
Algorithms for NP-hard Optimization Problems
and Cluster Analysis

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by

Nan Li
September, 2017

Examining Committee Members:

Longin Jan Latecki, Advisory Chair, Computer and Information Sciences
Haibin Ling, Computer and Information Sciences
Slobodan Vucetic, Computer and Information Sciences
Yimin Zhang, External Member, Electrical and Computer Engineering

c©
Copyright

2017

by

Nan Li

All Rights Reserved

ii

ABSTRACT

Algorithms for NP-hard Optimization Problems and Cluster Analysis

by

Nan Li

The set cover problem, weighted set cover problem, minimum dominating set problem

and minimum weighted dominating set problem are all classical NP-hard optimization

problems of great importance in both theory and real applications. Since the exact

algorithms, which require exhaustive exploration of exponentially many options, are

infeasible in practice, approximation algorithms and heuristic algorithms are widely

used to find reasonably good solutions in polynomial time. I propose novel algorithms

for these four problems. My algorithms for the weighted set cover and minimum

weighted dominating set problems are based on a three-step strategy. For the weighted

set cover problem, in the first step, we reserve the sets indispensable for the optimal

solution and reduce the problem size. In the second step, we build a robust solution

with a novel greedy heuristic. Sets are iteratively selected according to a measure

which integrates the weight, the coverage gain for the current iteration and the global

coverage capacity of each set. It favors the sets that have smaller weights and better

extend or consolidate the coverage, especially on the items that are contained in less

sets. Since the obtained solution tends to have a robust coverage, in the third step,

we further improve it by removing the redundant sets in an efficient way. For the

minimum weighted dominating set problem, we first reserve the indispensable vertices

for the optimal solution. Then we convert it into a weighted set cover problem to solve

it. These two algorithms can be used to solve the set cover problem and minimum

dominating set problem by simply considering all the sets or vertices as having the

same weights. Extensive experimental evaluations on a large number of synthetic

and real-world set cover instances and graphs from many domains demonstrate the

iii

superiority of my algorithms over state-of-the-art.

Cluster analysis is a fundamental problem in data analysis, and has extensive

applications in artificial intelligence, statistics and even in social sciences. The goal

is to partition the data objects into a set of groups (clusters) such that objects in the

same group are similar, while objects in different groups are dissimilar.

Most of the existing algorithms for clustering are designed to handle data with

only one type of attributes, e.g. continuous, categorical or ordinal. Mixed data clus-

tering has received relatively less attention, despite the fact that data with mixed

types of attributes are common in real applications. I propose a novel affinity learn-

ing based framework for mixed data clustering, which includes: how to process data

with mixed-type attributes, how to learn affinities between data points, and how to

exploit the learned affinities for clustering. In the proposed framework, each origi-

nal data attribute is represented with several abstract objects defined according to

the specific data type and values. Each attribute value is transformed into the ini-

tial affinities between the data point and the abstract objects of attribute. I refine

these affinities and infer the unknown affinities between data points by taking into

account the interconnections among the attribute values of all data points. The in-

ferred affinities between data points can be exploited for clustering. Alternatively,

the refined affinities between data points and the abstract objects of attributes can be

transformed into new data features for clustering. Experimental results on many real

world data sets demonstrate that the proposed framework is effective for mixed data

clustering. This work was published in our IJCAI 2017 paper Li & Latecki (2017).

Clustering aggregation, also known as consensus clustering or clustering ensemble,

aims to find a single superior clustering from a number of input clusterings obtained

by different algorithms with different parameters. I formulate clustering aggregation

as a special instance of the maximum-weight independent set (MWIS) problem. For a

given data set, an attributed graph is constructed from the union of the input cluster-

iv

ings. The vertices, which represent the distinct clusters, are weighted by an internal

index measuring both cohesion and separation. The edges connect the vertices whose

corresponding clusters overlap. Intuitively, an optimal aggregated clustering can be

obtained by selecting an optimal subset of non-overlapping clusters partitioning the

data set together. I formalize this intuition as the MWIS problem on the attributed

graph, i.e., finding the heaviest subset of mutually non-adjacent vertices. This MWIS

problem exhibits a special structure. Since the clusters of each input clustering form

a partition of the dataset, the vertices corresponding to each clustering form a maxi-

mal independent set (MIS) in the attributed graph. I propose a variant of simulated

annealing method that takes advantage of this special structure. My algorithm starts

from each MIS, which is close to a distinct local optimum of the MWIS problem, and

utilizes a local search heuristic to explore its neighborhood in order to find the MWIS.

Extensive experiments on many challenging data sets show that both my algorithm

for the maximum-weight independent set problem and my approach to the applica-

tion of clustering aggregation achieve good performance. This work was published in

our NIPS 2012 paper Li & Latecki (2012). Some new results were published in our

IJCAI 2017 paper Fan et al. (2017).

v

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my advisor, Dr. Longin Jan

Latecki. He has always been supportive and patient. Without his guidance and

encouragement, none of my research works would have been possible.

I would also like to thank the other members in my dissertation committee, Dr.

Haibin Ling, Dr. Slobodan Vucetic, and Dr. Yimin Zhang, for their insightful com-

ments and encouragement.

The discussions with other group members, Zhuo Deng, David Dobor, Meng Yi,

Tianyang Ma, Le Shu, Chen Shen, Ren-Hau Howard Liu and Cong Rao have always

been inspiring. I’ve learned a lot from them. I’m very grateful for that.

Last but not the least, I would like to thank my wife and my parents for their love

and support.

vi

To My Wife - Pei Qiu, and My Parents

vii

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . vi

DEDICATION . vii

LIST OF FIGURES . x

LIST OF TABLES . xi

CHAPTER

1. Algorithms for Weighted Set Cover and Minimum Weighted Domi-
nating Set Problems . 1

1.1 Introduction . 1
1.2 Related Work . 5
1.3 Our Work . 8

1.3.1 Weighted Set Cover Problem 8
1.3.2 Minimum Weighted Dominating Set 13
1.3.3 Theoretic Analysis . 14

1.4 Experimental Evaluation . 15
1.4.1 Weighted Set Cover Problem 16
1.4.2 Set Cover Problem . 18
1.4.3 Minimum Weighted Dominating Set Problem 20
1.4.4 Minimum Dominating Set Problem 23
1.4.5 Discussion . 26

1.5 Conclusion . 36

2. Affinity Learning for Mixed Data Clustering 37

2.1 Introduction . 37
2.2 Related Work . 40
2.3 Our Framework . 42

2.3.1 Mixed Data Processing 42
2.3.2 Affinity Learning . 44
2.3.3 Clustering with Learned Affinities 46

2.4 Experimental Evaluation . 46
2.4.1 Experimental Setup . 46
2.4.2 Experimental Results . 49

2.5 Conclusions . 51

viii

3. Clustering Aggregation as Maximum-Weight Independent Set . . 52

3.1 Introduction . 52
3.2 Our Work . 57
3.3 Experimental Evaluation . 62
3.4 Conclusion . 69

BIBLIOGRAPHY . 69

APPENDICES . 77

ix

LIST OF FIGURES

Figure

1.1 An illustration of effects of the proposed greedy heuristic, in compar-
ison to other greedy heuristics . 10

1.2 Parameter Effect for Weighted Set Cover Problem 30
1.3 Parameter Effect for Set Cover Problem 30
1.4 Parameter Effect for Minimum Weighted Dominating Set Problem . 31
1.5 Parameter Effect for Minimum Dominating Set Problem 31
2.1 An illustration of data point connections via their attribute values.

Blue circles represent data points. Rectangles represent categorical
attributes, each has three distinct attribute values. 40

2.2 An illustration for explaining the first requirement in equation (2.3-1)
for transforming a continuous attribute value into initial affinities. . 43

3.1 Clustering aggregation without parameter tuning. (top row) Original
data. (bottom row) Clustering results of our approach. Best viewed
in color. 63

3.2 Clustering aggregation on four different input clusterings. Best viewed
in color. 64

x

LIST OF TABLES

Table

1.1 Relationships between measures and rules 12
1.2 Test Instances for Weighted Set Cover Problem 17
1.3 Weighted Set Cover Results (Solution Weight), Part 1 18
1.4 Weighted Set Cover Results (Solution Weight), Part 2 19
1.5 Test Instances for Set Cover Problem 19
1.6 Set Cover Results (Set Number) . 20
1.7 BHOSLIB Benchmark (”mis” version) 21
1.8 DIMACS Complementary Benchmark 21
1.9 Minimum Weighted Dominating Set Results on BHOSLIB Bench-

mark (Solution Weight) . 23
1.10 Minimum Weighted Dominating Set Results on DIMACS Comple-

mentary Benchmark (Solution Weight) 23
1.11 Minimum Dominating Set Results on 23 Real World Graphs from

Network Data Repository (Vertex Number) 25
1.12 Weighted Set Cover Results with Different Sets of Parameter Com-

binations (Solution Weight) . 33
1.13 Set Cover Results with Different Sets of Parameter Combinations

(Set Number) . 33
1.14 Minimum Weighted Dominating Set Results on 23 Real World Graphs

with Different Sets of Parameter Combinations (Solution Weight) . 34
1.15 Minimum Dominating Set Results on 23 Real World Graphs with

