unlabeled,

there is no error or reward signal that can be used to evaluate a potential solution in un-

supervised learning. Semi-supervised learning is halfway between unsupervised learning

(without any labeled training data) and supervised learning (with completely labeled train-

ing data) [14, 98, 4, 99]. Semi-supervised learning make use of a large amount of unlabeled

data in conjunction with a small amount of labeled data, which can produce considerable

improvement in learning accuracy.

The success of machine learning method usually rely on the existence of large amount

of labeled data. It is unrealistic to assume the availability of labels with the increasing

amount of data from various sources. it is also unrealistic and expensive to do manual

annotation. Unsupervised learning and semi-supervised learning can solve the problem in

a certain extent. However, unsupervised learning and semi-supervised learning still have

the assumption: the training data, labeled or unlabeled, have the same distribution as that

of the test data. Unfortunately, not all of these data, in fact, a majority part of these data

does not necessarily follow the same distribution as the test data.
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In this thesis, we focus on utilizing data comes from a different but closely related dis-

tribution as that of the test data, to aid learning the model. We are concerning two learning

scenarios which are different from supervised learning, unsupervised learning and semi-

supervised learning: 1) domain adaptation 2) learning from multiple domains or multiple

latent domains. In Chapter 2, 3, 4, we are going to cover the first scenario with several

strategies, locality preserving projection, affinity learning and data alignment. In Chapter

5, we are going to elaborate our strategy to cover the second scenario, subspace clustering

with multiple subspace alignment.

1.2 Domain Adaptation

1.2.1 Single Source Domain Adaptation

Domain adaptation (DA) is a research field associated with machine learning and transfer

learning[52, 75, 51, 79]. It aims to learn a well performing model from a source data

distributions on a different but closely related target data distribution. Domain adaptation

has gained significant attention in many areas of applied machine learning, including bio-

informatics, speech and language processing, computer vision and etc.

For example, considering the problem of sentiment classification [9], where the task is

to automatically classify the reviews on a product, such as newly released video games,

into positive and negative views. For this classification task, we need to first collect many

reviews of the product and manually annotate them. We would then train a classifier on

the reviews with their corresponding labels. To achieve good classification accuracy, we

need to manually annotate a large amount of reviews since the distribution of reviews on

different video games can be very different. However, this manual annotation process can

be very expensive to do. To reduce the effort for annotating reviews for video games, we

may want to adapt a classification model that is trained on existing reviews on electronics

to help learn classification models for reviews on the video games. In such cases, domain
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adaptation can save a significant amount of labeling effort. We demonstrate sentimental

classification for domain adaptation in Figure.(1.1).

As a second example, consider the problem of visual object recognition in computer

vision. The goal is to recognize visual objects in each images. the labeled examples may

be images downloaded from online merchants that are associated with category information

obtained through previous manual-labeling efforts. For a classification task on the newly

high-resolution images by a digital SLR camera where the data features or data distributions

may be different, there may be a lack of labeled training data. As a result, we may not be

able to directly apply the classifiers learned on the images downloaded from Amazon to

images obtain with digital SLR camera. In such cases, it would be helpful if we could

transfer the classification knowledge into the new domain. We demonstrate visual object

recognition for domain adaptation in Figure. (1.2).

In these practical problems, given that the instances in the training and test domains

may be drawn from different distributions, traditional supervised learning can not achieve

good performance on the new domain. Given a new domain of interest, there may not be

sufficient labeled data, and labeled data from a related domain need to be utilized. Domain

adaptation algorithms are therefore designed to bridge the distribution gap between training

(source) data and test (target) data.

There are several methods that have demonstrated improved performance under domain

variations. Given the existence of label information from the source or target domain, these

methods can be broadly classified into three groups:

• Unsupervised Domain Adaptation: all or part of source examples are labeled.

• Semi-Supervised Domain Adaptation: all or part of source examples and a small

number of target examples are labeled.

• Supervised Domain Adaptation: all the examples in source domain and target do-

main are labeled.
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Review on Electronics Review on Video Games

‘Compact; easy to operate; very 
good picture quality; looks sharp!’

‘Very fun, lots to do. I am very
much hooked on this game!’

‘terrible battery issues; The lens 
stopped extending or retracting in 
less than a year’

‘it is prone to crashes, including ones 
that corrupt the save data.

Figure 1.1: Domain Adaptation for Sentiment Classification: thinking about using models
trained with reviews on electronics to reviews on video games.

All our approach belongs to unsupervised DA category, where there are no labels for target

data. In unsupervised DA group, there are roughly two types of algorithms: The first type

of methods can be referred to as instance-based approaches [48, 54, 62, 22, 21, 70, 95, 60,

6, 81, 31, 87, 86], which assumes that certain parts of the data in the source domain can

distribute similarly to the data in the target domain by re-weighting. Instance reweighing

and importance sampling are two major techniques in this context. These methods can

be used to address one variation of domain adaptation problem: covariate shift, where the

conditional distribution of the labels are the same for source and target domain but the

marginal distribution are not the same. The second type of methods are based on feature

representation learning, such as [9, 65, 66, 7, 78, 38, 8, 10, 32, 34, 26, 88, 94, 1]. The

assumption is that although source and target data have different distributions, either there

exists some general features which have similar conditional distributions in both domains,

or it is possible to transform the original feature space into a new feature space which is

predictive for the target domain. In this scenario, the knowledge used to transfer across

domains is encoded into the newly learned feature representation. The performance on the

target data is expected to improve significantly with the new feature representation. Our

methods belongs to feature representation learning category.
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Amazon DSLR

Figure 1.2: Domain Adaptation for Visual Object Recognition: think about using algo-
rithms trained on clean Amazon images to annotate objects acquired with a digital SLR
camera. Left: images collected from the amazon website, Right: images collected with a
digital SLR camera.

1.2.2 Multiple Source or Multiple Latent Source Domain Adaptation

Domain adaptation with multiple sources has also received a lot of attention in many areas

such as natural language processing and computer vision. For example, in sentiment clas-

sification, we have plenty of labeled data to train a model in some domains, such as movie

reviews and book reviews. However, we may not have enough labeled data available for

training in some domains, such as piano reviews. Multiple source domain adaptation al-

gorithms can solve such problems by using the domains which have plenty labeled data

as sources, and domains lack of labeled data as target domains. Assumed that we have

access to the labeled training data for several source domain, it is wasteful if we only use

one source for training. A natural solution is to combine the raw labeled data from each

source domain and form a new sample more representative of the target distribution and

use that to train a learning algorithm. There are several theoretical methods for multiple

source domain adaptation, which give a general theorem which establishes a general bound

[20, 62, 5]. There are well-developed algorithms to solve multiple source domain adap-
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Traditional Machine Learning

Training Test

Domain Adaptation

Training Test

Multiple Source Domain Adaptation

Training Test

Domain A Domain B Domain C

Figure 1.3: A Demonstration of the Difference between Traditional Machine Learning,
Domain Adaptation, and Multiple Source Domain Adaptation.

tation problem. There are roughly two types of approaches: one is feature representation

approaches [28, 15, 29, 82]; the other is based on the combination of pre-learned classifiers

[77, 83, 92, 84].

Recently, [47, 61, 91] and [37] relax this assumption and assume that the domain label

of the source data is not available for training. Both methods explicitly address the issue

that source data may consist of multiple latent domains. In order to obtain the optimal

domain invariant predictor, source data samples need to be first clustered into different

groups, each of which corresponds to a latent domain.

1.3 Our Approach

To be specific, we propose graph and subspace learning methods to solve domain adapta-

tion problem. The ultimate goal of all our approaches is to find a new feature representation

in which the domain discrepancy is minimized. In graph learning domain adaptation ap-

proaches, we generate the new feature representation by directly exploring the properties
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of graphs. In subspace learning domain adaptation approaches, we will first generate the

subspaces for each domain, and then explore the relationship among these subspaces, and

finally generate a domain-invariant new representation.

1.3.1 Graph Learning for Domain Adaptation

Our first approach is based on ’locality preserving’ property of laplacian graph. The goal

is to find a linear mapping which preserve the intrinsic structure for both source and target

domains simultaneously. We proposes a novel locality preserving projection method for

domain adaptation task. We first construct two graphs encoding the neighborhood infor-

mation for source and target domains separately. We then find linear projection coefficients

which have the property of locality preserving for each graph. Instead of combing the two

objective terms under compatibility assumption and requiring the user to decide the impor-

tance of each objective function, we propose a multi-objective formulation for this problem

and solve it simultaneously using Pareto optimization. The details of this approach can be

find in Chapter 2.

Our second approach is based on the fact that graph diffusion can somehow improve

the affinities in a graph. We propose a novel method to solve domain adaptation task in

a transductive setting. The proposed method bridges the distribution gap between source

domain and target domain through affinity learning. It exploits the existence of a subset

of data points in target domain which distribute similarly to the data points in the source

domain. These data points act as the bridge that facilitates the data similarities propagation

across domains. We also propose to control the relative importance of intra- and inter-

domain similarities to boost the similarity propagation. In our approach, we first construct

the similarity matrix which encodes both the intra- and inter- domain similarities. We

then learn the true similarities among data points in joint manifold using graph diffusion.

We demonstrate that with improved similarities between source and target data, spectral
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embedding provides a better data representation, which boosts the prediction accuracy.

The details of domain adaptation via affinity learning is in Chapter 3.

1.3.2 Subspace Learning for Domain Adaptation

Our first approach propose a novel linear subspace learning methods for domain adapta-

tion. Our key observation is that in many real world problems, such as image classification

with blurred test images or cross domain text classification, domain shift can be modeled

by a linear transformation between the source data and target data. Motivated by this obser-

vation, our method explicitly aligns the data in two domains using a linear transformation

while simultaneously finding a subspace which preserves the most data variance. With

explicit data alignment, the subspace learning is formulated as minimizing of a PCA-like

objective, which consists of two variables: the basis vectors of the common subspace and

the linear transformation between two domains. We show that the optimization can be

solved efficiently using an iterative algorithm based on alternating minimization, and prove

its convergence to a local optimum. The details of the approach is in Chapter 4.

Our second approach is to solve multiple latent domain adaptation problem. We would

like to make an argument that single subspace assumption is too strong in many applica-

tions, especially considering the domain could be a mixture of latent domains with signifi-

cant inner-domain variations that should not be neglected or data is from multiple sources.

Our key idea is to assume the data lie in a union of multiple low dimensional subspaces,

which relaxes the common assumption above. We propose a novel two step subspace based

domain adaptation algorithm: in subspaces discovery step, we cluster the source and target

data using subspace clustering algorithm and estimate the subspace for each cluster using

principal component analysis; in domain adaptation step, we propose a novel multiple sub-

space alignment algorithm in which we seek a latent common subspace that aligns well to

both source and target subspaces. We extensively evaluate our method on various domain

adaption tasks for both single source domain and multiple source domains adaptation. Our
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approach achieves favorable results compared to state-of-the-art domain adaptation meth-

ods. The details of our approach is in Chapter 5.
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Chapter 2

Locality Preserving Projection for

Domain Adaptation with

Multi-Objective Learning
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2.1 Introduction

In recent years, domain adaptation has gained significant attention in many areas of applied

machine learning, including bio-informatics, speech and language processing, computer

vision and etc. In many supervised machine learning and data mining tasks, it is usually

assumed that both the labeled and unlabeled data are sampled from the same distribution.

However, in many real-world tasks, this assumption does not hold. For example, in tempo-

ral domains, the feature distribution may be different from that of the former features over

time. In clinical studies of disease, the selected samples may not be representative enough

and have selection bias. Given a new domain of interest, there may not be sufficient labeled

data, and labeled data from a related domain need to be utilized. In these practical prob-

lems, given that the instances in the training and test domains may be drawn from different

distributions, traditional supervised learning can not achieve good performance on the new

domain. Domain adaptation algorithms are therefore designed to bridge the distribution

gap between training (source) data and test (target) data.

Most domain adaptation algorithms seeks to eliminate the difference between source

and target distributions. They can be mainly categorized into two classes. The first class

of methods seeks to make source distribution close to target distribution by re-weighting

(importance sampling) source domain data. Such methods include [48, 54, 62]. The second

class of methods are based on feature mapping or feature representation, such as [9, 65,

68]. The assumption is that although source and target data have different distributions,

either there exists some general features which have similar conditional distributions in

both domains, or it is possible to transform the original feature space into a new feature

space which is predictive for the target domain.

In this paper, we propose a novel feature representation transfer method. Given labeled

data from source domain and unlabeled data from target domain, locality preserving projec-

tions are learned simultaneously on both domains through a multi-objective optimization

framework.
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There are two key innovations in our method. First, we adopt locality preserving projec-

tions, a linear feature transformation method, to solve domain adaptation problem. Locality

preserving projections (LPP) are first proposed in [45] as a dimension reduction method.