Different Sets of Parameter Combinations (Vertex Number) 34
1.16 Evaluation of Efficiency on 70 Instances of Weighted Set Cover Prob-

lem (consumed CPU time in seconds) 35
1.17 Evaluation of Efficiency on 139 Graphs for Minimum Weighted Dom-

inating Set Problem (consumed CPU time in seconds) 36
2.1 Data Sets for Experimental Evaluation (number of different types of

attributes, number of instances and number of classes) 47
2.2 Clustering Results (FScore on AI: Acute Inflammations; HD: Heart

Disease; CA: Credit Approval; CMC: Contraceptive Method Choice;
Adult; Soybean; TTT: Tic-Tac-Toe Endgame) 49

2.3 Clustering Results with Locally and Globally Learned Affinities (FS-
core on AI: Acute Inflammations; HD: Heart Disease; CA: Credit Ap-
proval; CMC: Contraceptive Method Choice; Adult; Soybean; TTT:
Tic-Tac-Toe Endgame) . 50

2.4 Time Consumed on Affinity Learning (sec.) 51
3.1 Data Sets for Experimental Evaluation 66

xi

3.2 Base Clusterings and Graph Information 66
3.3 Average Performance in Terms of MWIS Weight 67
3.4 Average Performance of Clustering Aggregation in Terms of NMI . 69
A.1 Details of 139 Undirected Simple Graphs in Network Data Repository 79
A.2 Minimum Weighted Dominating Set Results on 139 Real World Graphs

from Network Data Repository (Solution Weight), Part 1 80
A.3 Minimum Weighted Dominating Set Results on 139 Real World Graphs

from Network Data Repository (Solution Weight), Part 2 81
A.4 Minimum Dominating Set Results on 139 Real World Graphs from

Network Data Repository (Vertex Number), Part 1 82
A.5 Minimum Dominating Set Results on 139 Real World Graphs from

Network Data Repository (Vertex Number), Part 2 83
A.6 Minimum Weighted Dominating Set Results on 139 Real World Graphs

with Different Sets of Parameter Combinations (solution weight),
Part 1 . 84

A.7 Minimum Weighted Dominating Set Results on 139 Real World Graphs
with Different Sets of Parameter Combinations (solution weight),
Part 2 . 85

A.8 Minimum Dominating Set Results on 139 Real World Graphs with
Different Sets of Parameter Combinations (Vertex Number) 86

xii

CHAPTER 1

Algorithms for Weighted Set Cover and Minimum

Weighted Dominating Set Problems

1.1 Introduction

Given a set of items, called the universe U , and a collection F of sets whose union

equals U , the set cover problem is to find the smallest sub-collection of F whose union

equals the universe U . The weighted set cover problem, in which each set is associated

with a positive weight, is to find the sub-collection of F whose union equals U with

the minimum sum of weights.

Given an undirected graph G = (V,E), a dominating set is a subset D ⊆ V such

that for every vertex v ∈ V , either v ∈ D or at least one neighbor of v is in D. The

minimum dominating set problem is to find a dominating set of the minimum size. If

each vertex is associated with a positive weight, the minimum weighted dominating

set problem is to find a dominating set for which the sum of weights is minimized.

The set cover and minimum dominating set problems are both classical NP-hard

problems of great importance in theory. They are equivalent under L-reductions Kann

(1992). It means given an instance of one problem, we can construct an equivalent

instance of the other problem. Therefore, algorithms for one problem can be applied

to the other problem with minor modifications. The weighted set cover and minimum

dominating set problems are also closely related NP-hard problems.

The unweighted and weighted set cover and minimum dominating set problems

arise in a great number of applications, including artificial intelligence Reiter (1987);

1

Zhao & Ouyang (2007); Saha & Getoor (2009); Shen & Li (2010); Yao & Fei-Fei

(2012); Cao & Snavely (2013); Magri & Fusiello (2016), operations research Caprara et

al. (1999), computer networking Stojmenovic et al. (2002); El Houmaidi & Bassiouni

(2003); Subhadrabandhu et al. (2004); Aoun et al. (2006); Samuel et al. (2009), web

technology Cooper et al. (2005); Wu et al. (2006); Stergiou & Tsioutsiouliklis (2015),

social networks Kelleher & Cozzens (1988); Eubank et al. (2004); F. Wang et al.

(2011), bioinformatics Nacher & Akutsu (2016), planning Mihail (1999), database

Sellis (1988); Golab et al. (2008) and so on.

However, since these problems are all NP-hard, the exact algorithms, which re-

quire exhaustive exploration of exponentially many options, are infeasible in practice.

Approximation algorithms, which are able to find reasonably good solutions in poly-

nomial time, are widely used to solve these problems in real applications.

The classic greedy algorithm for the set cover problem repeatedly picks a set that

contains the largest number of uncovered items until all the items in the universe

are covered. This simple greedy heuristic achieves an approximation ratio of ln δ+ 1,

where δ = max{|S| : S ∈ F} is the maximum cardinality of the sets in F . In fact, no

algorithm can guarantee to improve this approximation ratio by much Feige (1998).

Moreover, it has been observed that this algorithm is very effective in practice, espe-

cially when compared to other approximation algorithms Grossman & Wool (1997);

Gomes et al. (2006). It often finds only a small percentage (< 10%) more sets than

the optimal solution. The standard greedy algorithm for the minimum dominating

set problem is based on the same heuristic. It repeatedly picks a vertex which cov-

ers the maximum number of previously uncovered vertices until a dominating set is

obtained. Its approximation ratio is ln δ′ + 2, where δ′ is the maximum degree of G.

For the weighted set cover problem, the classic greedy algorithm iteratively selects a

set by the number of uncovered items it contains per unit weight or the inverse. It

achieves an approximation ratio of ln |U |+ 1, where |U | is the cardinality of universe

2

U . The standard greedy algorithm for the minimum weighted dominating set prob-

lem is based on the same heuristic and achieves an approximation ratio of ln |V |+ 1

on graph G = (V,E).

Besides the standard algorithms described above, there are many other approx-

imation algorithms based on greedy heuristics for the weighted or unweighted set

cover and minimum dominating set problems. Sanchis (2002) described four different

approximation algorithms for the minimum dominating set problem and performed

extensive experimental evaluations to compare them with the standard algorithm.

Ablanedo-Rosas & Rego (2010) introduced a number of normalization rules to gener-

ate surrogate constraints for the weighted set cover problem. Although it’s impossi-

ble to prove the approximation ratios for these algorithms, experimental evaluations

showed that their performance was usually better than those of the standard greedy

algorithms. Some other algorithms Cormode et al. (2010); Stergiou & Tsioutsioulik-

lis (2015); Eubank et al. (2004); Campan et al. (2015) are designed with the focus

on efficiency. With more or less sacrifice on the performance, these algorithms can

significantly reduce the processing time, especially for large instances.

In recent years, a great number of local search based approximation algorithms

were proposed for the weighted or unweighted set cover problem Yagiura et al. (2006);

Kinney et al. (2007); Caserta (2007); Lan et al. (2007); Bautista & Pereira (2007);

Sundar & Singh (2012); Crawford et al. (2014); Mulati & Constantino (2011); Ren

et al. (2010); Beasley & Chu (1996); Naji-Azimi et al. (2010); Y. Wang, Ouyang,

et al. (2017), minimum weighted or unweighted dominating set problem Raka et al.

(2010); Potluri & Singh (2013); Nitash & Singh (2014); Chaurasia & Singh (2015);

Bouamama & Blum (2016); Y. Wang, Cai, & Yin (2017); Hedar & Ismail (2012,

2010); Ho et al. (2006). These algorithms usually achieve good results on small or

medium sparse instances. However, they are still too complex to process medium

dense or large instances. In fact, within a reasonable amount of time, most of them

3

cannot achieve better results than some of the greedy approximation algorithms on

medium dense or large instances.

I propose novel algorithms for the weighted set cover and minimum weighted

dominating set problems.

The proposed algorithms are based on a three-step strategy. For the weighted

set cover problem, in the first step, we reserve the sets indispensable for the optimal

solution. A set is defined as indispensable if it covers at least one item on its own.

Then we remove the items covered by the reserved sets and the sets whose items

are all covered (include but not limited to the reserved sets) to get a smaller set

cover instance. In the second step, we build a robust solution with a novel greedy

heuristic. Specifically, we seek the set covering by iteratively selecting a set according

to a measure which integrates the related weights, the coverage gain for the current

iteration and the global coverage capacity of each set. It favors the sets that have

smaller weights and better extend or consolidate the coverage, especially on the items

that are contained in less sets. Since the obtained solution tends to have a robust

coverage, in the third step, we further improve it by removing the redundant sets

in an efficient way. The remaining sets and those reserved in the first step together

constitute the final approximate solution.

For the minimum weighted dominating set problem, we reserve the indispensable

vertices in the first step. A vertex is defined as indispensable if it is isolated or

adjacent to at least one vertex of degree exactly one. Then we convert it into a

weighted set cover problem by considering the vertex set V as the universe U , and

F = {S1, S2, ..., Sn} where set Sv, with the same weight as vertex v, consists of

v and all its adjacent vertices in G, as the set family. The items covered by the

sets corresponding to the reserved vertices and the sets whose items are all covered

are removed. We then solve the reduced weighted set cover problem. The vertices

corresponding to the sets of the final set covering and the vertices reserved in the first

4

step constitute the final dominating set.

Extensive experimental evaluations on a large number of synthetic and real world

instances from many domains demonstrate the superiority of my algorithms over

state-of-the-art.

1.2 Related Work

The classic greedy algorithm for set cover problem is due to Johnson (1974); Lovász

(1975); Chvatal (1979). It repeatedly picks the set that contains the largest number

of uncovered items until all items in the universe are covered. The same heuristic is

then applied to the minimum dominating set problem, because the two problems are

equivalent under L-reductions.

Ablanedo-Rosas & Rego (2010) introduced a number of normalization rules to

improve the classic greedy algorithm for the weighted set cover problem, which iter-

atively selects a set by the number of uncovered items it contains per unit weight or

the inverse. The essential idea of these rules is to take into account the number of sets

each item is contained in when computing the coverage gain of each set, instead of

simply using the number of uncovered items it contains. For example, RuleA assigns

each item a weight which is defined as the inverse of the number of sets containing it.

The coverage gain of each set is defined as the sum of such weights of the uncovered

items it contains. The rest rules introduced in Ablanedo-Rosas & Rego (2010) are

simple variants of RuleA. Experimental evaluations demonstrate the effectiveness of

these normalization rules, especially when solving large scale and real-world instances.

However, some of these rules, such as the ”Adjusted” versions and RuleC, not only

lack theoretical justifications, but also make very little difference on performance in

comparison to the other rules.

Cormode et al. (2010) proposed an efficient set cover algorithm for processing very

large data sets, especially those resident on disk. All the sets are first partitioned into

5

sub-collections based on their sizes. Then starting from the sub-collection with the

largest sets, each set is iteratively processed. In each iteration, if the set contains

more uncovered items than the size threshold of current sub-collection, it is selected

and its uncovered items are covered. Otherwise, the set is moved to the appropriate

sub-collection.

Most practical approximation algorithms for the minimum weighted dominating

set problem on general graphs are based on the local search techniques. Among

them, the CC2FS algorithm proposed in Y. Wang, Cai, & Yin (2017) is probably the

best one in terms of both performance and efficiency. CC2FS is based on two new

ideas. The first idea is a new variant of the Configuration Checking Cai et al. (2011)

strategy, which has been widely applied to many combinatorial optimization problems

in order to reduce the cycling phenomenon in local search. The new variant defines

the configuration of a vertex v to be its two-level neighborhood, which is the union

of the neighborhood N(v) and the neighborhood of each vertex in N(v). The second

idea is a frequency based scoring function for vertices, according to which the score of

each vertex is calculated. Another state-of-the-art local search algorithm is ACO-PP-

LS proposed in Potluri & Singh (2013). It uses an ant colony optimization method by

considering the pheromone deposit on the node and a preprocessing step immediately

after pheromone initialization. Both CC2FS and ACO-PP-LS can achieve good

results on small or medium graphs. However, as the other local search algorithms,

they are still too complex to process large graphs.

For solving the minimum dominating set problem, Sanchis (2002) described five

different approximation algorithms and performed extensive experimental analyses on

them. The first algorithm, ”Greedy”, is the well-known and standard approximation

algorithm. It starts with an empty set D and iteratively adds a vertex to D which

covers the maximum number of previously uncovered vertices. The second algorithm,

”Greedy Rev”, works in the opposite way. Initially, D contains every vertex in the

6

graph. At each iteration, the vertex, which is of the smallest degree and does not

uniquely cover any vertex, is removed from D. The third algorithm, ”Greedy Ran”,

is similar to the ”Greedy” algorithm, with the only difference being that in each it-

eration it selects the vertex to be added probabilistically according to the number of

additional vertices it would cover. The fourth algorithm, ”Greedy Vote”, defines a

measure ”vote” for each vertex v as vote(v) = 1/(1 + degree(v)). At each iteration,

instead of selecting the vertex which covers the maximum number of uncovered ver-

tices as the ”Greedy” algorithm does, it selects the vertex which is of the maximum

sum of votes from the uncovered vertices. The fifth algorithm, ”Greedy Vote Gr”,

performs an exhaustive search after running ”Greedy Vote” to determine whether it

is possible to remove any two vertices from D, and replace them with either one or

no vertices, while still retaining a dominating set. Experimental evaluations on many

small synthetic graphs demonstrate that, in comparison to the standard ”Greedy”

algorithm, ”Greedy Vote” exhibits superiority on some graphs, while ”Greedy Ran”

and ”Greedy Rev” are found not to be worthwhile. The exhaustive local search step

of ”Greedy Vote Gr” is very time-consuming and the improvements on results are

limited. Eubank et al. (2004) proposed a ”FastGreedy” heuristic for determining the

minimum dominating set in the context of studying the algorithmic and structural

properties of very large realistic social contact networks. It also defined a ”VRegu-

larGreedy” approximation algorithm, which adds the location neighbors of the people

vertices of degree one into the dominating set before applying the standard greedy

algorithm. Campan et al. (2015) introduced two efficient approximation algorithms

for the minimum dominating set problem. The first algorithm attempts to improve

the running time of the standard greedy algorithm by removing all the covered ver-

tices from the remaining graph in each iteration. The second algorithm first adds

neighbors of the vertices of degree one into the dominating set. After removing all

the covered vertices, the first algorithm is applied to the remaining graph. There

7

are a few works searching for the minimum dominating set based on meta-heuristics,

such as simulated annealing Hedar & Ismail (2012), genetic algorithm Hedar & Ismail

(2010) and ant colony optimization Ho et al. (2006). As a typical example, Hedar &

Ismail (2012) proposed a simulated annealing based local search algorithm for solv-

ing the minimum dominating set problem. At each step, depending on whether the

current solution is a dominating set, a trial solution is generated by removing, adding

or replacing a vertex in a probabilistic manner according to the degree of vertices.

Simulated annealing technique is used to avoid entrapments in poor local optima.

1.3 Our Work

In this section, I present my three-step framework of approximation algorithms

for the weighted set cover and the minimum weighted dominating set problems.

1.3.1 Weighted Set Cover Problem

Given the item universe U = {i1, i2, ..., im}, the set family F = {S1, S2, ..., Sn}

whose union equals U and the positive weight w(S) on each set S, we aim to find the

sub-collection of F whose union equals U and the sum of set weights is minimized.

In the first step, we identify every set in F which covers at least one item in

U on its own. Obviously, these sets are indispensable for the optimal set covering.

Let FR denote the set of these indispensable sets. We remove the items covered by

the sets in FR. Let U ′ denote the remaining uncovered items. Then we remove the

empty sets, which do not contain any items in U ′. Let F ′ denote the remaining sets.

Obviously, FR ⊆ F \ F ′. Now we have a smaller weighted set cover problem: to

find the sub-collection of F ′ whose union equals the universe U ′ and the sum of set

weights is minimized.

In the second step, we start with an empty set F ′C = ∅ and iteratively select a

set from F ′ into F ′C until the union of sets in F ′C equals U ′.

8

Let wi(S) denote the inverse of weight w(S) of set S. That is,

wi(S) =
1

w(S)
(1.3-1)

For each item i, we compute the sum of weight inverses of the sets containing i

SIWi =
∑
S∈Ci

wi(S) (1.3-2)

where Ci denotes the set of sets in F ′ which contain item i.

Then for each set S in F ′, we define its local coverage efficiency on each item i ∈ S

as

LCES,i =
wi(S)

SIWi

(1.3-3)

Obviously, LCE is in range (0, 1]

Based on the local coverage efficiencies, we define the global coverage capacity of

each set S as

GCCS =
∑
i∈S

(LCES,i)
βg (1.3-4)

where βg ∈ [0,+∞) is a parameter for adjusting the difference of local coverage

efficiencies. βg > 1 increases the relative weight of larger LCE, while βg < 1 works

in the opposite way.

We define the local coverage gain of each set S in each iteration as

LCGS =
∑

i∈S∩U ′
u

(LCES,i)
βl (1.3-5)

where U ′u denotes the set of uncovered items as of the current iteration, the parameter

βl ∈ [0,+∞) is similar to βg for adjusting the difference of local coverage efficiencies.

Based on the local coverage gain and global coverage capacity, we define the

9

Figure 1.1:
An illustration of effects of the proposed greedy heuristic, in comparison
to other greedy heuristics

i1 i2 i3 i4 i5 i6 i7 i8 LCG GCC CB IW RA′

S1 1 2/3 2/3 4/3 1 1/2

S2 2 1/3 1/3 2/3 1/2 1/4

S3 1 3/4 3/4 3/2 1 1/2

S4 1 2/5 2/5 4/5 1 1/3

S5 1 1 7/6 7/6 7/3 2 1

S6 1 1 1 2/3 157/105 227/105 1 1/2

S7 1 1 9/10 9/10 9/5 2 5/6

S8 2 2 2 2 13/15 16/15 29/15 3/2 2/3

S9 3 3 1/4 11/28 9/14 1/3 1/6

S10 1 1

......

SIW 3/2 4/3 5/2 3/2 2 3/2 5/2 7/3

measure of coverage benefit for each set S as

CBS = LCGS + γ ×GCCS (1.3-6)

where the parameter γ ∈ [0,+∞) is for adjusting the relative weight of GCC.

We iteratively select sets according to their coverage benefits. Specifically, in each

iteration, we select the set S∗ which has the maximum coverage benefit (with ties

broken randomly) and covers at least one uncovered item.

S∗ = argmaxSCBS s.t. |S ∩ U ′u| > 0 (1.3-7)

Obviously, this greedy heuristic favors the sets that have smaller weights and

better extend or consolidate the coverage, especially on the items that are contained

in less sets. Its specific effects are illustrated in Figure 1.1.