Its key advantage compared to PCA and LDA is that it can discover the ”intrinsic dimen-

sionality” of the data, which could be much lower than the original feature space. It builds

a graph incorporating neighborhood information of the data set and then computes a trans-

formation which maps the data points to a subspace. The linear transformation optimally

preserves local neighborhood information. Compared to other dimension reduction meth-

ods, higher classification accuracy can be achieved in the low dimensional space learned by

LPP. Because of its good performance and simple implementation, there have been many

works using LPP to solve different tasks where promising results are achieved. However,

to the best of our knowledge, those methods do not attempt to solve the domain adaptation

problem. In our work, in order to solve the domain adaptation problem, a discriminative

low dimensional common space is discovered using LPP. LPP is learnt simultaneously on

source and target domain. This promises that the source label can be transferred to target

data in the learnt low dimensional common space.

To simultaneously learn LPP on both domains, we use a multi-objective learning frame-

work, which is our second contribution. We first construct two graphs encoding the neigh-

borhood information of source and target data. Intuitively, LPP needs to preserve local

neighborhood information on both source and target data. Therefore, there are two objec-

tive functions to be optimized. A standard way to solve the above problem is to combine

the two objective terms into a single objective with a trade-off parameter. The trade-off

parameter is crucial, and can be obtained using cross-validation. However, in this work,

we argue that such paradigm may not be suitable for domain adaptation task, which is

simply because the labels of the target data are missing, so it is impossible to perform

cross-validation. Therefore, we adopt the multi-objective learning framework. We use the
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classic Pareto optimization, which allows multiple objectives to compete with each other

in deciding the optimal trade-off. More details are introduced in the methodology section.

The rest of paper is organized as follows: We first review the related work. And then, we

describe how to formulate LPP for domain adaptation via multi-objective framework. We

further show how to solve the multi-objective optimization by finding the Pareto Frontier

via generalized eigendecomposition. After that, experimental results on real world data

sets are described in detail. Finally, we draw some conclusions.

2.2 Related Work and Discussion

Domain adaptation have been extensively studied in many research areas [66, 58, 50, 16,

17]. In this paper, we mainly consider the methods which assume that there are no labeled

data in target domain (unsupervised domain adaptation). In particular, we review feature

representation domain adaptation methods.

[9] proposed a heuristic method for domain adaptation which is called structural cor-

respondence learning (SCL). SCL uses labeled data from both domains to induce the cor-

respondence among features. SCL identify some domain invariant ”pivot” features first,

the other features are represented using their relative co-occurrence count with all pivot

features. After that, SCL computes a projection matrix through the low rank approxima-

tion of the matrix. In [55], the main idea is to select features that are generalizable across

domains. The method uses a regularized logistic regression classifier. During training, it

allows the generalizable features to be less regularized, compared with the domain-specific

features. However, their method for finding the generalizable features assumes that there

are multiple source domains. Pan et al. [65] attempt to discover a latent feature representa-

tion across domains by minimizing the feature distribution difference, which is measured

by the Maximum Mean Discrepancy statistic. The method solves a semi-definite program-

ming (SDP) and directly gives the kernel matrix. In [67], an improved version is proposed,
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which is called ”transfer component analysis”. The method reduces the distance between

domain distributions dramatically by projecting the data onto the learned transfer compo-

nents. The algorithm learns a kernel function that can be applied on new data sets. Gong

et al. proposes geodesic flow kernel (GFK) to solve domain adaptation problems. [10].

The method embeds the source and target data into Grassmann manifolds and constructs

geodesic flow between them to model domain shifts. GFK integrates an infinite number of

subspaces that lie on the geodesic flow from the source subspace to the target one. and find

new feature representations which is robust to changes of domains. In our work, we aim

to learn a linear mapping matrix, which can preserve the local neighborhood structure of

both source and target data. By learning the locality preserving projections on both source

and target data simultaneously, we are able to discover a lower dimensional space which is

domain independent.

Locality preserving projections [45] has been applied to solve many machine learning

tasks. For example, LPP is adopted in [12] to perform document indexing. In [46], LPP is

used to tackle face recognition problem in computer vision. Most recently, [42] proposed

a feature selection method which incorporates LPP.

In this paper, we use Pareto optimization to learn LPP simultaneously on source and

target domain. In Pareto optimization theory, the Pareto frontier captures all possible good

solutions without requiring the users to set the correct parameter. Pareto optimization has

not been widely used for the reason that it is NP-hard problem to compute the Pareto

frontier in most cases. Recently, [24] show that by imposing orthogonal constraints and

with some relaxation, the Pareto frontier of graph cut type objectives can be computed

efficiently by solving a generalized eigendecomposition problem. In this paper, we follow

the solution proposed in [24]. However, we aim to solve the domain adaptation problem,

while [24] aim to tackle the multi-view clustering problem.
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2.3 Problem Formulation

We assume that our data originate from two domains, Source (S) and Target (T). Source

data is fully labeled, which is (XS,yS) = {(x1
S, y

1
S), (x2

S, y
2
S), · · · , (xns

S , y
ns
S )}. Each

pair of (xiS, y
i
S) lies in Rd × y space and samples from some distributions PS(X, Y ).

The target data has equal dimensionality d as source data, and is sampled from

PT (X, Y ). However we do not have any labels for the target domain data, i.e.,

(XT , ?) = {(x1
T , ?), (x2

T , ?), · · · , (xnt
T , ?)}. Given (XS,yS) and (XT , ?), our goal is

to learn linear projection coefficient w ∈ Rd such that the learned coefficients are

discriminative for both domains.

If we consider w as coefficients in a linear projection function y = wTx, which maps

data x ∈ Rd to a continuous value y, then we think discriminative feature weights w should

has the property of locality preserving, i.e., if two data xi and xj are ”close” then wTxi

and wTxj should be as close as well. The same insight has been used in many existing

approaches, where locality preserving property shows merits in solving other tasks such as

dimension reduction, document indexing and feature selection [45, 12, 44] .

In the rest of this section, we first describe how to construct the adjacency graphs for

source and target data respectively. Given the two graphs, we show how to learn coeffi-

cients w simultaneously on both source and target data using a multi-objective optimization

framework.

2.3.1 Graph Construction

Let A denote an adjacency graph, where each node represents a data point. We use AS and

AT to denote the graph of source and target data respectively. When constructing A, an

edge between nodes i and j exists if xi and xj are ”close”. The criteria for defining ”close”

can vary in different scenarios.
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To constructAT , since the labels of target data are not available, we define ”close” in an

unsupervised manner, i.e., nodes i and j are connected by an edge if i is among p nearest

neighbors of j or j is among p nearest neighbors of i. Formally, we have:

AT (i, j) =


xj
T ·x

i
T

‖xj
T ‖·‖x

i
T ‖

if xiT ∈ Np(x
j
T ) or xjT ∈ Np(x

i
T )

0 otherwise.
, (2.1)

where Np(x
i
T ) is the set of p nearest neighbors of xiT . Note that we compute the similarity

matrix AT with the cosine similarity measure. However, other similarity measures may be

used.

For AS , we take advantage of the available labels of source data, and define ”close” in

a supervised manner, i.e., nodes i and j are connected if xi and xj share the same label:

AS(i, j) =

 1 if xiS and xjS share the same label

0 otherwise.
, (2.2)

Note that unlike the weight computation for target data, the same weight 1 is used for all

edges instead of computing cosine similarity [12].

2.3.2 Multi-Objective Optimization

Given data X and its adjacency graph A, we are trying to find a discriminative feature

weight w which can preserve the local structure of dataX . Here we assume that w projects

data points in X to vector ŷ, that is ŷ = Xw, where X can either be XS or XT . We

optimize w from a locality preserving view.
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w = arg min
w

1

2

n∑
i,j=1

(
ŷi√
di
− ŷj√

dj
)2A(i, j)

= arg min
w

1

2

n∑
i,j=1

(
wTxi√
di
− wTxj√

dj
)2A(i, j)

= arg min
w

wTXD−1/2LD−1/2XTw

= arg min
w

wTXL̄XTw

(2.3)

where L = D − A is the graph Laplacian,and di =
∑

j A(i, j) measures the local density

around xi. D is a diagonal matrix with [d1, d2, · · · , dn] as its entries. The normalized graph

Laplacian is denoted as L̄ = D−1/2LD−1/2.

The objective function in (2.3) incurs a heavy penalty if neighboring points xi and xj

are mapped far away. Intuitively, to minimize (2.3) is to find w which can ensure that if xi

and xj are ”close” then wTxi and wTxj are close as well.

In order to optimize w on source and target graph simultaneously, it is clear that the

optimization must involve two objective terms: wTXSL̄SX
T
Sw and wTXT L̄TX

T
T w. When

combining two objective terms, a common practice is to convert two objective terms into a

single objective term, by adding up two terms and using a parameter to control the trade-off,

i.e.,

w = arg min
w
{wTXSL̄SX

T
Sw + αwTXT L̄TX

T
T w} (2.4)

The parameter α controls the trade-off between source and target graph. Therefore, it

is critical to find a ”good” parameter to guarantee that a feature coefficient is obtained by

solving (2.4). A standard way to find the ”good” parameter is through cross-validation.

However, we argue that such paradigm may not be suitable for the unsupervised domain

adaptation task, because the target data labels are unavailable, which makes it impossible

to perform the cross-validation.
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In our approach, instead of converging two separate objective terms into a single ob-

jective by introducing a trade-off parameter, we aim to directly solve the following multi-

objective optimization, which is one of our main contributions.

w = arg min
w
{wTXSL̄SX

T
Sw,w

TXT L̄TX
T
T w} (2.5)

We add the following constraints where the last two constraints exclude the solution with

eigenvalue 0.

Ω
.
= {w ∈ R | wTw = 1, XSw ⊥ D

1/2
S 1, XTw ⊥ D

1/2
T 1} (2.6)

To solve the above multi-objective optimization problem, we aim to find the Pareto

frontier [24]. Before we introduce the concept of Pareto frontier, we first define Pareto

improvement.

Pareto Improvement: We set fS(w) = wTXSL̄SX
T
Sw and fT (w) = wTXT L̄TX

T
T w.

Given two coefficients w and w′, we say w is a Pareto improvements over w′ if and only

if one of the following two conditions holds:

fS(w) < fS(w′) ∧ fT (w) ≤ fT (w′)

or

fS(w) ≤ fS(w′) ∧ fT (w) < fT (w′)

When w is a Pareto improvement over w′, we say w is better than w′.

Pareto frontier P̂ refers to the optimal set of solutions, which satisfy the following three

properties:

1. any w in P̂ is better than that not in P̂ ;

2. any two w in P̂ are equally good;
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3. for any w in P̂ , it is impossible to reduce the cost on one objective function without

increasing its cost on the other objective function.

Therefore, the Pareto frontier is a complete set of equally ”good” solutions that are su-

perior to any other possible solutions. Despite this good property of Pareto frontier, com-

puting Pareto frontier is unfortunately NP-hard in most cases. However, [24] show that if a

multi-objective optimization problem has graph-cut objective terms, then its approximated

Pareto frontier can be solved efficiently with a generalized eigendecomposition problem.

2.4 Computing the Pareto Frontier via Generalized

Eigendecomposition

For the optimization problem defined in formula (2.5), its Pareto frontier contains infinite

number of solutions. In order to make the computation efficient, we made an approximation

to original optimization problem, by introducing additional constraints to narrow down the

search space. Particularly, we aim to find a subset of solutions in Pareto frontier which

is distinctive enough. Therefore, we apply an mutually orthogonal constraint, which is

defined as:

Ω̂
.
= {w ∈ Ω | ∀w 6= w′, XSw ⊥ D

1/2
S 1, XTw ⊥ D

1/2
T 1} (2.7)

Under an assumption that the null space of XSL̄SX
T
S and XT L̄TX

T
T do not overlap, the

optimization turns into solving a generalized Hermitian definite pencil problem [25]. Then

Ω̂ is the set of N eigenvectors of the generalized eigenvalue problem [35].

XSL̄SX
T
Sw = λXT L̄TX

T
T w (2.8)
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However, in order to get a stable solution of the above eigen-problem, XT L̄TX
T
T is

required to be non-singular [35]. Since in our applications, this does not always hold,

in order to make the computation numerically stable, we adopt the SVD decomposition

described as below.

2.4.1 SVD decomposition

Suppose we have the SVD decomposition ofXT asXT = UΣV T . If we let X̄T = UTXT =

ΣV T and multiply UT to both sides of the equation, we can rewrite Eq. (2.8) as :

UTXSL̄SX
T
Sw = λUTXT L̄TXT

Tw

= λX̄T L̄TXT
Tw

(2.9)

If we let w = Ub, then we have:

UTXSLSX
T
S Ub = λX̄T L̄TXT

TUb

= λX̄T L̄T X̄T
T
b

(2.10)

Let X̄S = UTXS , then we rewrite Eq. (2.10) as:

X̄SL̄SX̄S
T
b = λX̄T L̄T X̄T

T
b (2.11)

whose optimal solution for b∗’s can be still solved as the generalized eigenvalue problem.

It is easy to check that X̄T L̄T X̄T
T have a larger chance to be nonsingular so that the above

eigen-problem has a stable closed form.

After we obtain b∗, then w∗ is obtained by solving a set of linear equations w∗ = Ub∗.

The above function consists of N − 2 orthogonal cuts in Ω̂. We further compute the Pareto

frontier using the Algorithm 1.
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2.4.2 Approximation Bound for Our Algorithms

As described above, we compute the orthogonal Pareto frontier as an approximation to the

Pareto frontier. Here we create an upper bound on how far a point in the Pareto frontier

can be to the orthogonal Pareto frontier. Let Ω̂ = {b̂i}N−2
i=1 and B̂ = (b̂1, · · · , b̂N−2).

Any b ∈ Ω can be represented by a linear combination of b̂i’s: b = B̂a, where a =

(a1, a2, · · · , aN−2)T . According to [24], we can derive a lower-bound for ‖a‖.

‖a‖2 ≥ 1/σ2
max(B̂) (2.12)

where 1/σ2
max(B̂) is the largest singular value of B̂. The larger 1/σ2

max(B̂) is, the closer the

two costs on the Pareto frontier and orthogonal Pareto frontier. This effectively bounds the

difference between the costs of the cuts on the Pareto frontier and those on the orthogonal

Pareto frontier.

2.5 Empirical Study

In this section, results of our analysis of locality preserving projection for domain adap-

tation with multi-objective learning are presented. First, the data sets and the experiment

settings used in this analysis are briefly described. Second, we analyze the classification

accuracy for different domain adaptation algorithms on real world data sets. We aim to

answer the following questions: (1) how does our algorithms perform on data sets with

different distributions on training and test? (2) how does it compare to other domain adap-

tation algorithms?

2.5.1 Data description and experiment setup

The data set we evaluate first is the USPS handwritten digit database [49]. We extract two

data sets from 9298 16x16 handwritten digit data sets. The data set ’USPS1’ is constructed
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Algorithm 1: Locality Preserving Projection for Domain Adaption with Multi-
Objective Learning

input : Data Matrix: XS, XT , Label: yS
output: The set of Pareto optimal weights: P̂

1 Compute the normalized graph Laplacians L̄S , L̄T , and compute the SVD
decomposition for XS = USV .

2 Solve the generalized eigenvalue problem: UTXSL̄SX
T
S Ub = λX̄T L̄T X̄T

T
b.

3 Let w = UTb, Normalize all w’s such that wTw = 1.
4 Let P̂ be the set of all the w, excluding the two associated with eigenvalue 0 and∞.
5 for all w in P̂ do
6 for all w′ in P̂ do
7 if w is a Pareto improvement over w′ then
8 remove w′ from P̂ ;
9 continue;

10 end
11 if w′ is a Pareto improvement over w then
12 remove w from P̂ ;
13 break;
14 end
15 end
16 end

as follows: the source domain contains all the handwritten digits of ’1’s which are labeled

’+1’, all the handwritten digits of ’8’s which are labeled ’-1’. The target domain includes

all handwritten digits ’7’s and ’3’s with no labels. The data set ’USPS2’ is constructed in

a similar way as that for ’USPS1’. The source domain contains all handwritten digits ’7’s

with label ’+1’ and ’8’s with label ’-1’. The target domain includes all handwritten digits

’2’s and ’3’s with no labels.

We then evaluate our algorithm on the 14 tumor data sets which were published by

Ramaswamy et al. [80], and we downloaded them in the preprocessing version from Stat-

nikov [80]. The data sets contain 14 different human tumor types and 12 normal types.

Each type of tumor have only 10s order of subjects and 15009 genes. We extract three

transfer learning data sets by coupling normal and tumor samples from the same tissue

type together. The details of each data sets are as follows. For ’Bladder-Uterus’, the source
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domain contains all normal and disease samples with labels extracted from bladder tissue.

The target domain includes all normal and disease samples without labels extracted from

uterus tissue. For ’Prostate-Uterus’, the source domain contains all normal and disease

samples with labels extracted from prostate tissue. The target domain includes all normal

and disease samples without labels extracted from uterus tissue. For ’Uterus-Pancreas’, the

source domain contains all normal and disease samples with labels extracted from uterus

tissue. The target domain includes all normal and disease samples without labels extracted

from pancreas tissue. We aim to predict whether a sample in the target domain is normal

or disease given that samples in the source domain with labels.

At last, we evaluate our algorithm on the Lung tumor and brain tumor data sets down-

loaded from [80]. The source domain for ’Lung1’ contains all samples in ’Adeno’ and

’Squamous’. The target domain for ’Lung1’ contains all samples in ’CIOD’ and ’SMCL’.

In the same way, the source domain for ’Lung2’ contains all samples in ’Adeno’ and

’SMCL’. The target domain for ’Lung2’ contains all samples in ’CIOD’ and ’Squamous’.

The source domain for ’Brain’ contains all samples in ’Medulloblastoma’ and ’Malignant

glima’. The target domain for ’Brain’ contains all samples in ’AT/RT’ and ’PNET’. In this

part, we aim to adapt the feature space between source domain and target domain and aim

to separate two types of cancers.

The details of each data sets are listed in Table 2.1. It is easy to observe that there

are several data sets with extremely small sample size and high dimensional feature space.

And for the USPS data sets, the distribution for some features in the training data sets is

significantly different from that in the test data sets. We want to see how our algorithms

perform on all these various kinds of transfer learning data sets. To make comparisons, we

implemented several state-of-art domain adaptation algorithms. GFK embeds the datasets

into Grassmann manifolds and constructs geodesic flows between them to model domain

shifts [10]. TCA discovers a latent feature representation across domains by learning some

transfer components in reproducing Kernel Hilbert space using maximum mean discrep-
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Figure 2.1: The training and test data sets for USPS handwritten digit: the first two rows
represent the training data with labels, the third and fourth rows represent test data without
labels.

ancy. Our baseline method ’Original’ use the original features without learning a new

representation for adaptation. We use 1-nearest neighbor classifier to do the classification

and report the classification accuracy for each data set.

2.5.2 Experiment Results

The results are summarized in Table 2. From the table, it is easy to observe that our al-

gorithm can achieve better classification on almost all data sets. Most importantly, our

approach is more reliable in terms of performance than its competitors when the training

and test data sets differ significantly.

For the gene expression data sets, which have very few of samples and high dimension

of genes, our approach can find a linear projection which can enhance the classification

accuracy. For the USPS data sets, there are quite a lot of features which have different

distribution across the source and target domains. The new feature representation computed

by GFK failed to adapt the source domain to the target domain.
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Table 2.1: Summary of Tumor Data Sets
Datasets Training Testing Features

Pos vs Neg Pos vs Neg
Lung1 20 : 6 17 : 21 12600
Lung2 21 : 6 17 : 20 12600
Brain 7 : 14 14 : 15 10367
USPS1 664 : 731 1858 : 645 256
USPS2 644 : 731 542: 645 256

Bladder − Uterus 11 : 7 11 : 6 15009
Prostate− Uterus 14 : 9 11 : 6 15009
Uterus− Pancreas 11 : 6 11 : 10 15009

Datasets Original TCA GFK Our method
Lung1 0.5263 0.6053 0.6053 0.8158
Lung2 0.7027 0.6406 0.6406 0.8919
Brain 0.8966 0.8621 0.8966 0.9655
USPS1 0.8554 0.5610 0.6117 0.9036
USPS2 0.8569 0.7787 0.7889 0.8833

Bladder − Uterus 0.6534 0.6191 0.7110 0.7059
Prostate− Uterus 0.7059 0.7647 0.7647 0.8235
Uterus− Pancreas 0.7143 0.7143 0.7619 0.8095

Table 2.2: Classification Accuracy of Different Domain Adaptation Algorithms on Tumor
Datasets. The best results of each data set are highlighted in bold.

2.6 Conclusion and Future Work

In this paper, we explore the locality preserving projection for domain adaptation with

multi-objective learning. We propose multi-objective formulation for domain adaptation.

The search space of our objective is the joint numerical range of two graphs. We find a

relaxed mutually orthogonal optimal sets by using Pareto optimizations. The effectiveness

of our approach is evaluated on the benchmark data sets with comparison to the state-of-

the-art algorithms. The pragmatic benefits of our approach over existing domain adaptation

algorithms are: 1) the users do not need to specify the trade-off parameters; 2) the training

and test data sets do not need to be similar to each other. Our algorithm can find the new

feature representation which can effectively preserve the local structure.
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Chapter 3

Transductive Domain Adaptation with

Affinity Learning
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3.1 Introduction

In recent years, domain adaptation has gained significant attention in many areas of applied

machine learning, including bioinformatics, speech and language processing, computer

vision etc. In these practical problems, given that the instances in the training and testing

domains may be drawn from different distributions, traditional learning method can not

achieve good performance on the new domain. Domain adaptation algorithms are therefore

designed to bridge the distribution gap between training (source) data and testing (target)

data. Domain adaptation methods seek to eliminate the difference between source and

target distributions.

In this paper, we propose a transductive method to explicitly improve intra- and inter-

domain similarities. Our contribution is two-fold: first, we perform affinity learning via

graph diffusion to bridge the distribution gap of source and target domain. The key idea

is to exploit the existence of a subset of data points in the target domain which distributes

similarly to the data points in the source domain. We denote this subset of data points as

Bridge Points (BP). Through graph diffusion, we propagate the similarities between BP

and other data points in the target domain, as well as the similarities between BP and data

points in the source domain. Affinity learning is able to give robust pair-wise similarities

of data points, since all paths between all pairs of data points are considered. In this way,

affinity learning can bridge distribution gap of source and target domain. As our experi-

mental results clearly demonstrate, our assumption that part of the target data is similar to

part of the source data is often satisfied by real world data sets. Figure 3.1 illustrates our

motivation.

Our second contribution is to adjust the intra- and inter- domain similarities. The in-

tuition is that data points in the same domain are often more similar to each other than to

those in different domain. In graph diffusion process, this makes the similarity propagation

from data points in source domain to data points in target domain ineffective. Therefore,

the proposed adjustment of the intra- and inter- domain similarities is a key step in making

28



óî ð î ì ê
óî

ð

î

ì

ê

ø¿÷

Í±«®½» Ü±³¿·²

óî ð î ì ê
óî

ð

î

ì

ê

ø¾÷

Í±«®½» ¿²¼ Ì¿®¹»¬ Ü±³¿·²

óî ð î ì ê
óî

ð

î

ì

ê

ø½÷

Ñ®·¹·²¿´ ßºº·²·¬»

óî ð î ì ê
óî

ð

î

ì

ê

ø¼÷

ßºº·²·¬» ¿º¬»® Ô»¿®²·²¹

Figure 3.1: Schematic illustration of utilizing affinity learning for unsupervised domain
adaptation. (a) Data points in source domain. Each color represents one class. (b) Data
points in source and target domains. Solid shapes represent the data points in the source
domain, hollow shapes represent the data points in the target domain. Black circles mark
the Bridge Points, which is subset of data instances in the target domain and have similar
distribution as data instances in the source domain. (c) The lines connect points in the
target domain to their nearest neighbors in the source domain with the original similarities.
(d) The lines connect points in the target domain to their nearest neighbors in the source
domain after the affinity learning.

the affinity propagation successful. We balance the intra- and inter- domain edges by pick-

ing equal number of nearest neighbors in source and target domain for each data point and

also re-weight intra- and inter-domain edges.

In summary, given the similarity matrix of source and target data, the procedure of our

framework includes the following key steps:

Similarity Adjustment: re-weight intra- and inter- domain similarities.

Affinity Learning: iteratively learn similarities in joint geometric structure via Tensor

Product Graph Diffusion (TPGD)[93].

Spectral Embedding: apply spectral embedding on diffusion matrix to get a low-

dimensional representation.

In this paper, we use Tensor Product Graph Diffusion(TPGD) [93] to capture the joint

manifold structure for the source and target domain. As demonstrated in [93], TPGD can

robustly discover the true, underlying manifold structure in image retrieval. We utilize

TPGD to learn joint geometric structure in the context of domain adaptation when training

and testing are drawn from different distributions.
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We examine the proposed method on several benchmark datasets which consists of vi-

sual object recognition and text classification tasks. The proposed method outperforms

state-of-the-art methods. In particular, it achieves the best performance among all com-

pared methods on 6 out of 8 visual object recognition tasks and 6 out of 6 text classification

tasks.