Figure 1.1 shows a state during the iterative process of solving a weighted set

cover problem, in which |F| > 10 and |U | > 8. Suppose the first 10 sets S1 to

S10 only contain some of the first 8 items, i.e. i1 to i8. S10, which is marked in

gray, is already selected, while S1 to S9 are not. The 8 items are only contained in

10

some of these 10 sets. i7 and i8, which are marked in gray, are already covered by

S10, while i1 to i6 are not covered yet. A cell (S, i) is empty if the set S does not

contain the item i. Otherwise, S contains i and cell (S, i) shows the set weight w(S).

Suppose βl = 1, βg = 1, γ = 1, we calculate SIW , LCG, GCC and CB for our greedy

heuristic. In addition, we calculate the measures for selecting sets according to the

classic greedy heuristic and the RuleA proposed in Ablanedo-Rosas & Rego (2010).

The other rules proposed in Ablanedo-Rosas & Rego (2010) , i.e. RuleB to Rule I,

have essentially the same effects as RuleA.

The classic greedy heuristic selects the set with the maximum number of uncovered

items per unit weight (IW) or the minimum of its inverse. The IW is defined as

IW S =
|S ∩ U ′u|
w(S)

(1.3-8)

where U ′u denotes the set of uncovered items as of the current iteration.

Let RA denote the measure derived from RuleA. It is defined as

RAS =
w(S)∑
i∈S∩U ′

u

1
|Ci|

(1.3-9)

where Ci denotes the set of sets which contain item i.

In Ablanedo-Rosas & Rego (2010), RuleA selects the set with the minimum RA.

We implement RuleA to select the set with the maximum RA′ = 1/RA for consis-

tency.

Figure 1.1 illustrates five intuitive rules for selecting sets. (1) S1 and S2 contain

the same uncovered item i1 and w(S1) < w(S2). Apparently, between them, S1

should be selected. We call this Rule 1. The three measures CB, IW and RA′ all

implement Rule 1. (2) S1 and S3 each contains 1 uncovered item and both have the

same weights. Besides S1, selecting S2 can cover the item i1. Similarly, besides S3,

selecting S9 can cover i2. Since w(S2) < w(S9), between S1 and S3, intuitively, we

11

Table 1.1: Relationships between measures and rules
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

CB X X X X X
IW X X
RA′ X X X

should favor S3. Otherwise, it is more risky that S9 may be selected to cover i2 later.

We call this Rule 2. Obviously, only the measure CB implements Rule 2. (3) S1 and

S4 each contain 1 uncovered item and both have the same weights. Unlike S9 on i2,

there are no sets that contain i3 and have larger weights than the sets containing i1.

Apparently, Rule 2 does not apply here. However, in comparison to i1, there are more

sets containing i3. Intuitively, i3 is easier to be covered. Therefore, we should favor

S1 over S4 this time, because S1 covers a more ”difficult” item. We call this Rule 3.

Both CB and RA′ implement Rule 3. (4) S1 and S5 have the same weights. But,

since S5 contains 2 uncovered items, while S1 only contains 1, it is straightforward for

us to choose S5. We call this Rule 4. CB, IW and RA′ all implement Rule 4. (5) S1

and S6 have the same weights. S1 contains 1 uncovered item i1, while S6 also contains

1 uncovered item i6. Moreover, i1 and i6 are both contained in 2 sets and the set

weight patterns are exactly the same. However, S6 contains 2 covered items, i.e. i7

and i8. Although selecting S6 does not bring more coverage than selecting S1, it can

consolidate the existing coverage on i7 and i8. It is possible that such consolidations

will help release some previously selected sets. Therefore, we favor S6 over S1 this

time. We call this Rule 5. Obviously, only the measure CB implements Rule 5.

The relationships between the three measures CB, IW and RA′, and the five

rules are summarized in Table 1.1. Our measure CB implements all the five rules,

while IW and RA′ implement only 2 and 3 rules respectively. The individual effect of

these abstract rules may not affect the final result in the simple example above, but

combining their effects together can make a difference when solving the real problems.

With the proposed greedy heuristic, the obtained set covering tends to be robust,

12

which means each item is likely to be covered by more sets. Therefore, it has potential

to be further improved.

In the third step, we remove the redundant sets in an efficient way. Specifically,

we first identify every set in F ′C which covers at least one item in U ′ on its own. The

other sets are considered to be potentially redundant and removed from F ′C . If the

remaining sets in F ′C do not cover the entire U ′ any more, we iteratively select a set

with the maximum number of uncovered items per unit weight, i.e. IW , from those

potentially redundant sets and add it back to F ′C , until the union of sets in F ′C

equals to U ′. Finally, the sets in F ′C and those reserved in FR together constitute

the final solution.

F∗ = F ′C ∪ FR (1.3-10)

1.3.2 Minimum Weighted Dominating Set

Given an undirected, vertex-weighted graph G = (V,E,w), where V is the set of

vertices, E is the set of edges, and w : V → R+ is a function that associates a positive

weight w(v) to each vertex v ∈ V , we aim to find a subset D ⊆ V of vertices such

that each vertex v ∈ V is either in D or has at least one neighbor in D, and the sum

of weights is minimized.

In the first step, we identify and reserve a subset VR ⊆ V of vertices indispensable

for the optimal solution. If G contains isolated vertices with degree zero, obviously,

these vertices should belong to VR. In addition, we find all vertices with degree one.

Each such vertex v has only one direct neighbor u. If w(v) ≥ w(u), u should be added

into VR. Otherwise, v itself must be added into VR. If so, in the end, we can get

a better dominating set with smaller or equal weight by simply replacing v with u.

Note that if u is also with degree one and w(v) = w(u), we need to make sure only one

of v and u is added into VR. By considering the vertex set V as the universe U , and

13

F = {S1, S2, ..., S|V |}, where set Sv consists of the vertex v and all its adjacent vertices

in G, as the set family, and w′(Sv) = w(v) as the set weight function, we convert the

minimum weighted dominating set problem into a weighted set cover problem. Let

FR denote the sets corresponding to the reserved vertices in VR. We follow the same

procedures as in our set cover algorithm to reduce the obtained weighted set cover

problem and then solve it. In the end, the vertices corresponding to the sets in the

final F ′C and the vertices reserved in VR together constitute the approximate solution

to the minimum weighted dominating set problem.

1.3.3 Theoretic Analysis

Our algorithm for the weighted set cover problem first reserves the sets indis-

pensable for the optimal solution, and then reduces the problem size by removing

the items covered by the reserved sets and the sets that do not contain any of the

remaining items. This step can be finished in O(|F||U |), where |F| is the set number

and |U | is the item number. For sparse set cover instances, it can significantly reduce

the time consumed in the subsequent procedures. In the second step, we iteratively

select sets according to their coverage benefits. The related values, including LCE,

GCC and LCEβl can be calculated in O(|F ′||U ′|) before the iterative procedure.

Therefore, the complexity of each iteration of our algorithm is the same as that of the

classic greedy algorithm. However, since our algorithm does not pursue the coverage

on items directly as the classic greedy algorithm does, it needs more iterations to

reach the full coverage. In the third step, our algorithm first removes the potentially

redundant sets from the obtained solution and then uses the same heuristic of the

classic greedy algorithm to select sets from those removed to restore the full coverage.

In the worst case, it is to run the classic greedy algorithm on the instance with sets

in F ′C and items in U ′. However, since the number of potentially redundant sets

is usually much smaller, this step is fast. The efficiency analysis on our minimum

14

weighted dominating set algorithm is similar.

It is very difficult to give the approximation ratios for our weighted set cover and

minimum weighted dominating set algorithms. However, when applied to the un-

weighted set cover and minimum dominating set problems, the approximation ratios

of our algorithms can be guaranteed in a simple way. Specifically, our algorithm for

the unweighted set cover problem has three parameters: βl, βg and γ. If we set βl = 0

and γ = 0, it becomes a variant of the classic greedy approximation algorithm. The

only difference is that this variant has a preprocessing and a post processing: the

first step to reserve the indispensable sets and the third step to remove the redun-

dant sets. Obviously, these two steps do not harm the final approximate solution.

We know the approximation ratio of the classic greedy algorithm is ln δ + 1, where

δ = max{|S| : S ∈ F} is the maximum cardinality of sets in F . Therefore, the

approximation ratio of this variant is also ln δ + 1. Since our algorithm can try any

parameters and return the best result, as long as it tries βl = 0 and γ = 0, we

can guarantee the approximation ratio of ln δ + 1. Similarly, our algorithm for the

minimum dominating set problem can guarantee the approximation ratio of ln δ′+ 2,

where δ′ is the maximum degree of G.

1.4 Experimental Evaluation

We evaluate the performance of our algorithms on a large number of synthetic

and real world instances from many domains. There are 4 groups of experiments on

weighted set cover problem, set cover problem, minimum weighted dominating set

problem and minimum dominating set problem.

In these experiments, the three parameters βl, βg and γ of our algorithms are

varied with grid search. In order to give full play to our algorithms and also generate

sufficient data for the subsequent analyses on parameters, we try a large number of

parameter combinations. In Section 1.4.5, we give some guidelines for choosing values

15

of βl, βg and γ.

Our algorithms and most of the comparison algorithms break ties randomly. The

other comparison algorithms also have more or less random processing. Therefore,

we run each experiment 10 times and report the average results. If we need to report

the best or average results across different parameters, we first run 10 experiments

with each distinct set of parameters and compute the average results. Then we select

the best or compute the average across different parameters.