The rest of the paper is organized as follows. We first give a brief review of related

works in Section 3.2. In Section 3.3, we describe the proposed affinity learning for domain

adaptation task. In particular, we describe how to construct the transition probability matrix

with similarity adjustment. We also show how to perform graph diffusion on a tensor

product graph to obtain robust similarities. In Section 3.4, we present our experimental

results on benchmark datasets and compare it to several state-of-the-art methods. Finally,

we come to the conclusion is in Section 3.5.

3.2 Related Work

Domain adaptation has been extensively studied in many research areas [68, 50, 16, 96].

Domain adaptation can be categorized into three types. The first type are self-labeling

approaches, which include self-training [71] and co-training [16]. The second type of algo-

rithms proposes to weight or select training instances to minimize the discrepancy distance

[48, 54]. Our work belongs to the third type, which aims at finding ”good” feature repre-

sentations to minimize domain divergence and classification error, such as [9, 10, 66]. In

particular, for object recognition application in computer vision, many works have been

proposed to learn new feature representation, such as [59, 74, 36]. Compared to existing

approaches, our method focus on affinity learning to bridge the distribution gap between

source and target domain.

While our work share some common components compared to graph-based semi-

supervised method, such as [99] where graph is used to propagate labels, the key
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difference is that we aim to solve the domain adaptation problem and our goal is to use

affinity learning to improve the noisy pairwise similarities due to domain shift. That

motivates us to reweight the inter- and intra- domain edges, and use spectral embedding to

obtain the low dimensional domain-invariant data representation.

There are also several works attempting to solve transfer learning in a transductive

setting [72, 56, 33]. They apply label propagation to zero-shot and few-shot learning based

on attribute graph or semantic graph. [90] exploits the mixture distribution to refine the

classification labels. These work did not try to improve pair-wise similarities.

3.3 Proposed Approach

We assume that our data originate from two domains, Source (S) and Target (T). Source

data DS = {(x1
S, y

1
S), (x2

S, y
2
S), · · · , (xNS

S , yNS
S )} is fully labeled, each pair (xiS, y

i
S) lies in

Rd × y space. The source data are sampled from some distribution PS(X, Y ). The target

data has equal dimension d as the source data but is sampled from a different distribution

PT (X, Y ). We denote the target data as DT = {(x1
T , ?), (x2

T , ?), · · · , (xNT
T , ?)}, whose

labels are unknown. Given DS and DT , our goal is to infer the class labels of data points

in DT .

In the rest of this section, we first describe how to construct the transition matrix P for

source and target data jointly. We then iteratively learn the joint geometric structure and

capture true similarities among data points in source and target domain. After we get the

diffusion matrix, we compute the Laplacian graph and solve the smallest K eigenvectors

to obtain a new feature representation of data points in source domain and target domain.

After that, any classification approach can be adopted to predict labels for target data. In

this work, we choose SVM classifier with linear kernel.
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3.3.1 Cross-domain Graph Construction

The goal of this section is to construct the transition matrix of a graph G whose nodes

consist of data points in both source and target domain. We use PSS and PTT to denote the

transition probability matrices of data points in the source and target domains respectively.

PST and PTS denote the transition probability matrix of data points across domains. We

construct the overall transition matrix as follows:

P =

 βPSS (1− β)PST

(1− β)PTS βPTT

 (3.1)

where β controls the relative importance of the intra- and the inter- domain transition prob-

abilities and β ∈ [0, 1]. Empirically, β can be set by solving

β

1− β
=

2NSNT

N2
S +N2

T

(3.2)

which calibrates the average inter- and intra- domain edge weights to be close.

PSS and PTT are row-wise normalized similarity matrices which are computed as:

PSS = D−1
SSASS PTT = D−1

TTATT (3.3)

where ASS is the similarity matrix of data points in source domain and ATT encodes the

similarities between data points in target domain. DSS and DTT are the diagonal matrices

of the row sums of ASS and ATT .

To compute ASS , we take advantage of the available labels of source data, and define

”closeness” in a supervised manner, i.e., nodes i and j are connected if xi and xj share the
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same label. The similarity matrix ASS is defined as follows:

ASS(i, j) =


xj
S ·x

i
S

‖xj
S‖·‖x

i
S‖

if xiS and xjS share the same label

and xiS ∈ Np(x
j
S) or xjS ∈ Np(x

i
S)

0 otherwise.

, (3.4)

Here, we use Np to denote the p nearest neighbors. In the source domain, the label infor-

mation is embedded into the similarity matrix. While we compute the similarity matrix

ASS with the cosine similarity measure, other similarity measures may also be applicable.

To compute ATT , since the labels of target data are not available, we define ”close-

ness” in an unsupervised manner, i.e., nodes i and j are connected if i is among p nearest

neighbors of j or j is among p nearest neighbors of i. Formally, we have:

ATT (i, j) =


xj
T ·x

i
T

‖xj
T ‖·‖x

i
T ‖

if xiT ∈ Np(x
j
T ) or xjT ∈ Np(x

i
T )

0 otherwise.
, (3.5)

where Np(x
i
T ) is the set of p nearest neighbors of xiT .

Similarly cross-domain transition probability matrices PST and PTS are computed as

follows:

PST = D−1
STAST PTS = D−1

TSATS (3.6)

where AST denotes the cross-domain similarities. DST and DTS are the diagonal matrices

of the row sums of AST and ATS . AST is computed as follows:

AST (i, j) =


xi
S ·x

j
T

‖xi
S‖·‖x

j
T ‖

if xiS ∈ Np(x
j
T ) or xjT ∈ Np(x

i
S)

0 otherwise.
, (3.7)

To summarize, we introduce two major differences in the transition matrix construction

process which are tailored for unsupervised domain adaptation task: First, we add super-

vised information to the similarity matrix ASS to remove noisy entries in ASS . Second, we
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control the relative importance of intra-domain and inter-domain transition probabilities.

When building KNN connected graph, we balance the intra- and inter- domain edges by

picking equal number of nearest neighbors in source and target domain for each data point.

We also perform a reweighting on the intra- and inter- domain similarities. As demon-

strated by our experiments in Section 3.4.2, these two steps greatly boost the performance

of affinity learning which results in a better data representation, and therefore a higher

prediction accuracy.

3.3.2 Diffusion Process on Tensor Product Graph

In this section we review tensor product graph diffusion process introduced in [93]. Given

the edge (transition probability matrix) P , we define Q(1) = P and

Q(t+1) = P Q(t) P T + I, (3.8)

where I is the identity matrix. We iterate (3.8) until convergence. Let us denote the limit

matrix by Q∗ = limt→∞Q
(t). A closed form expression for Q∗ is as follows:

lim
t→∞

Q(t) = Q∗ = P ∗ = vec−1(
t∑

i=0

Pi) vec(I)). (3.9)

The proof of the convergence of (3.8) and closed form equation can be found in [93],

where P is the tensor product of P with itself. Since Q∗ = P ∗, we obtain that the iterative

algorithm on Q defined by (3.8) yields the same similarities as the TPG diffusion process

on P for a sufficient number of iterations.

3.4 Empirical Study

In this section, we present our experimental results on visual object recognition tasks. We

set K and p in our method through cross-validation based on classification error of data
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Table 3.1: Performance Gain Analysis on Visual Object Recognition , where: C : Caltech,
A : Amazon, W : Webcam, D : DSLR. SE: spectral embedding; SA: similarity adjustment;
TPGD: tensor product graph diffusion; Our Method = SA+TPGD+SE.

% A-D A-W D-A D-W W-A W-C C-D C-W Average
Baseline 40.8 41.7 32.3 73.6 34.1 29.9 42.0 40.7 41.9

SE 40.1 40.7 34.4 66.4 35.7 28.7 47.1 43.7 42.1
SA + SE 45.8 44.4 41.1 89.5 38.7 35.0 52.8 49.1 49.6

TPGD + SE 43.9 41.0 34.8 74.9 39.8 35.2 54.1 48.5 46.5
Our Method 50.3 49.0 40.5 92.2 39.7 36.8 55.4 52.9 52.1

samples in source domains. We first compare to the baseline approach and evaluate the

performance gain at each step and give detailed analysis. This provides clear insight about

the merits of the proposed method. Our results on benchmark datasets are also favorable

when compared to several state-of-the-art domain adaptation methods.

We first describe our experiment settings, and then validate our method on visual object

recognition and text classification task. The obtained results clearly demonstrate that our

method outperforms several state-of-the-art domain adaptation methods on most of the

datasets.

3.4.1 Performance Gain Analysis

We perform experiments using 4 object recognition datasets, which includes: Amazon,

Webcam, DSLR. These three datasets are first introduced in [74]. Additionally, we use

Caltech-256 in [41] as the fourth dataset to further evaluate the proposed methods. Each

dataset is treated as a domain and 10 common object categories are extracted. We down-

loaded the processed datasets with SURF features from [10]. We conduct each experiment

using every pair of source and target dataset. We report the recognition accuracy on every

pair of source and target dataset.
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Table 3.2: Recognition Accuracy of Benchmark Domain Adaptation Method for Visual
Object Recognition, where C : Caltech, A : Amazon, W : Webcam, D : DSLR.

% A-D A-W D-A D-W W-A W-C C-D C-W
Baseline 40.8 41.7 32.3 73.6 34.1 29.9 42.0 40.7
TCA[66] 36.3 27.8 28.7 82.0 24.2 22.5 45.2 32.5

KMM[48] 42.7 42.4 36.0 83.0 31.9 29.0 53.5 45.8
GFK[10] 42.7 40.7 36.2 76.3 31.8 30.9 43.3 44.7

LandMark[36] 47.1 46.1 33.4 78.0 40.2 35.4 57.3 49.5
Our Method 50.3 49.0 40.5 92.2 39.7 36.8 55.4 52.9

3.4.2 Visual Object Recogonition

As the baseline approach, we adopt the original features and train a linear SVM model on

source domain. To illustrate the significance of performance gain using affinity learning to

facilitate domain adaptation, we study four variants of our method. In the first variant, we

apply spectral embedding directly to the original similarity matrix. In the second variant,

we add intra- and inter- domain similarities reweighting before applying spectral embed-

ding. In the third variant, we apply graph diffusion to the original similarity matrix before

applying spectral embedding. In the final variant, we put all components together which is

the proposed approach.

We compare the recognition accuracy of the baseline approach and the 4 variants in

Tabel 3.1. We can see that low-dimensional feature representation obtained by spectral

embedding can preserve most of the information for each dataset, whose accuracy is com-

parable to the baseline, but with no improvement. If we adjust intra- and inter- domain

similarities and apply spectral embedding, the average recognition accuracy improves 7.5%

compared to that of the baseline. If we apply affinity learning and spectral embedding to-

gether, the average recognition accuracy improves 4.6% compared to that of the baseline.

If we combine adjusting intra- and inter- domain similarities and affinity learning through

graph diffusion, the performance improves 10.0% compared to that of the baseline method.

Overall, these results demonstrate that adjusting intra- and inter- domain similarities can
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facilitate the affinity learning, and affinity learning can provide more reliable affinities for

data points in joint manifold.

We compare the proposed method to several state-of-the-art methods: KMM [48],

TCA [66], GFK [10], LandMark [36]. Table 3.2 summarizes accuracy of object recog-

nition on 8 pairs of source and target domains obtained from the four datasets. For the

compared methods, most results are quoted from [36], except for D-A and D-W which

we generated using the code downloaded from authors’ websites. The average recognition

accuracy of our method improves 3.7% when compared to that of the second best method

’LandMark’. Our method performs the best on 6 out of 8 pairs of domains.

3.4.3 Cross-domain Text Classification

In this section, we test the proposed approach on cross-domain text classification tasks.

We use Reuters-21578 Processed dataset1. Reuters dataset consists of 3 different domains:

Orgs, People and Places, and has 6570 instances in total. We conduct 6 unsupervised do-

main adaptation experiments, which are Orgs to People, Orgs to Places, People to Orgs,

People to Places, Places to Orgs, Places to People. We also compare our method to

KMM [48], TCA [66], GFK [10], LandMark [36]. Table 4.3 reports classification ac-

curacy for 6 unsupervised cross-domain text classification tasks. Our method achieves

better results than the other state-of-the-art methods. The average classification accuracy

of our method on 6 domain adaptation tasks improves 10% when compared to the baseline

method. Compared to KMM and LandMark, the classification accuracy of our method is

8.9% and 7.6% higher respectively.

We also conduct another experiment in which we randomly pick target data together

with their labels and treat them as source data for feature representation learning and train-

ing the prediction model. We then test the model on the rest of unlabeled data in the target

domain. We repeat this 10 times and report the average classification accuracy. We com-

1http://www.cse.ust.hk/TL/index.html
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Table 3.3: Classification Accuracy on Cross-Domain Text Classification, where Pe is short
for People and Pl is short for Places. The proposed method performs the best on all 6 pairs.

% Orgs-Pe Orgs-Pl Pe-Orgs Pe-Pl Pl-Orgs Pl-Pe
Baseline 69.3 65.5 70.2 51.5 65.9 56.1
TCA [66] 67.9 63.5 73.2 52.8 59.2 55.4
KMM[48] 64.3 69.7 74.3 53.7 65.5 57.6
GFK [10] 68.1 64.8 71.4 56.9 60.9 56.1

LandMark[36] 68.6 64.5 74.9 60.5 64.6 61.3
Ours 79.1 73.1 84.6 67.8 73.4 62.0
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Figure 3.2: Results on two domain adaptation tasks under varying amounts of labeled
target data. The graphs show the average classification accuracy averaged over 10 runs
(with randomly selected labeled instances).

pare our method to KMM [48] and LandMark [36]. Figure 3.2 shows the results on two

domain adaptation tasks: Orgs to People and People to Places. The curves illustrate the

classification accuracy using different numbers of labeled target data. As we can see from

the figure, our method is able to learn domain-invariant feature representation even when

there is no labeled target data used (left-most point where the number of labeled target data

equals to 0). As the number of labeled target data increase, the classification accuracy for

domain adaptation tasks increase for all three methods, while our method can consistently

achieve better performance than the other two compared methods.
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3.5 Conclusions

We demonstrate that affinity learning can be a very successful tool for domain adaptation.

Our method is able to learn the joint geometric structure of source and target domain based

on the preservation of intra-domain and across domain information. We first construct

the similarity matrix which encodes the intra- and inter- domain similarities. We then

iteratively learn ’true’ similarities for data points in joint manifold with Tensor Product

Graph Diffusion (TPGD). At last, we apply spectral embedding on diffusion matrix to get

the low-dimensional feature representation. The effectiveness of our method is validated on

standard benchmark datasets for visual object recognition and text classification. Empirical

results show that the proposed method achieves robust performance and outperforms state-

of-the-art methods.
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Chapter 4

Subspace Learning with Data Alignment

for Domain Adaptation
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4.1 Introduction

A typical assumption for supervised methods is that the training and test data have the same

distribution. However, in real world tasks, this assumption does not always hold. Domain

adaptation has been widely studied in recent years, which aims to solve the supervised

learning problem when there exists domain shift between source (training) and target (test)

data. Many existing domain adaptation approaches are based on subspace learning, such as

[32, 38, 10, 8]. A common philosophy of those approaches is to find a subspace in which the

distribution discrepancy of source and target domain is reduced. In one of the pioneer works

that explores the subspace learning for domain adaptation, [9] proved that if the subspace

that preserves the most variation of the source data overlaps with that of the target data,

then the predictive model trained for source domain can be effectively transferred to target

domain. On the other hand, if the subspace of source domain is orthogonal to the subspace

of target domain, then the knowledge learned from source data can not be transferred to

target domain. This clearly demonstrates the importance of finding a shared subspace in

which the data variation of both the source and target data is preserved.

In this paper, we propose a novel linear subspace learning approach for domain adapta-

tion. Like [32, 10, 8] the linear subspace is defined using a set of basis vectors. Unlike the

existing approaches, our method finds the subspace using both source and target data while

explicitly aligning the target subspace to the source subspace. Our observation is that: to

obtain a subspace good for domain adaptation, simply computing principal components us-

ing both source and target data might be problematic, due to the domain shift. For instance,

in the digits image classification, the test images could be rotated, shifted or blurred com-

pared to the training images. In that case, the basis of the training space is not compatible

to those of the test space. Therefore, it is impossible to find a set of basis vectors which

are optimal for both training and test images. The other example is the cross domain text

classification in which the texts in two languages may have the same intrinsic subspace

because the words in two vocabularies may have one to one correspondences. However,
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due to the difference in two dictionaries, the subspace may also not be compatible. It is

easy to notice that all the domain shifts mentioned above, such as image rotation, shifting,

blurring, or the permutation in bag of word representations, can be in fact modeled as a lin-

ear transformation between the source data and target data. We demonstrate our motivation

using a toy example in Figure 4.1.

We make two key contributions in the proposed approach. Our first contribution is to

perform data alignment and subspace learning simultaneously. We introduce a novel PCA-

like objective function which consists of two variables, the subspace basis, and the linear

transformation between source basis and target basis. To jointly optimize the objective

function over these two variables, we propose an iterative algorithm based on alternative

minimization, and prove that it converges to a local optimum. Our second contribution is to

exploit labels available for source data to obtain a better subspace for prediction. We aim to

incorporate label information to subspace based domain adaptation algorithms. While the

unsupervised subspace learning, such as PCA, is able to preserve the data variance, it fails

to consider the label information therefore may not be robust in some cases. We use Figure

5.1 to demonstrate this. While the source data has similar variance along both directions Us

and U ′s, Us is clearly more suitable for building a predictive model, since the positive and

negative data samples are better separated. We show that the label information of source

data can be naturally integrated into our objective function, and the same algorithm can

be used to solve both unsupervised and supervised version of our objective functions. We

examine the proposed method on both synthetic dataset as well as benchmark datasets for

real world domain adaptation problems. Our method achieves state-of-the-art results.

The rest of the paper is organized as follows: First, we discuss several works which

are related to the proposed approach. Second, we define the subspace learning problem

formally, describe the alternative minimization algorithm and prove its convergence. Then,

we describe the experimental settings and discuss the empirical results. At last, we give the

conclusion.
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Ut

Us’Us

Figure 4.1: A toy example to demonstrate our motivation for subspace learning with data
alignment. Both source (blue circle) and target (red circle) data are sampled from a gaussian
distribution. Ut is the subspace that preserves the most variance for target data. Us and U ′s
are two subspace candidates for source domain, but Us is better for label prediction than
U ′s. A rotation of target data Ut would align it with Us and reduce the domain discrepancy.

4.2 Related work

Domain adaptation have gained significant attention in recent years [54, 48, 23, 66, 17, 13],

[89]. Domain adaptation can be categorized into three types: The first type of method are

self-labeling approaches, which include self-training [71] and co-training [16]. The second

type of approaches propose to select or reweight source domain instances to minimize the

distribution discrepancy between source and target domain, such as [48, 18, 54]. Our work

is along with the third type, which aims at finding common subspace to minimize domain

divergence. As a result, features used to build the prediction model in source domain also

have support in target domain, and the trained model can be transferred to target domain

more effectively. Subspace based domain adaptation gains a lot of popularity due to its

promising results on many real world applications, such as computer vision [10, 32, 78, 38]

and natural language processing [9, 8, 67]. In general statistical modeling, a good subspace

is the one that preserves most of the data variance. A subspace can be uniquely character-

ized by a set of basis vectors, which are often identified as the eigenvectors with principal

component analysis (PCA). Subspace based domain adaptation approaches assume that
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source data and target data lie in two different intrinsic low dimensional subspaces. [8]

propose a coupled subspace learning algorithm in which the subspaces of source and target

domain are first identified independently. Labeled source data is projected into both the

source subspace and the target subspace, and a linear prediction model is learned using

features in both subspaces. They showed that only the weights on the features in the tar-

get subspace are transferred during testing. Similar to [8], both [10] and [38] assume that

source data and target data lie in two different low dimensional subspaces. The key idea is

to learn domain-invariant features by using intermediate subspaces. They show that both

source and target subspaces are on the Grassmannian manifold, and a geodesic flow curve

connecting these two subspaces captures the incremental changes. [65] attempt to discover

a good latent feature representation across domains by minimizing the feature distribution

difference, which is measured by the Maximum Mean Discrepancy statistic. The approach

solves a semi-definite programming (SDP) and directly gives the kernel matrix. In [67],

an improved version was proposed, which is called ”transfer component analysis”. The

method can reduce the distance between domain distributions dramatically by projecting

the data onto the learned transfer components. This algorithm learns a kernel function that

can be applied on new data sets.

The closest work to ours is [32], which proposes a subspace alignment algorithm that

explicitly aligns the bases of the subspaces to reduce the domain shift. There subspaces

for source and target domain are first computed independently followed by a subspace

alignment step. This means that the subspace for target domain only depends on target data

samples. The goal of subspace alignment is only to align the coordinates, so that the source

samples can be projected into the target subspace. Our method explicitly aligns the data in

two domains using a linear transformation while simultaneously finding a subspace which

preserves the most data variance The key difference in our approach is that our goal is to

find a shared intrinsic subspace for both domains. In our formulation, the source samples
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also help to determine the subspace of the target data. The other difference is that we

perform the data alignment step in the original space rather than in the subspace like [32].

4.3 Methodology

We assume there are Ns labeled source data samples (Xs, Ys) drawn from distribution Ps

and Nt unlabeled target data samples (Xt, ?) drawn from another distribution Pt. We have

Xs ∈ Rp×Ns and Xt ∈ Rp×Nt . Both source and target data have the same dimension p.

Our goal is to find a common subspace, in which the domain divergence is minimized, so

we are able to infer the correct labels of the target data.

4.3.1 Problem Formulation

A good common subspace should be able to preserve the variance, or equivalently mini-

mize the reconstruction error, for both source and target domain. To find such a common

subspace, one can simply solve the following PCA problem:

arg min
U

‖Xs − UUTXs‖2
F + ‖Xt − UUTXt‖2

F

s.t. UTU = I

(4.1)

where U ∈ Rp×K of which each column is a basis vector. Solving Eq. (4.1) only makes

sense when the true subspace for both domains agree or just differ slightly. However, if

there exists dramatic domain shift between source and target domains, the solution of Eq.

(4.1) does not solve the domain adaptation problem. As we point out in the introduction

section, in many real world applications, such as image classification or cross language text

classification, the true subspace between two domains could have significant domain shift,

which should not be neglected.
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Therefore, we use a linear transformation M ∈ Rp×p to explicitly model the domain

shift between the true subspace of two domains. In particular, we use Us and Ut to denote

the subspace of source and target domain respectively, and assume that the number their

basis vectors are the same, i.e., Us ∈ Rp×K and Ut ∈ Rp×K , then Us = MUt.

By incorporating Us = MUt into Eq. (4.1), we aim to solve:

arg min
Ut,M

‖Xs − (MUt)(MUt)
TXs‖2

F + ‖Xt − UtU
T
t Xt‖2

F

s.t. UT
t Ut = I, MTM = I

(4.2)

Eq. (4.2) is a non-convex function of Ut and M , therefore in polynomial time, it is only

possible to find a locally optimal solution. In the next section, we present an efficient

iterative algorithm to solve Eq. (4.2).

4.3.2 Alternating Optimization

Since it is difficult to optimize over Ut and M simultaneously, we adopt an alternating

minimization approach. At each step, we alternatively optimize over Ut and M with the

other one fixed. The details are described below.

(1) Initialization

Since the iterative alternating optimization procedures efficiency is greatly affected by

the initialization step, in this paper, we initialize M = I rather than random allocation.

(2) Optimization over Ut with fixed M

If M is constant, solving Eq. (4.2) turns into solving:

arg max
Ut

tr(UT
t (MTXsX

T
s M +XtX

T
t )Ut)

s.t. UT
t Ut = I

(4.3)

It is easy to see that this is similar to the objective in the PCA problem. Therefore the

columns of the optimal solution Ut of Eq. (4.3) correspond to the top K eigenvectors of
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MTXsX
T
s M +XtX

T
t . We also want to point out that in the original formulation Eq. (4.2),

the linear transformation M is applied to the target basis Ut. Eq. (4.3) provides us another

perspective: we first transform the source samples by applying M to Xs then solve the

PCA problem jointly using target samples and transformed source samples.

(3) Optimization over M with fixed Ut

If Ut is constant, we can drop the second term in Eq. (4.2), as well as the constraints

with respect to Ut. Then Eq. (4.2) turns into:

arg min
M

‖Xs − (MUt)(MUt)
TXs‖2

F

s.t. MTM = I

(4.4)

We use the method of Lagrange multipliers to find the local minimum of Eq. (4.4) . We

study the Lagrange function defined by

tr(UT
t M

TXsX
T
s MUt)− λ(MTM) (4.5)

If we take the derivative of Eq. (4.5) over M and set the derivative to 0, we have

XsX
T
s MUtU

T
t − λM = 0 (4.6)

After multiplying by Ut, we get

XsX
T
s MUt − λMUt = 0 (4.7)

From Eq. (4.7), this is the same problem as we solved for Ut, which is again a PCA

problem. Therefore, to minimize Eq. (4.5), MUt should be the top K eigenvectors of

XsX
T
s . In order to obtain a closed form solution exists for Eq. (4.5) which always decreases
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the objective, we first compute Us = MUt as the first K eigenvectors of XT
s Xs. We then

multiply the pseudo inverse of U+
t = (UT

t Ut)
−1UT

t = UT
t , to both sides of the equation,

we then get the closed form solution for M as follows:

M = UsU
T
t (4.8)

After we get Ut and M , during training, we let X ′s ← UtMXs, and train a classifier (linear

SVM in our experiments) using X ′s and Ys. During test, we apply the classifier to X ′t ←

UtXt to predict the labels for target data. We summarize our approach in Algorithm (3).