In each of the 4 groups of experiments, we compare our algorithm with the classic

or standard greedy algorithm for that problem and its improved version that first

reserves the indispensable sets or vertices. We name them Gr and GrR uniformly in

Sections 1.4.1, 1.4.2,1.4.3 and 1.4.4. It is easy to distinguish among them from the

context.

Our algorithms and the comparison algorithms are all implemented in C++. All

the experiments are performed on a workstation with 4x AMD Opteron 6174 2.2GHz

processors and 64GB RAM.

1.4.1 Weighted Set Cover Problem

We evaluate the performance of our weighted set cover algorithm on 70 synthetic

instances from the OR-Library Beasley (1990). The details of these test instances

are summarized in Table 1.2. For example, the first instance ”scp41” consists of 1000

sets and 200 items.

The optimal solutions of these instances are known. Their weights are given in the

second columns of Table 1.3 and Table 1.4. For example, the weight of the optimal

solution of the first instance ”scp41” is 429.

The three parameters βl, βg and γ of our algorithm are varied with grid search.

Specifically, we have 320 combinations derived from βl ∈ {0.5, 0.75, 1, 1.25,

1.5, 2, 3, 4}; βg ∈ {0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; γ ∈ {0, 0.01, 0.1, 1, 10}. However,

16

Table 1.2: Test Instances for Weighted Set Cover Problem
Instance #Set #Item Instance #Set #Item Instance #Set #Item
scp41 1000 200 scpa1 3000 300 scpnre1 5000 500
scp42 1000 200 scpa2 3000 300 scpnre2 5000 500
scp43 1000 200 scpa3 3000 300 scpnre3 5000 500
scp44 1000 200 scpa4 3000 300 scpnre4 5000 500
scp45 1000 200 scpa5 3000 300 scpnre5 5000 500
scp46 1000 200 scpb1 3000 300 scpnrf1 5000 500
scp47 1000 200 scpb2 3000 300 scpnrf2 5000 500
scp48 1000 200 scpb3 3000 300 scpnrf3 5000 500
scp49 1000 200 scpb4 3000 300 scpnrf4 5000 500
scp410 1000 200 scpb5 3000 300 scpnrf5 5000 500
scp51 2000 200 scpc1 4000 400 scpnrg1 10000 1000
scp52 2000 200 scpc2 4000 400 scpnrg2 10000 1000
scp53 2000 200 scpc3 4000 400 scpnrg3 10000 1000
scp54 2000 200 scpc4 4000 400 scpnrg4 10000 1000
scp55 2000 200 scpc5 4000 400 scpnrg5 10000 1000
scp56 2000 200 scpd1 4000 400 scpnrh1 10000 1000
scp57 2000 200 scpd2 4000 400 scpnrh2 10000 1000
scp58 2000 200 scpd3 4000 400 scpnrh3 10000 1000
scp59 2000 200 scpd4 4000 400 scpnrh4 10000 1000
scp510 2000 200 scpd5 4000 400 scpnrh5 10000 1000
scp61 1000 200 scpe1 500 50
scp62 1000 200 scpe2 500 50
scp63 1000 200 scpe3 500 50
scp64 1000 200 scpe4 500 50
scp65 1000 200 scpe5 500 50

when γ = 0, different βg make no difference. Therefore, there are a total of 264

really distinct combinations. The reason that we do not try βl < 0.5 or βl > 4, and

βg < 0.5 or βg > 4, is because such extreme values minify or magnify the difference of

set weights and the difference of set populations covering each item too much, which

adversely affects the solution quality. We analyze the effects of βl, βg and γ in Section

1.4.5.

The comparison algorithms include the classic greedy algorithm Gr and its im-

proved version GrR, which first reserves the indispensable sets, and the variants

GrRA, GrRB, GrRD and GrRE based on the rules RuleA, RuleB, RuleD and

RuleE introduced in Ablanedo-Rosas & Rego (2010) respectively, which also first

reserve the indispensable sets. We do not report the results of the other rules intro-

duced in Ablanedo-Rosas & Rego (2010), including RuleC, Rule F , RuleG, RuleH

and Rule I, because, (1) according to our experiments, these rules make very little

difference on performance in comparison to the other rules; and (2) these rules are

simple variants of the other rules, but lack theoretical justifications.

The experimental results of weighted set cover problem are given in Table 1.3 and

Table 1.4. Since the results of Gr and GrR are identical on all the 70 instances, we

only report those of GrR. Our results are the minimum sum of set weights of the

17

Table 1.3: Weighted Set Cover Results (Solution Weight), Part 1
Instance Optimal GrR GrRA GrRB GrRD GrRE Ours
scp41 429 465.2 473 477 461 477 434
scp42 512 590 564 572 578 566 528.3
scp43 516 594.8 564 559 582 560 527.2
scp44 494 553.8 541 556 541 553 503
scp45 512 571 575 573 580 573 514
scp46 560 606 593 586 606 586 567.6
scp47 430 474.6 482 461 481 475 437
scp48 492 544.7 542 542 538 543 496
scp49 641 748.8 747 731 755 732 664
scp410 514 554.6 545 545 553 545 521
scp51 253 290.5 290 291 288 291 262.2
scp52 302 345.5 341 344 343 341 314
scp53 226 244.4 246 252 246 245 229
scp54 242 266.5 265 265 266 265 245.5
scp55 211 235.1 234 232 234 234 212
scp56 213 248.2 250 244 250 250 221
scp57 293 319.5 317 311 315 311 299
scp58 288 314.6 313 314 313 314 294
scp59 279 306.9 307 307 308 307 280
scp510 265 287.7 286 286 286 286 273
scp61 138 158.4 159 164 159 159 140.8
scp62 146 170.1 171 172 171 171 151.5
scp63 145 161 161 159 163 158 149
scp64 131 142 149 149 149 150 132
scp65 161 191.8 195 194 195 194 171
scpa1 253 285.3 279 282 279 284 258
scpa2 252 285.7 284 278 284 281 259
scpa3 232 263.3 264 270 264 262 236
scpa4 234 277.5 274 273 274 277 237
scpa5 236 269.2 262 261 264 261 239.1
scpb1 69 75.8 77 77 75 77 71
scpb2 76 86.8 84 86 91 86 76
scpb3 80 87 85 85 85 85 81
scpb4 79 90 89 89 89 89 80
scpb5 72 80.3 80 80 80 80 72.4

solutions found by our algorithm with all distinct sets of parameters each averaged

over 10 runs.

As we can see, our algorithm achieves significantly better results than the compar-

ison algorithms. Our results across different sets of parameters are much better than

those of the comparison algorithms on 65 instances and tie with those on the other

5 instances. Furthermore, on many instances, our results are equal to or very close

to the optimal. This demonstrates the capability of our algorithm to find superior

solutions.

1.4.2 Set Cover Problem

Our algorithm can solve the (unweighted) set cover problem by simply considering

all sets as having the same weights, e.g. 1. We evaluate its performance on 8 real

world unweighted instances from the Frequent Itemset Mining Dataset Repository 1,

which were used in Cormode et al. (2010). The details of these test instances are

1http://fimi.ua.ac.be/data/

18

Table 1.4: Weighted Set Cover Results (Solution Weight), Part 2
Instance Optimal GrR GrRA GrRB GrRD GrRE Ours
scpc1 227 256.6 256 253 256 253 235.3
scpc2 219 254.1 253 253 253 250 226
scpc3 243 271.8 271 272 271 272 251
scpc4 219 259.3 258 257 258 257 228
scpc5 215 233.6 232 231 232 232 218.1
scpd1 60 70.3 71 69 71 71 61.3
scpd2 66 72.4 71 71 71 71 67.5
scpd3 72 81.1 82 82 82 82 74
scpd4 62 68.3 67 67 67 67 62
scpd5 61 70.4 69 70 69 70 63
scpe1 5 5.9 5 5 5 5 5
scpe2 5 5.1 5 6 5 6 5
scpe3 5 5 5 5 5 5 5
scpe4 5 5.2 5 5 5 5 5
scpe5 5 5 5 5 5 5 5
scpnre1 29 31.3 30 30 30 30 29
scpnre2 30 35.4 34 34 34 34 32
scpnre3 27 29.6 30 30 30 30 28
scpnre4 28 32.7 33 33 33 33 29.3
scpnre5 28 32.1 33 33 33 33 29.1
scpnrf1 14 16.3 16 16 16 16 15
scpnrf2 15 16 16 16 16 16 15
scpnrf3 14 15.2 16 16 16 16 15
scpnrf4 14 16.2 16 16 16 16 15
scpnrf5 13 15.7 15 15 15 15 14
scpnrg1 176 200.5 199 199 199 199 183
scpnrg2 154 173.8 174 171 174 176 160
scpnrg3 166 188.9 186 186 185 186 174
scpnrg4 168 192.4 194 186 194 194 179
scpnrg5 168 189.2 195 196 195 196 175.7
scpnrh1 63 73.9 73 73 73 73 68.9
scpnrh2 63 74.7 73 73 73 73 67.1
scpnrh3 59 68.9 68 66 68 68 63.9
scpnrh4 58 66 67 67 67 67 62.6
scpnrh5 55 62.7 61 61 61 61 58

Table 1.5: Test Instances for Set Cover Problem
Instance #Set #Item Instance #Set #Item

chess 3196 75 retail 88162 16469
mushroom 8124 119 accidents 340183 468
pumsbStar 49046 7116 kosarak 990002 41270
pumsb 49046 7116 webdocs 1692082 5267656

summarized in Table 1.5. For example, the first instance ”chess” consists of 3196 sets

and 75 items.