(4) Convergence Analysis

We prove that our approach in Algorithm 3 converges to a local minimum.

Theorem 1. The objective function value in Eq. (4.2) is non-increasing under the opti-

mization procedure in Algorithm Eq. (3).

Proof. To prove Theorem (1), we only need to prove that the objective function value of Eq.

(4.2) is non-increasing after each step in line 3 and in line 5. With fixed M , the objective

function value of Eq. (4.2) with respect to Ut equals to the objective function value of Eq.

(4.3). With fixed Ut, the objective function value of Eq. (4.2) with respect to M equals to

the objective function value of Eq. (4.4). Since the objective function values in Eq. (4.3)

and Eq. (4.4) are guaranteed to converge to some local mimima and the Frobenius norm

has 0 as a lower bound, so the convergence of our iterative algorithm to a local optimum is

guaranteed.

4.3.3 Utilizing Labels of Source Data

We first review the supervised PCA method introduced in [3], which incorporates the label

information into PCA based on HSIC dependency criteria [40], so that the PCs are more

relevant to the responsible labels. If we use X to denote data, U to denote the subspace
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Algorithm 2: Subspace Learning with Data Alignment.
Input : 1. Source data (Xs, Ys), target data (Xt, ?).

2. Number of subspace basis vectors K.
Output: Label of target data Yt

1 Initialize M as an identity matrix.
2 repeat
3 Update Ut by solving Eq. (4.3).
4 Update Us = MUt by solving Eq. (4.5).
5 Update M using Eq. (4.8).
6 until Eq. (4.1) converges;
7 Yt ← Classifer(UtMXs, Ys, UtXt)

Table 4.1: Classification Accuracy for USPS Digit Recognition with Rotation or Gaussian
Blur Domain Shift.

% 45◦Rotation 90◦Rotation Blur(width=2) 45◦Rotation+Blur(width=2)
No Adaptation 78.22(8.63) 59.20(7.11) 80.57(8.28) 73.61(10.25)

TCA [66] 89.65(3.94) 82.55(11.34) 86.00(0.57) 87.04(4.90)
GFK [10] 71.10(13.45) 62.10(12.41) 72.92(10.35) 64.89(13.34)
SA[32] 90.44(3.31) 77.15(7.60) 74.54(3.49) 86.31(2.79)

Ours(Unsupervised) 91.13(1.27) 86.60(8.23) 82.95(2.22) 88.71(1.27)
Ours(Supervised) 91.50(1.42) 88.67(4.95) 84.14(2.20) 88.98(1.30)

basis, the supervised PCA solves:

arg max
U

tr(UTXLXTU) s.t. UTU = I (4.9)

where L is the kernel matrix computed using label Y . For classification problem, we use

a simple kernel function, if two samples have the same label, the corresponding value in

L is set as 1, otherwise 0. The solution to this problem is the eigenvectors of the top K

eigenvalues of XLXT .

Since L is the kernel matrix, which is semi-definite, it can be decomposed asL = ∆T∆.

This indicates that in order to integrate the label information, we can simply replaceX with
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X∆T , and rewrite Eq. (4.2) as follows:

arg min
Ut,M

‖Xs∆
T − (MUt)(MUt)

TXs∆
T‖2

F + ‖Xt − UtU
T
t Xt‖2

F

s.t. UT
t Ut = I MTM = I

(4.10)

which can be also solved using Algorithm 3. Note that although we apply the same strategy

as in supervised PCA to incorporate label information, our contribution is that we reformu-

late it in the subspace based domain adaptation framework.

4.4 Empirical Study

In this section, we present the empirical study of the proposed algorithm. The only parame-

ter in our method is dimensionK of the subspaceUt, which we set through cross-validation.

In particular, for eachK, we did leave-one-out training of a classier, and pick the one which

gives the lowest prediction error on source data. In our experiments, K is usually equal or

slightly large than the category numbers. We ran two versions of our algorithm: unsu-

pervised version which does not use the label information of source data and supervised

version. We compare to baseline methods as well as other state-of-the-art methods, in-

cluding: Subspace alignment (SA) [32], Geodesic flow kernel (GFK) [10], and Transfer

component analysis (TCA) [66]. We use linear SVM as classifiers in all experiments.

4.4.1 Handwritten Digit Recognition

In this section, we evaluate our method using a synthetic dataset. We use digit images of

3 and 8 from the USPS handwritten digit dataset to form a binary classification problem.

We randomly sample a subset of images as source domain, and add rotation and blurring

to the other images to generate target data. In particular, we select 100 images per class for

training and 1000 images per class from the rest of images for test. We add rotation (45
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Original Image Rotation Gaussian Blur Rotation and Blur

Figure 4.2: Examples of source and target data for handwritten digit recognition. We use
original images as the source data and the rotated and blurred images as target data.

and 90 degree) and Gaussian blur (kernel width is 2) to the test images. Some examples are

shown in Figure (5.2). We repeat for 20 times and report the mean and standard deviation

of the recognition accuracies in Table (5.1). We set K = 2 in all the experiments on USPS

handwritten digit datasets.

As shown by the results, our method is very robust to rotation and blur, even when

the rotation degree is very large. It proves that by explicitly modeling the transformation

between source and target data, our algorithm is able to find a better subspace jointly for

both domains, which leads to a better predictive model for domain adaptation task.

4.4.2 Tumor Gene Expression Signatures for Cancer Diagnosis

In this section, we evaluate our algorithm on the 14 tumor data sets which were published

by [80], and we downloaded them in the preprocessed version from [80]. The datasets

contain 14 different human tumor types and 12 normal types. Each type of tumors have

only an order of 10s of subjects and 15009 genes. We extract 3 types of tumors: Breast,

Bladder and Lung and form 3 datasets by coupling normal and tumor samples from the

same tissue type together. The sample size of each dataset is (20 vs 7) for Lung, (11 vs 7)
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Table 4.2: Classification Accuracy on Cross-domain Tumor Gene Expression Signatures,
where Lu is short for Lung, Bl is short for Bladderand, Br is short for Breast. The proposed
method performs the best on all 6 pairs.

% Lu-Bl Lu-Br Bl-Lu Bl-Br Br-Lu Br-Bl
No Adaptation 74.89(4.38) 73.63(3.44) 70.44(0.52) 81.36(4.33) 78.96(3.92) 80.00(3.18)

TCA [66] 61.11(3.14) 77.27(5.54) 74.07(2.12) 77.27(2.98) 74.07(4.12) 61.11(3.76)
GFK [10] 77.22(5.29) 73.64(7.57) 74.07(2.12) 83.64(3.79) 79.92(2.50) 78.11(3.44)
SA[32] 82.00(3.09) 84.18(5.45) 70.14(2.89) 77.63(3.55) 76.15(5.46) 82.00(2.40)

Ours(Unsupervised) 82.11(2.82) 90.09(2.37) 76.37(1.82) 87.00(3.18) 80.59(3.22) 82.56(2.97)
Ours(Supervised) 83.21(2.96) 89.92(2.54) 77.34(1.76) 86.56(3.12) 81.34(2.98) 83.24(3.12)

for Bladder, (17 vs 5) for Breast. We perform experiments on 6 cross-domain tasks: Lung

→ Bladder, Lung→ Breast, Bladder→ Lung,Bladder→ Breast, Breast→ Lung, Breast

→ Bladder. To avoid over-fitting, we randomly select 500 features from the top 2000 highly

correlated features in each task and repeat this procedure for 20 times. We then run baseline

method, state-of-the-art method methods and our method on the reduced feature space. We

report the mean and standard deviation of the classification accuracy for each method. We

set K = 2 in all the settings on Tumor datasets.

As shown in Table 4.2, our method achieves consistently better classification accuracy

on all 6 pairs of data. Especially, we achieve both higher average accuracy and lower

standard deviation. A key advantage of our method is that it is robust to find common

subspace even when there is only a few data samples in source and target domain.

We also show the convergence rate in Figure 4.3 for two tasks: Breast→ Lung and Lung

→ Breast. The curves confirms that our iterative algorithm converges to a local minimum

and we only need a few iterations.

4.4.3 Cross-Domain Text Classification

In this section, we evaluate the proposed approach on Reuters-21578 1, a benchmark dataset

for domain adaptation. There are 3 different domains in Reuters dataset: Orgs, People

and Places. We perform experiments on 6 cross-domain tasks, i.e., Orgs → Places, Orgs

1www.cse.ust.hk/TL/index.html
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Figure 4.3: Convergence rate for subspace learning with data alignment on Lung→ Breast
and Breast→ Lung tumor datasets. The curves shows that our iterative algorithm converges
to a local minimum.

Table 4.3: Classification Accuracy on Cross-Domain Text Datasets, where Pe is short for
People and Pl is short for Places. The proposed method performs the best on all 6 pairs.

% Orgs-Pe Orgs-Pl Pl-Pe Pe-Orgs Pl-Orgs Pe-Pl
No Adaptation 66.81(2.25) 61.52(2.71) 53.45(2.21) 71.40(2.75) 65.67(1.81) 55.63(1.74)

TCA [66] 65.23(4.95) 63.48(3.86) 55.34(2.65) 69.89(2.13) 66.54(2.67) 56.98(1.95)
GFK [10] 72.51(1.35) 66.32(3.02) 56.47(3.16) 77.82(1.80) 65.24(2.65) 57.36(1.93)
SA[32] 62.52(6.79) 65.06(6.61) 55.49(7.73) 64.16(3.46) 66.74(11.9) 57.19(4.23)

Ours(Unsupervised) 72.69(1.57) 70.20(1.92) 57.86(1.92) 77.34(1.32) 71.31(2.82) 61.75(1.60)
Ours(Supervised) 74.78(1.41) 70.51(2.61) 58.78(1.37) 79.29(2.16) 67.55(2.50) 62.50(2.13)

→ People, People → Orgs, People → Places, Places → People, Places → People. We

randomly select 30% samples from the source domain and test on all the samples from

the target domain. We repeat 20 times for each task and report the mean and standard

deviation of the classification accuracy in Table 4.3. Our method achieves highest accuracy

compared to the state-of-the-art methods. We also observe that the supervised version of

our algorithm outperforms the unsupervised version in most cases, which indicates that by

incorporating the label information of the source data, the subspace is better for prediction.
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4.5 Conclusions

In this paper, we propose a novel linear subspace learning approach for domain adaptation.

Our method explicitly aligns the data in two domains using a linear transformation while si-

multaneously finding a subspace which preserves the most data variance. With explicit data

alignment, the subspace learning is formulated as minimizing a PCA-like objective, which

consists of two variables: the basis vectors of the common subspace and the linear trans-

formation between two domains. We show that the optimization can be solved efficiently

using an iterative algorithm based on alternating minimization, and prove its convergence

to a local optimum. Our method can also integrate the label information of source data,

which further improves the robustness of the subspace learning and often yields better pre-

diction. We apply our method to benchmark datasets and obtain very competitive results

that outperform state-of-the-art methods.
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Chapter 5

Latent Subspace Discovery via Subspace

Clustering for Domain Adaptation
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5.1 Introduction

A typical assumption for supervised methods is that the training (source) and test (target)

data are from the same distribution. However, this assumption is not satisfied in many real

world applications. In order to build robust prediction models, the discrepancy between

training and test data, which is often referred as domain shift, needs to be taken into con-

sideration. This issue is known as domain adaptation (DA). In this paper, we have data sets

on which the class labels are known, which are called source domain. For a new data set, or

a target domain, we aim to find the ground truth labels by exploring the information from

the source domain.

Domain adaptation has been actively studied in recent years [54, 48, 23, 66]. Subspace

based domain adaptation gains a lot of popularity due to its promising results on many

real world applications, such as computer vision [10, 32, 78, 38] and natural language

processing [9, 8, 67]. The key idea is to find a common subspace in which source and

target data share similar distribution, so that the features used to build the prediction model

in source domain also have support in target domain. All the approaches above assume

that either source or target data lie in a single low dimensional subspace. We refer to this

assumption as single subspace assumption.

We would like to make an argument that single subspace assumption is too strong in

many applications, especially considering the domain could be a mixture of latent domains

with significant inner-domain variations that should not be neglected [47, 37, 91] or data

is from multiple sources [62, 82, 27, 97]. The key observation we make in this work is:

data often lie in an union of multiple low dimensional subspaces. For example, consid-

ering an object recognition task where the training images of objects are also significantly

affected by many extraneous factors, such as illumination, view angle, camera resolution

in addition to intra-class appearance variations, This observation motivates us to explicitly

discover and exploit multiple subspaces. To the best of our knowledge, this insight has

never been considered in any existing subspace based domain adaptation approaches. We
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Figure 5.1: A toy example to demonstrate our motivation for latent subspace discovery
with 2-dimensional data. Left: red dots are source data which lie in two 1-dimensional
subspaces, and green dots are target data. If we follow single subspace assumption, and
apply PCA to all source data, we get a principal component Πs which is orthogonal to that
of the target data Πt. In this case, subspace based DA algorithms, such as SA, may not
work well. Right: We identify that the source data lie in an union of two 1-dimensional
subspaces, and compute the principal components of the two subspace as Πs1 and Πs2

respectively. Note that they are no longer orthogonal to Πt, and each of them independently
preserves the data variance of two source clusters. Therefore, each source subspace can be
well adapted to the target subspace.

use a toy example to better illustrate our motivation in Fig. 5.1. In fact, the assumption that

data in high dimensional space can be embedded into a union of low dimensional subspace

has been validated in many applications. This observation motivates the research of Sub-

space Clustering algorithms. Given a set of data samples, the goal of a subspace clustering

algorithm is to find the number of subspaces and the basis for each subspace. Subspace

clustering algorithms have been successfully applied to solve many computer vision ap-

plications, such as face recognition and image segmentation [30, 69, 53]. As mentioned

above, our key contribution is to utilize subspace clustering in domain adaptation, and

demonstrate that it can significantly improve the performance of subspace based domain

adaptation methods.
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On a high level view, our approach consists of two steps. In the first step, we identify

a union of subspaces for source and target data separately, and assign each data sample

to one of the subspaces. This is in fact a subspace clustering problem. In particular, we

adopt Sparse Subspace Clustering algorithm [30] in the subspace discovery step due to its

robustness to data noise and outliers. In the second step, given source subspaces together

with the target subspaces, we propose a novel multiple subspace alignment (Multi-SA) al-

gorithm, in which we identify one common subspace that aligns well with both source and

target subspaces, and therefore, best preserves the variance for both domains. To solve this

alignment problem jointly for multiple subspaces, we formulate this problem as solving

an optimization problem that minimizes the weighted sum of multiple alignment costs. A

higher weight is assigned to a source subspace if its label distribution has smaller distance,

measured by KL divergence, compared to the overall label distribution. By putting more

weights on those subspaces, the learned common subspace is able to to preserve the dis-

tinctive information. Finally, we use all the transformed source data and their labels to train

a single predictor and predict on the transformed target data.

To summarize, our contribution is twofold: 1. We point out the limitation of the sin-

gle subspace assumption adopted by the existing subspace based domain adaptation algo-

rithms, and instead assume that data lie in a union of multiple subspaces, which can be

discovered by a subspace clustering algorithm. 2. We propose a novel multiple subspace

alignment (Multi-SA) algorithm, which aims to find a good subspace by not only maxi-

mizing the variance of both source and target domain but also preserving the distinctive

information in the source domain. We examine our approach on traditional domain adap-

tation tasks where there is only one domain, as well as tasks where data are drawn from

multiple latent domains. We demonstrate that the proposed method achieves favorable re-

sults compared to other state-of-the-art methods.

The rest of the paper is organized as follows: we first discuss related works which also

discover latent domains in order to build a more robust domain adaptive predictor. We then
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give the details about our Multiple Subspace Alignment (Multi-SA) algorithm. After that,

we report the experimental results.

5.2 Related Work

Multi-source domain methods [62, 27, 82, 97] assume that multiple source data are given

as input, and the predictor must be adapted from them to do well in testing on target do-

main. Recently, [47] and [37] relax this assumption and assume that the domain label of

the source data is not available for training. Both methods explicitly address the issue that

source data may consist of multiple latent domains. In order to obtain the optimal domain

invariant predictor, source data samples need to be first clustered into different groups, each

of which corresponds to a latent domain. Hoffman et al. [47] use hierarchical clustering

algorithm to group the source data samples. Based on the key insight that each feasible

domain should contain multiple object categories, they use the available object category

information to constrain the hierarchical clustering process. Gong et al. [37] propose two

key criteria, maximum distinctiveness and maximum learn-ability, to cluster source sam-

ples into latent domains. They use a kernel-based approach [39] to measure the distribu-

tion difference. They formulate the domain discovery problem as solving an optimization

problem which maximizes the distribution difference while enforcing label prior constraint

(similar to [47]).

Our work share some common spirits with [47] and [37], as we also address similar

issue that source data may be drawn from multiple latent distributions. One perspective

of [47] and [37], as well as our work, is that they all solve a domain clustering problem.

While [47] used k-means objective and [37] used maximum distinctiveness criteria based

on kernel-mean, our approach is based on subspace clustering. Our insight ties closely

to the assumption that intrinsic low dimensional subspace can be used to characterize do-

mains. When source data are drawn from multiple latent distributions, we assume data lie
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in a union of low dimensional subspaces. For data lying in the same subspace, they are

self-expressive [30], meaning that each data sample can be reconstructed as a linear com-

bination of other data samples in the same cluster. Therefore, the characteristic of clusters

obtained by subspace clustering is fundamentally different from those in [47] and [37].

Subspace clustering also fits naturally with subspace based domain adaptation methods.

Our work is also closely related to single domain Subspace Alignment (SA) [32], which

learns a linear transformation to align the source subspace coordinate system to the target

one. The most important difference comparing our method to SA is that we discover and

exploit multiple latent subspaces of data, while SA only identify a single subspace for

source and target data respectively. In addition, we proposed a novel algorithm to align

multiple source and target subspace to a common subspace, in which the variance of source

and target data and distinctive information in the source domain can be well preserved.

5.3 Subspace Discovery and Domain Adaptation

We aim to solve the domain adaptation in the standard unsupervised setting. We assume

that we have access to an annotated source datasets denoted by {(xs, ys)}, where xs ∈ RP

is the feature vector and ys ∈ {1, 2, · · · , C} is the corresponding label out of C categories.

The target dataset is denoted by {(xt, ?)} where xt ∈ RP , and the label is unknown. We

assume that source data {xs} lies in an union of LS subspaces. For the convenience of

notation, we refer to the sth subspace using its projection matrix Πs ∈ RP×K , where K is

smaller than P . Each column in Πs corresponds to a basis vector of the subspace. Basis

vectors are orthogonal to each other, therefore the dimension of subspace Πs is K. Each

data sample in this subspace can be represented by a linear combination of the basis vec-

tors. Similarly, we assume that the target data {xt} lies in LT subspace, whose projection

matrices are denoted by {Πt}.
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We first describe how to infer {Πs} and {Πt} from the source and target data. After

that, we describe the proposed Multiple Subspaces Alignment (Multi-SA) algorithm by as-

suming that we know the subspaces for source and target data and their projection matrices

{Πs} and {Πt}.

5.3.1 Subspace Discovery via Sparse Subspace Clustering

Given a set of samples {x}, estimating the union of low-dimensional subspaces and their

basis vectors {Πl} is a Subspace Clustering problem [2]. As solving subspace clustering

problem is critical in many practical problems, there exists many subspace clustering al-

gorithms, such as [69, 30]. In our work, we choose Sparse Subspace Clustering (SSC)

algorithm [30] due to its robustness to data noise and outliers. For the completeness of

this paper, we briefly describe the SSC algorithm. The main idea of SSC algorithm is to

exploit the self-expressiveness property of the data, which states that each data point in a

union of subspaces can be efficiently represented as a linear or affine combination of other

points. The sparse representation of a data point ideally corresponds to a combination of a

few points from its own subspace. If we let X ∈ RP×N denote the matrix containing all

data points, let W ∈ RN×N denote the coefficient matrix, and let E ∈ RP×N be the error

matrix, such problem can be solved through sparse optimization:

min
W
||W ||1 + λ||E||1s.t. X = XW + E, diag(W ) = 0 (5.1)

The coefficients are used to construct a neighborhood graph, in which the nodes rep-

resent data points, and the edge weights matrix is calculated as |W | + |W |T . Each edge

weight indicates how likely that pair of nodes lie in the same subspace. A spectral clus-

tering method is then used to infer the cluster of the data. Finally, for each cluster, PCA

is used to compute the basis vectors {Πl} which preserve the most variation of the data in

each cluster. For source data {xs} and target data {xt}, we use the above method to get the
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Algorithm 3: Sparse Subspace Clustering Algorithm
Input : A set of data samples {x}, number of subspaces L, dimension of each subspace

K.
Output: Subspace basis vectors {Π}Ll=1 with Π ∈ RP×K .

1 Obtain the coefficients matrix W by solving Eq. (5.1).
2 Column-wise normalization of coefficients matrix W .
3 Form a similarity graph with N nodes representing the source data points, set the

weights on the edges between the nodes by W = |W |+ |W |T .
4 Apply spectral clustering to the similarity graph to obtain L clusters.
5 Apply PCA to each cluster of data, compute the first K eigenvectors, each of the

eigenvector is a column in the projection matrix Π.

basis vectors {Πs} for source subspaces and {Πt} for target subspaces separately. More

details about SSC algorithm can be found in [30]. We summarize the SSC algorithm in

Alg. (3).

5.3.2 Multiple Subspaces Alignment for Domain Adaptation

Given the data {x} and the corresponding set of subspaces {Πl}, we first describe how

to assign each data sample to a unique subspace. Optimally, we consider a data sample x

lies in a subspace Πl only if x can be perfectly represented as a linear combination of the

basis vectors of Πl. However, this assumption rarely happens when the dimension of the

subspace is lower than that of the original feature space. Instead, for each data sample, we

aim to find its closest subspace from the union of L source subspaces. After we project

data sample x into the subspace Πl, the closeness is then characterized by the distance

between original data sample x and its reconstructed representation ΠlΠ
T
l x. The distance

is often referred as reconstruction error computed as ‖x − ΠlΠ
T
l x‖2. A lower projection

error indicates that the data sample is closer to the subspace. Therefore, we obtain the

closest subspace for each data sample by:

l∗ = arg min
l=1,2,··· ,L

‖x− ΠlΠ
T
l x‖2 (5.2)
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With Eq. (5.2), we can identify the closest subspace Πs∗ for each source data sample

xs and the closest suspace Πt∗ for each target data sample xt. We transform xs into a lower

dimensional representation x̃s ∈ RK with ΠT
s∗xs. According to the common assumption

that data lie in an intrinsic low dimensional subspace, little predictive information is lost

comparing to xs. Similarly, a target data sample xt can be transformed to x̃t = ΠT
t∗xt.

However, note that Πs∗ and Πt∗ contain different basis vectors, and the new represen-

tations for source data and target data are in two different coordinate systems. Therefore,

the predictor trained on {(x̃s, ys)} cannot be directly applied to x̃t. For example, if we train

a linear SVM classifier, it is obvious that the weights on the directions in Πs∗ can not be

used as the weights on the directions in Πt∗ . Also, if two source data samples lie in two

different subspaces, they will be transformed with different Πs∗ , which means that their

corresponding x̃s will also be in different coordinate systems. The transformed target data

may also lie in two different coordinate systems. We present how to address these three

issues in the proposed Multi-SA algorithm.

We aims to resolve the discrepancy between source and target subspaces. The key

idea is to learn multiple linear transformations to align both the source and target subspace

coordinate systems to an unknown common coordinate system with basis vectors denoted

as Π. We use {Ms}, {Mt} ∈ RK×K to denote the set of linear transformations, where

K is the number of basis vectors in each source and target subspace. We aim to find the

optimal {Ms} and {Mt}, which make {ΠsMs} and {ΠtMt} to be as close as possible to

Π. Our objective function is to minimize the weighted sum of the alignment costs between

source/target subspaces to the common latent unknown subspace Π, and is formally defined

as:

arg min
{Ms},{Mt},Π

LS∑
s=1

λs‖Π− ΠsMs‖2
F +

LT∑
t=1

‖Π− ΠtMt‖2
F (5.3)

where {λs} are the weights to control the relative contribution of alignment costs to the

overall objective.

63



WEIGHTS SETTING: Since we seek a union of {Πs} for the source domain, the key

question is how to distinguish a good subspace from a bad subspace. Our insight is that

the class labels in a good subspace should be distributed similar to the prior distribution

(of the labels), estimated empirically from the whole source data. It only reflects the in-

tuition that in the process of data collection, the relative percentages of different classes

are approximately in accordance with a prior distribution that is independent of domains.

Thus, when data samples are re-arranged into latent subspaces, the same percentages are

likely to be preserved in each latent subspace. We denote the prior label distribution as

p(y), which is estimated empirically for all source data and label distribution for the sth

subspaces as ps(y). We measure the difference between two probability distributions p(y)

and ps(y) with KL divergence:

KL(ps(y)‖p(y)) =
∑
i

ps(yi)log(
ps(yi)

p(yi)
) (5.4)

In order to make contributions of good subspaces more significant to the overall objective,

we set λs as:

λs =
C

1 +KL(ps(y)‖p(y))
(5.5)

where C is a constant that controls the relative importance of source and target domain. We

set C to make sure that the sum of weignts in target domain is 3 ∼ 5 times of the sum of

weights in source domain.