For our algorithm, different from the experiment on weighted set cover prob-

lem, we now also consider βl < 0.5 and βg < 0.5 for two reasons. First, there

are no differences among set weights. The adverse effect of extreme values of βl

and βg, which is discussed in Section 1.4.1, is smaller. Second, as discussed in

Section 1.3.3, by trying βl = 0 and γ = 0, our algorithm can guarantee an ap-

proximation ratio. Therefore, we have 500 parameter combinations derived from

βl ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; βg ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4};

γ ∈ {0, 0.01, 0.1, 1, 10}. When γ = 0, different βg make no difference. Therefore,

19

Table 1.6: Set Cover Results (Set Number)
Instance Gr GrR GrRA GrRB GrRD GrRE DFG Ours
chess 8.2 8 6 6 7 6 8.2 6
mushroom 24.6 24.6 22 22 22 22 23.1 22
pumsbStar 749.8 711.6 649.6 655.6 650.8 652.8 745.8 644.5
pumsb 749.9 708 650 654.9 650.4 652.1 748.3 644.3
retail 5126.4 4951.6 4779.3 4786.1 4811.8 4784.6 5113.2 4763.1
accidents 181.2 169.7 160 161 160 161 179.7 160
kosarak 17761.4 17691 17584.7 17588.4 17585.7 17589.4 17735.9 17555.9
webdocs 406429 405556 405516 405510 405522 405515 406337 405475.6

there are a total of 410 really distinct combinations.

The comparison algorithms include the classic greedy algorithm Gr for the set

cover problem and its improved version GrR, which first reserves the indispensable

sets, GrRA, GrRB, GrRD and GrRE based on the rules RuleA, RuleB, RuleD

and RuleE Ablanedo-Rosas & Rego (2010), which also first reserve the indispensable

sets, and DFG proposed in Cormode et al. (2010). DFG algorithm has a parameter

p, which governs both the theoretical approximation factor and running time. In

Cormode et al. (2010), p was set to be 1.001 and 1.05 when testing DFG on the same

8 instances. For fair comparison, in addition to 1.001 and 1.05, we vary p with grid

search in the range of [1.005, 1.1] with a step size of 0.005, and report the best results.

As shown in Table 1.6, the performance of our algorithm is better than those of

the comparison algorithms. Specifically, our algorithm achieves the best results on all

the 8 instances. On chess, mushroom and accidents instances, which contain fewer

items, some of the algorithms based on the normalization rules of Ablanedo-Rosas

& Rego (2010) can also achieve the best results. Their performance on the other

instances are also very good in comparison to Gr, GrR and DFG.

1.4.3 Minimum Weighted Dominating Set Problem

We evaluate the performance of our algorithm for the minimum weighted domi-

nating set problem on three benchmarks. The first one is the BHOSLIB benchmark

(”mis” version) Xu et al. (2005), which consists of 41 graphs. The second one is the

DIMACS complementary benchmark, which consists of 37 graphs. The third one

20

Table 1.7: BHOSLIB Benchmark (”mis” version)
Graph #Vertex #Edge Graph #Vertex #Edge Graph #Vertex #Edge
frb30-15-1 450 17827 frb45-21-1 945 59186 frb56-25-1 1400 109676
frb30-15-2 450 17874 frb45-21-2 945 58624 frb56-25-2 1400 109401
frb30-15-3 450 17809 frb45-21-3 945 58245 frb56-25-3 1400 109379
frb30-15-4 450 17831 frb45-21-4 945 58549 frb56-25-4 1400 110038
frb30-15-5 450 17794 frb45-21-5 945 58579 frb56-25-5 1400 109601
frb35-17-1 595 27856 frb50-23-1 1150 80072 frb59-26-1 1534 126555
frb35-17-2 595 27847 frb50-23-2 1150 80851 frb59-26-2 1534 126163
frb35-17-3 595 27931 frb50-23-3 1150 81068 frb59-26-3 1534 126082
frb35-17-4 595 27842 frb50-23-4 1150 80258 frb59-26-4 1534 127011
frb35-17-5 595 28143 frb50-23-5 1150 80035 frb59-26-5 1534 125982
frb40-19-1 760 41314 frb53-24-1 1272 94227 frb100-40 4000 572774
frb40-19-2 760 41263 frb53-24-2 1272 94289
frb40-19-3 760 41095 frb53-24-3 1272 94127
frb40-19-4 760 41605 frb53-24-4 1272 94308
frb40-19-5 760 41619 frb53-24-5 1272 94226

Table 1.8: DIMACS Complementary Benchmark
Graph #Vertex #Edge Graph #Vertex #Edge Graph #Vertex #Edge
C1000.9 1000 49421 brock200 4 200 6811 keller5 776 74710
C125.9 125 787 brock400 2 400 20014 keller6 3361 1026582
C2000.5 2000 999164 brock400 4 400 20035 p hat1500-1 1500 839327
C2000.9 2000 199468 brock800 2 800 111434 p hat1500-2 1500 555290
C250.9 250 3141 brock800 4 800 111957 p hat1500-3 1500 277006
C4000.5 4000 3997732 gen200 p0.9 44 200 1990 p hat300-1 300 33917
C500.9 500 12418 gen200 p0.9 55 200 1990 p hat300-2 300 22922
DSJC1000.5 1000 249674 gen400 p0.9 55 400 7980 p hat300-3 300 11460
DSJC500.5 500 62126 gen400 p0.9 65 400 7980 p hat700-1 700 183651
MANN a27 378 702 gen400 p0.9 75 400 7980 p hat700-2 700 122922
MANN a45 1035 1980 hamming10-4 1024 89600 p hat700-3 700 61640
MANN a81 3321 6480 hamming8-4 256 11776
brock200 2 200 10024 keller4 171 5100

consists of all the 139 undirected simple graphs in the Network Data Repository 2.

These real world graphs are from 12 different domains, including biological networks,

collaboration networks, facebook networks, infrastructure networks, interaction net-

works, recommendation networks, retweet networks, scientific computing networks,

social networks, technological networks, temporal networks and web link networks.

The details of the graphs from BHOSLIB benchmark and DIMACS complementary

benchmark are summarized in Table 1.7 and Table 1.8, while those of the graphs

from Network Data Repository are given in Table A.1 in Appendix A. For example,

the first graph ”frb30-15-1” in the BHOSLIB benchmark consists of 450 vertices and

17827 edges.

All these graphs are originally unweighted. We follow the method of Y. Wang,

Cai, & Yin (2017) to assign weights to the vertices. The weighting function is defined

as w(vk) = (k mod 200) + 1, where k is the vertex index.

In the experiments of minimum weighted dominating set problem, as in Section

2http://networkrepository.com

21

1.4.1, we consider 320 parameter combinations derived from βl ∈ {0.5, 0.75, 1,

1.25, 1.5, 2, 3, 4}; βg ∈ {0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; γ ∈ {0, 0.01, 0.1, 1, 10}. When

γ = 0, different βg make no difference. Therefore, there are a total of 264 really

distinct combinations.

We compare our minimum weighted dominating set algorithm with the standard

greedy algorithm Gr and its improved version GrR, which first reserves the indispens-

able vertices. Furthermore, in order to evaluate the quality of our results, we compare

them to those of two state-of-the-art local search algorithms, CC2FS Y. Wang, Cai,

& Yin (2017) and ACO-PP-LS Potluri & Singh (2013). We are not able to obtain the

source code of these two algorithms. However, since the settings of our experiments

are the same as Y. Wang, Cai, & Yin (2017), we can compare our results to those

reported in Y. Wang, Cai, & Yin (2017) directly. Note that in Y. Wang, Cai, & Yin

(2017), the ”MIN” and ”AVG” results are the minimal and average solution values of

the 10 runs of experiment with different random seeds. Here our results correspond

to the ”AVG” results in Y. Wang, Cai, & Yin (2017). On some graphs, there are no

results reported in Y. Wang, Cai, & Yin (2017). We mark them as ”N/A”. In the

experiments of Y. Wang, Cai, & Yin (2017), the time limit for CC2FS and ACO-

PP-LS was 1000 seconds. On some graphs, ACO-PP-LS failed to find a dominating

set within the time limit. The results were marked as ”n/a”. We keep these marks

here.

The experimental results of minimum weighted dominating set problem are given

in Table 1.9 and Table 1.10 in this section, and Table A.2 and Table A.3 in Appendix

A. On BHOSLIB and DIMACS complementary benchmarks, since the results of Gr

and GrR are identical on all the graphs, we only report those of GrR. Our results

are the minimum sum of vertex weights of the solutions found by our algorithm with

all distinct sets of parameters each averaged over 10 runs.