Note that we assign the same weights to different subspaces in target domain in Eq.

(5.3), since we are not able to evaluate the importance of subspaces without label informa-

tion.

ALTERNATIVE OPTIMIZATION: To optimize Eq. (5.3), we adopt an alternating

minimization approach. At each step, we alternatively optimize over Π, {Ms} and {Mt}

with the others fixed. The details are described below.

Initialization: initialize {Ms} and {Mt} to identity matrices.
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Algorithm 4: Multiple Subspace Alignment for Domain Adaptation

Input : Source subspaces {Πs}LS
s=1 and target subspaces {Πt}LT

t=1, source data
{(xs, ys)}, target data {(xt, ?)}.

Output: The predicted labels {yt} for the target data.

1 Obtain {Ms}, {Mt}, and Π by optimizing Eq. (5.3).
2 /* Transform the coordinates of xs to Π. */
3 for every xs do
4 Find the closest subspace s∗ for xs with Eq. (5.2).
5 x̃s = MT

s∗ΠT
s∗xs.

6 end
7 /* Transform the coordinates of xt to Π. */
8 for every xt do
9 Find the closest subspace t∗ for xt with Eq. (5.2)

10 x̃t = MT
t∗ΠT

t∗xt.
11 end
12 Train a linear SVM model using (x̃s, ys).
13 Apply the trained model on x̃t to obtain the predicted label yt.

Optimize Π with fixed {Ms} and {Mt}: If {Ms} and {Mt} are constant, we compute

the derivative of Eq. (5.3) with respect to Π and set it to 0 and obtain:

Π∗ =

∑LS

s=1 λsΠsMs +
∑LT

t=1 ΠtMt∑LS

s=1 λs + LT

(5.6)

Optimize {Ms} and {Mt} with fixed Π: If Π is fixed, solving Eq. (5.3) turns into

solving LS + LT separate sub-problems:

arg min
Ml

||Π− ΠlMl||2F (5.7)

Eq. (5.7) is a least square problem. Given that the pseudo inverse of Πl equals to

(ΠT
l Πl)

−1ΠT
l , the solution of M is M∗

l = ΠT
l Π.

Because each step above reduces the objective and the objective is a function with

a lower bound 0, our algorithm will converge to a local minimum. We summarize our

proposed Multiple Subspace Alignment algorithm in Alg. (4).
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Table 5.1: Classification Accuracy on Synthetic Multiple Source Data for USPS Digit
Recognition.

S (3,8) at 30◦ (3,8) at 60◦ (3,8) at 30◦,60◦ (1,7) at 30◦ (1,7) at 60◦ (1,7) at 30◦, 60◦

T (3,8) at 0◦ (3,8) at 0◦ (3,8) at 0◦ (1,7) at 0◦ (1,7) at 0◦ (1,7) at 0◦

NO ADAPTATION 79.33(7.07) 74.58(8.19) 76.18(5.92) 84.95(16.92) 75.32(20.62) 82.72(16.84)
SA [32] 84.55(8.35) 78.87(14.45) 81.52(19.12) 95.62(3.48) 94.60(3.67) 85.94(16.71)
OURS 90.11(3.47) 90.36(2.80) 91.53(1.57) 95.96(3.83) 95.23(1.57) 96.50(2.06)

Table 5.2: Classification Accuracy for Single Domain Adaptation with Multiple Latent
Domain Discovery. A: Amazon, D: DSLR, W: Webcam, C:Caltech-256, Pe: People, Pl:
Places, Or: Orgs

S A A A C C C W W W Pe Pl Or Pe Pl Or
T D C W W D A A C D Or Pe Pe Pl Or Pl

NO ADAPTATION 36.1 37.3 40.5 34.6 38.9 44.3 32.9 28.4 73.6 70.7 53.6 64.7 50.5 66.3 64.8
[66] 36.3 35.0 27.8 32.5 45.2 41.4 24.2 28.7 75.7 69.9 55.3 65.2 57.0 66.5 63.4
[10] 37.9 38.3 39.8 34.9 36.1 44.8 37.1 29.1 74.6 75.8 56.5 72.5 57.4 65.2 66.3
[32] 38.8 39.9 39.6 38.9 39.4 46.1 39.3 31.8 77.9 64.1 55.5 62.5 57.2 68.3 61.0

OURS 44.6 41.3 40.6 41.0 41.5 49.0 36.8 32.5 79.8 76.4 59.0 77.6 60.1 70.5 70.5

5.3.3 Parameters Settings

There are three parameters in our algorithm. One parameter is the dimension of each sub-

space K, Similar to [10, 32], we set K through cross validation on source data, it is usually

equal or slightly larger than the number of categories. The other parameter is the number

of subspaces in target domain LT . In the applications that we know the number of domains

of the testing data, we can set LT accordingly. Otherwise, because we have no label infor-

mation to set weights of the target subspaces, we always assign a relatively small value to

LT . Meanwhile, our algorithm is very robust to the number of subspaces in source domain

LS , as we can set the informative weights using label information. When LS is increased

and there are more source clusters, many small clusters with no discriminative information

will be disabled in the objective function. In our experiments, we set LS through cross-

validation in which we randomly divide the training data into two halves, and use one

halve as source and the other halve as target.
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Table 5.3: Classification Accuracy with Domain Discovery on Multiple Domain Data for
Visual Object Recognition

S A,C D,W C,D,W W,C
T D,W A,C A A

NO ADAPTATION 41.7 35.8 41.0 51.1
[32] 34.5 35.4 45.1 47.7
[47] 39.6 34.4 38.9 48.9
[37] 42.6 35.5 44.6 49.2

OURS 49.7 38.5 52.8 53.8

5.4 Empirical Study

We consider two types of domain adaptation tasks: a) traditional single domain adaptation

with one labeled source dataset and one unlabeled target dataset, b) domain adaptation

where source and target dataset are a mixture of multiple datasets. For both tasks, we

validate the effectiveness of our approach through extensive experiments on benchmark

data. We also visualize some intermediate results in order to provide some insights into our

approach.

5.4.1 Synthetic USPS Handwritten Digits Recognition

In this section, we evaluate the proposed method on digit recognition task with synthetic

data. We select two pairs of digits from USPS handwritten digit datasets 1 to form binary

classification problems, which are 1 vs 7 and 3 vs 8. In each binary classification task,

we randomly sample 100 images for training, and randomly sample 1000 images from the

rest for testing. In order to create domain discrepancy, we apply rotation transformation to

training images. In the single domain adaptation task, we rotate every training sample by

the same degree (we conduct two experiments using 30 and 60 respectively). To simulate

the domain adaptation tasks with multiple latent source domains, we double the number

of training samples by rotating each training sample by both 30 and 60 degrees. We use

raw pixel intensities as features. We run each experiment for 20 times, and report the mean

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html#usps
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Figure 5.2: Visualization of multiple subspace alignment for multiple latent domain data
. We rotate the training samples by both 30 and 60 degrees. In order to visualize the data
representation with no adaptation, we use PCA to project both training and testing data
to a 2D space. We set K = 2 in both SA and our method. Solid shapes represent the
test data, shallow shapes represent the training data (different shapes represent different
rotation degrees). Different color represent different classes. Our approach not only blends
the source and target data, but also does well in separating the data of different classes.

classification accuracy of linear SVM and standard deviation in Table 5.1. In all the tasks,

we set LS = 10, LT = 1 and K = 2.

For two single domain adaptation tasks, which satisfy the single subspace assumption,

both SA and our method can improve the recognition accuracy compared to the baseline

approach with no adaptation. However, SA suffers when there exits multiple latent source

domains and the single subspace assumption no longer holds. Our approach significantly

outperforms both SA and the baseline approach. Our approach also achieves better recogni-

tion results when using multiple domains, compared to using single domain. We visualize

the adapted data representation x̃s and x̃t in Fig.5.2.

5.4.2 Single Domain Adaptation for Visual Object Recognition and

Text Classification

In this section, we examine our method on single domain adaptation tasks for both visual

object recognition and text classification.
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For visual object recognition, we use the benchmark domain adaptation dataset intro-

duced in [10], which consists of 4 datasets: Amazon, Webcam, DSLR and Caltech-256,

each of which contains labeled images of 10 different objects. We conduct 9 experiments.

In each experiment, we pick one source dataset and one target dataset and solve the domain

adaptation problem. We downloaded the 800-bin bag-of-word image representation used

in [10, 32].

For text classification, we conduct 6 experiments on Reuters-21578 2, which consists of

3 domains: Orgs, People and Places.

We compare our approach to the state-of-the-art methods: Transfer Component Anal-

ysis (TCA) [66], Geodesic Flow Kernel (GFK) [10] and Subspace Alignment (SA) [32].

We report the classification accuracy in Table 5.2. For visual recognition tasks, results are

quoted from [32]. Our method achieves the best results on 14 out of 15 tasks. This clearly

demonstrates that the domain adaptation performance will benefit from our multiple sub-

spaces assumption, even for single source datasets with intra domain variations.

In the next section, we examine the performance of our approach on tasks in which

source dataset is indeed a mixture of multiple datasets.

5.4.3 Domain Adaptation with Multiple Domains for Visual Object

Recognition

For visual object recognition, we use the benchmark domain adaptation dataset introduced

in [10], which consists of 4 datasets: Amazon, Webcam, DSLR and Caltech-256, each of

which contains labeled images of 10 different objects. We downloaded the 800-bin bag-

of-word image representation used in [10, 32]. We conduct the same experiments as [37],

in which the source dataset is a mixture of multiple datasets and the target dataset is either

one dataset, or a mixture of multiple datasets.

2http://www.cse.ust.hk/TL/index.html
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We report recognition accuracies for this domain adaptation task in Table 5.3. Our

method performs significantly better than the baseline approach SA [32]. Our method also

achieves the best results compared to other state-of-the-art methods.

5.5 Conclusion

In this work, we propose a novel subspace based domain adaptation algorithm. In contrast

to the common single subspace assumption made by existing methods. We assume that data

lie in a union of low dimensional subspaces. In our approach, we first use a subspace clus-

tering algorithm to identify multiple subspaces of data. We propose a multiple subspaces

alignment(Multi-SA) algorithm. Our goal is to find one common subspace that preserves

the variance for both source and target data and then align all source data and target data

to the common subspace. We extensively evaluate our method on many domain adaptation

tasks. Our method achieves favorable results compared to other state-of-the-art methods,

which clearly demonstrates its effectiveness.
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Chapter 6

Conclusions and Future Directions

71



Traditional machine learning methods usually assumes that the training and test data

are draw from the same distribution. However, this assumption does not always hold in

many practical problems. In this dissertation, we focus on utilizing data come from a

different but closely related distribution as that of the test data, to aid learning the model.

We are concerning two learning scenarios which are different from supervised learning,

unsupervised learning and semi-supervised learning: 1) domain adaptation 2) learning from

multiple domains or multiple latent domains.

The proposed algorithms can be divided into two groups based on the basic building

blocks.

Graph Learning for Domain Adaptation: In Chapter 2, we explore the locality pre-

serving projection for domain adaptation with multi-objective learning. We propose multi-

objective formulation for domain adaptation. The search space of our objective is the joint

numerical range of two graphs. We find a relaxed mutually orthogonal optimal sets by us-

ing Pareto optimizations. In Chapter 3, we demonstrate that affinity learning can be a very

successful tool for domain adaptation. Our approach is able to learn the joint geometric

structure of source and target domain based on the preservation of intra-domain and across

domain information.

Subspace Learning for Domain Adaptation In Chapter 4, we propose a novel linear

subspace learning approach for domain adaptation. Our method explicitly aligns the data in

two domains using a linear transformation while simultaneously finding a subspace which

preserves the most data variance. In Chapter 5, we assume that data lie in a union of

low dimensional subspaces in contrast to the common single subspace assumption made

by existing methods. In our approach, we first use a subspace clustering algorithm to

identify multiple subspaces of data. We propose a multiple subspaces alignment(Multi-

SA) algorithm to find one common subspace that preserves the variance for both source

and target data and then align all source data and target data to the common subspace.
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As future works, we would like to explore the work in different settings and related

tasks. At first, we would like to solve heterogeneous domain adaptation aims to exploit la-

beled training data from a source domain for learning prediction models in a target domain

under the condition that the two domains have different input feature representation spaces.

Second, we would like to explore when all marginal and conditional distributions are al-

lowed to change with smooth changes. Third, we would like to explore efficient domain

adaptation algorithms for large scale applications.
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[51] Hal Daumé III and Jagadeesh Jagarlamudi. Domain adaptation for machine transla-
tion by mining unseen words. In ACL, pages 407–412, 2011.
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