As we can see, our results are significantly better than those of GrR. Moreover,

22

Table 1.9:
Minimum Weighted Dominating Set Results on BHOSLIB Benchmark (So-
lution Weight)

Graph GrR ACO-PP-LS CC2FS Ours Graph GrR ACO-PP-LS CC2FS Ours
frb30-15-1 259 223.5 214 214 frb50-23-2 341 302.9 277 287.8
frb30-15-2 308 244 242 246 frb50-23-3 374 315.6 298.1 284
frb30-15-3 189 175 175 177 frb50-23-4 297 279 265 270.8
frb30-15-4 210 182.7 167 170 frb50-23-5 493 445.4 421.4 416
frb30-15-5 206 177.4 160 173.9 frb53-24-1 291 244 229 239.8
frb35-17-1 330 285.8 274 277 frb53-24-2 344.1 318.8 300.3 318
frb35-17-2 232 220.4 208 217 frb53-24-3 207 188.7 182 182
frb35-17-3 248 207 201 211 frb53-24-4 246 202.4 189 193
frb35-17-4 342 328.5 287 300 frb53-24-5 240 225.8 204 208.2
frb35-17-5 348 302.5 296.5 300 frb56-25-1 248 231.9 229 231
frb40-19-1 305 274.6 262 282 frb56-25-2 360 336 319 326
frb40-19-2 276 250.6 243.5 250 frb56-25-3 395 351.5 343.1 352
frb40-19-3 284 276.7 252 257 frb56-25-4 317.4 277.2 268 275
frb40-19-4 281 266.3 250 254.6 frb56-25-5 527.5 498.9 429.7 440
frb40-19-5 332 288.8 282.5 281 frb59-26-1 300 288.4 263.2 271
frb45-21-1 426 376.2 333.7 348 frb59-26-2 472 426.1 388.8 413.7
frb45-21-2 323 278.1 259.3 271 frb59-26-3 287 273.5 248 256
frb45-21-3 295 254.6 233.9 245 frb59-26-4 288 265.3 248.1 259
frb45-21-4 531 475.2 399 412.3 frb59-26-5 350.5 307.8 291.3 299
frb45-21-5 397 369.6 318.2 334 frb100-40 406 384.2 350 364
frb50-23-1 336 298.9 267.8 264

Table 1.10:
Minimum Weighted Dominating Set Results on DIMACS Complementary
Benchmark (Solution Weight)

Graph GrR ACO-PP-LS CC2FS Ours Graph GrR ACO-PP-LS CC2FS Ours
C1000.9 220 197 194.8 198 gen200 p0.9 55 462 439.7 433 434
C125.9 497 N/A N/A 413 gen400 p0.9 55 307 303.6 288 286
C2000.5 11.6 10 10 10 gen400 p0.9 65 314 291.2 287 297
C2000.9 149.6 139.3 130 131 gen400 p0.9 75 382 307 307 307
C250.9 288 235 235 240 hamming10-4 101 88 86 86
C4000.5 10 9 9 9 hamming8-4 83 76.5 71 71
C500.9 245 226 228 226 keller4 253 233.1 220 229
DSJC1000.5 17 14.2 14 14 keller5 210 196.7 182 185
DSJC500.5 17 15 15 15 keller6 84 82.4 80 81
MANN a27 406 405 405 405 p hat1500-1 4 N/A N/A 4
MANN a45 1090 1080 1080 1080 p hat1500-2 15.2 N/A N/A 13.4
MANN a81 3438.9 3402 3402 3402 p hat1500-3 58 N/A N/A 52
brock200 2 23 23 23 23 p hat300-1 8 N/A N/A 7
brock200 4 73 70.4 68 68 p hat300-2 15 N/A N/A 14
brock400 2 74 65 65 65 p hat300-3 65 N/A N/A 63
brock400 4 83 75.7 75 75 p hat700-1 7 N/A N/A 6
brock800 2 29 28.4 28 28 p hat700-2 18 N/A N/A 17
brock800 4 35 32.8 31 32 p hat700-3 82 N/A N/A 70
gen200 p0.9 44 492 458 470 461

as an approximation algorithm based on greedy heuristic, our algorithm outperforms

state-of-the-art local search based algorithms, which are much more complex and

time-consuming. Specifically, our results are better than those of ACO-PP-LS on

most graphs. On the small or medium graphs, our results are very close to those of

CC2FS. On large graphs, our algorithm exhibits significant advantage over CC2FS.

Our algorithm’s superiority on efficiency is evaluated in Section 1.4.5.

1.4.4 Minimum Dominating Set Problem

Our algorithm can solve the minimum (unweighted) dominating set problem by

simply considering all vertices as having the same weights, e.g. 1. We evaluate its

23

performance on the 139 undirected simple graphs from the Network Data Repository.

In the experiments of minimum dominating set problem, as in Section 1.4.2, we

consider 500 parameter combinations derived from βl ∈ {0, 0.25, 0.5, 0.75, 1, 1.25,

1.5, 2, 3, 4}; βg ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; γ ∈ {0, 0.01, 0.1, 1, 10}. When

γ = 0, different βg make no difference. Therefore, there are a total of 410 really

distinct combinations.

The comparison algorithms include the standard greedy algorithm Gr and its im-

proved version GrR which first reserves the indispensable vertices, the two algorithms

Alg.3 and Alg.4 proposed in Campan et al. (2015), the FastGreedy algorithm intro-

duced in Eubank et al. (2004), the Greedy Rev (Gr Rev) and Greedy Vote (Gr V ote)

algorithms described in Sanchis (2002), and the local search algorithm SAMDS pro-

posed in Hedar & Ismail (2012). We ignore the Greedy Ran and Greedy Vote Gr algo-

rithms described in Sanchis (2002), because according to both the experimental eval-

uations in Sanchis (2002) and our preliminary tests, the performance of Greedy Ran

is bad and instable, while the exhaustive local search step of ”Greedy Vote Gr” is

very time-consuming and the improvements over the Greedy Vote algorithm are very

limited. The FastGreedy algorithm is implemented based on the FastGreedy heuris-

tic proposed in Eubank et al. (2004). It first sorts the vertices in descending order by

their degrees, as {v1, v2, ..., v|V |} with d(v1) ≥ d(v2) ≥ ... ≥ d(v|V |). Then the smallest

index i is picked such that {v1, v2, ..., vi} is a dominating set. The final dominating

set excludes vertices vj which have N [vj] ⊆
⋃
k<j N [vk], where N [v] denotes vertex v

and its direct neighbors. SAMDS Hedar & Ismail (2012) is a local search algorithm

based on the simulated annealing meta-heuristic. We follow the same strategy as in

Hedar & Ismail (2012) to set the initial temperature Tmax to be large enough to make

the initial probability of accepting transition close to 1. In order to give full play

to SAMDS, unlike in Hedar & Ismail (2012), we do not set a fixed final minimum

temperature Tmin as the termination criteria. Instead, we terminate SAMDS if the

24

Table 1.11:
Minimum Dominating Set Results on 23 Real World Graphs from Net-
work Data Repository (Vertex Number)

Graph #Vertex #Edge Gr GrR Gr Rev Gr V ote SAMDS Ours
bio-celegans 453 2025 30.5 30.5 29 30 31 29
bio-yeast 1458 1948 359.1 353.6 356.9 355.4 359.6 353
ca-AstroPh 17903 196972 2179.2 2131.5 2153.7 2114.2 2220 2070
ca-netscience 379 914 55.8 55.8 55 56 59 55
socfb-A-anon 3097165 23667394 203464 201844 203077 201852 N/A 201698.6
socfb-uci-uni 58790782 92208195 865896.5 865676.5 865702 865684.5 58790782 865675
inf-power 4941 6594 1565.5 1507.2 1547.8 1514.7 1554.3 1487.1
inf-roadNet-PA 1087562 1541514 370808 347003 363593 346400.5 N/A 338740.6
ia-email-EU 32430 54397 755.2 755 755 755 755.8 755
ia-wiki-Talk 92117 360767 11952 11935 11952.1 11936.8 46626 11935
rec-amazon 91813 125704 30819.4 28775.9 29224.6 29064.8 57388.3 28365.7
rt-retweet 96 117 32 32 32 32 32.3 32
rt-twitter-copen 761 1029 201.3 199 199.3 200 200.9 199
sc-ldoor 952203 20770807 66709.2 66709.2 67363 65992.3 496162 65387.7
sc-shipsec5 179104 2200076 12670 12665.4 16586.5 12350.5 89572.7 12069.8
soc-BlogCatalog 88784 2093195 4899.9 4894 4901 4895 46114.3 4894
soc-youtube-snap 1134890 2987624 214184 213140 213581 213275.5 N/A 213122.1
tech-RL-caida 190914 607610 41465.6 40594.2 41559.8 40651.6 109468.6 40224.8
tech-routers-rf 2113 6632 488.6 480.7 486.7 482.1 487.1 479
scc-enron-only 151 9828 6 6 6 6 6.4 6
scc-twitter-copen 8580 473614 6413.6 6410.3 6412 6410 6416.6 6410
web-BerkStan 12305 19500 3053.6 3015.2 3052.3 3028.1 3072.7 3000
web-wikipedia2009 1864433 4507315 353065 348155 352885 348537.5 N/A 347018.1

current solution has not changed for H steps. We set H = min(|V |, 105). Further-

more, we try 9 distinct pairs of cooling ratio λ and epoch length M derived from

λ ∈ {0.99, 0.999, 0.9999} and M ∈ {10, 100, 1000}. The best results achieved across

different pairs of λ and M are reported. Although we implement SAMDS in C++,

due to the time-consuming computations when selecting vertices probabilistically ac-

cording to their degrees in each iteration, SAMDS is too slow to process large graphs.

Therefore, in addition to the termination criteria described above, we set a cut-off

time of 104 seconds to terminate its execution. On some graphs, SAMDS fails to

find a dominating set within the time limit, then the results are marked as ”N/A”.

We report the experimental results of minimum dominating set problem on the

first and last graphs in alphabetical order from each of the 12 domains in Table 1.11 in

this section. The complete results are given in Table A.4 and Table A.5 in Appendix

A. Alg.3 Campan et al. (2015), Alg.4 Campan et al. (2015) and FastGreedy Eubank

et al. (2004) algorithms are designed with focus on the efficiency. Their results are

much worse than those of the other comparison algorithms on all the graphs. Due to

the limited space, we do not report their results. Our results are the minimum vertex

number of the solutions found by our algorithm with all distinct sets of parameters

25

each averaged over 10 runs.

As we can see, our algorithm achieves superior performance on all the 139 graphs.

Specifically, on most graphs, our results are significantly better than those of all

the comparison algorithms. On some small or sparse graphs, GrR and Gr V ote tie

with our algorithm. Gr Rev achieves good results on a few graphs, but its overall

performance is not as good as GrR, Gr V ote and our algorithm. On some small

or sparse graphs, the results of SAMDS are close to those of GrR, Gr V ote and

our algorithm. On large or dense graphs, either SAMDS can not return a valid

dominating set within 104 seconds, or its results are much worse than ours and those

of the other comparison algorithms.

1.4.5 Discussion

Parameter Setting

Our algorithms have three interactive parameters βl, βg and γ. Unlike the param-

eters in machine learning models, those parameters do not need to be trained. Any

combinations of valid values can be tried independently. We only need to compare

the final solutions and return the best one. As the cooling ratio and epoch length of

simulated annealing based algorithms, there are no choices of βl, βg and γ that will be

good for all problems, and there is no general way to find the best choices for a given

problem. Therefore, in general, when using our algorithms, the three parameters βl,

βg and γ should be set with grid search.

With modern distributed computing technologies, theoretically speaking, using

our algorithms is as easy as using the classic greedy approximation algorithms. How-

ever, in practice, we hope we can achieve good results by trying as few parameter

combinations as possible. In this section, we analyze the effects of the three parame-

ters of our algorithms in order to obtain some guidelines for choosing their values.

We first analyze the effects of βl, βg and γ in theory. Both βl and βg are exponent

26

parameters used to adjust the difference of local coverage efficiencies, i.e. LCEs.

βl > 1 and βg > 1 increase the relative weight of larger LCE, while βl < 1 and βg < 1

works in the opposite way. For weighted set cover and minimum weighted dominating

set problems, if βl and βg are too small, e.g. less than 0.5, the difference of LCEs,

which actually represents the underlying difference of the set weights and the set

populations covering each item, will be minified too much. When βl = 0 and βg = 0,

those differences are completely ignored, and there are no differences among sets and

no difference among items. On the contrary, if βl and βg are too large, the difference of

LCEs will be magnified too much, which also adversely affects the solution quality.

Therefore, we should avoid too small and too large values when choosing βl and

βg. For (unweighted) set cover and minimum dominating set problems, since the

set weights are identical, we can try small values for βl and βg, but it means the

difference of set populations covering each item is more or less ignored. We should

still avoid too large values for βl and βg. γ is used to adjust the relative weight of

global coverage capacity GCC when combining it with the local coverage gain LCG

to be the coverage benefit CB. Since the GCC of each set is computed over all the

items, while the LCG is computed over only the currently uncovered items, with equal

βl and βg, GCC is always greater than or equal to LCG. Their difference becomes

larger in later iterations. Therefore, we should avoid too large values for γ in case

GCC dominates CB.

Based on this analysis, we choose parameters with grid search in the previous

experiments. Specifically, for weighted set cover and minimum weighted dominating

set problems, we have 264 really distinct parameter combinations derived from βl ∈

{0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; βg ∈ {0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; γ ∈ {0, 0.01, 0.1, 1, 10}.

For (unweighted) set cover and minimum dominating set problems, we have 410 really

distinct parameter combinations derived from βl ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4};

βg ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}; γ ∈ {0, 0.01, 0.1, 1, 10}.

27

In this section, we investigate the results of the previous experiments to further

analyze the effects of βl, βg and γ. For the weighted set cover problem, on each

test instance, we obtain 264 results r1, r2, r3, ..., r264 by running our algorithm with

the 264 distinct parameter combinations each averaged over 10 runs. Each result r

denotes the sum of set weights of the corresponding solution. In order to aggregate

such results across different test instances from multiple data sets to obtain some

overall statistical measures, we first normalize each r. Let rmax and rmin denote the

maximum and minimum results. Obviously, rmax corresponds to the worse solution,

while rmin corresponds to the best solution. We normalize each result r to be

r′ =
rmax − r
rmax

× 100 (1.4-11)

r′ is actually the percentage of improvement of r over the worse result rmax on the

same test instance. Obviously, r′ is in the range of [0, 100), and larger r′ indicates

better solution.

Since we run our algorithm with different parameter combinations and return the

best results, it is worth examining the relationships between the best results and the

individual parameter values. To this end, in addition to r′, we normalize the result

vector into an 0− 1 indicator vector, where 1 indicates the corresponding result r is

equal to rmin and 0 indicates they are not equal.

Both the r′ vector and the indicator vector can be aggregated across different test

instances from different data sets. For the weighted set cover problem, we normalize

the 264 results of our algorithm on each of the 70 test instances from the OR-Library

data set. Then we stack the normalized 1× 264 row vectors of r′ and 0-1 indicators

into an 70× 264 matrix MR′ of r′ and an 70× 264 indicator matrix MI.

For MR′, we first calculate the mean value of each column to obtain an 1 × 264

row vector V R′. Then for each βl in {0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}, we calculate the

mean value of its corresponding values in V R′. We call the obtained value as Average

28

Relative Solution Quality (ARSQ) for βl. ARSQs for βl reflect the effects of different

βl on the solution quality. We calculate ARSQ for βg and γ in the same way.

For MI, we first calculate the mean value of each column to obtain an 1 × 264

row vector V I. Each element of V I is the frequency of our algorithm achieves the

best results with the corresponding parameter combination. Then for each βl in

{0.5, 0.75, 1, 1.25, 1.5, 2, 3, 4}, we calculate the mean value of its corresponding values

in V I. We call the obtained value as Average Best Result Frequency (ABRF) for βl.

ABRF s reveal for which values of βl the best results are more likely to be achieved.

We calculate ABRF for βg and γ in the same way.

We analyze the effects of βl, βg and γ in the same way for the (unweighted) set

cover, minimum weighted dominating set and minimum (unweighted) dominating set

problems. For the minimum weighted dominating set problem, we aggregate the r′

vector and the indicator vector across different graphs from the BHOSLIB benchmark,

DIMACS benchmark and Network Data Repository. The analytical results are shown

in Figure 1.2, Figure 1.3, Figure 1.4 and Figure 1.5. We use line charts to present

the effects of βl and βg. For γ, since the trial values, which are different from those

of βl and βg, are very unevenly distributed, we use separate bar charts to present its

effects.

Apparently, the effects of βl, βg and γ are consistent for the 4 problems. Specif-

ically, better performance is achieved with βl in range [0.5, 1]. Beyond this range,

especially with larger βl, the performance becomes worse. For βg, significantly better

performance is achieved when its value is greater than 1. When βg becomes even

larger, the performance is improved less significantly. For γ, better performance is

achieved with values less than 1. Note that the ARSQ and ABRF of γ = 0 are

overestimated. It is because when γ = 0, different βg make no difference. We exclude

those redundant parameter combinations in the experiments. Therefore, without the

less effective parameter combinations that result in worse performance, e.g. βl > 1

29

Figure 1.2: Parameter Effect for Weighted Set Cover Problem

Figure 1.3: Parameter Effect for Set Cover Problem

30

Figure 1.4: Parameter Effect for Minimum Weighted Dominating Set Problem

Figure 1.5: Parameter Effect for Minimum Dominating Set Problem

31

and βg < 1, the ARSQ and ABRF of γ = 0, which represent the average performance

over different parameter combinations, are higher than those of the other γ values.

Based these observations, we reduce the number of parameter combinations in

our experiments. Specifically, we run our algorithms with three significantly smaller

sets of parameter combinations. The first set is derived from βl ∈ {0.5, 0.75, 1};

βg ∈ {2, 3, 4}; γ ∈ {0, 0.1, 1}. Since different βg make no difference when γ = 0,

there are a total of 21 really distinct combinations. The second set consists of 8

combinations derived from βl ∈ {0.75, 1}; βg ∈ {2, 3}; γ ∈ {0.1, 1}. The third

set contains only 1 combination. For weighted set cover and minimum weighted

dominating set problems, it is βl = 1, βg = 3, γ = 0.1, while for set cover and

minimum dominating set problems, it is βl = 0.75, βg = 3, γ = 0.1. The best results

across different parameter combinations in each of these three sets are reported and

compared to the results achieved with the original full sets of parameter combinations.

We run our algorithm for the weighted set cover problem on the 70 instances from

OR-Library with the three smaller sets of parameter combinations. The results are

given in Table 1.12.

As we can see, with 21 and 8 parameter combinations, the results of our algorithm

(”Ours (21)” and ”Ours (8)”) are very close to those achieved with 264 parameter

combinations. In comparison to the competitors’ results reported in Table 1.3 and

Table 1.4, ”Ours (21)” and ”Ours (8)” results are still much better. Specifically,

”Ours (21)” and ”Ours (8)” results are better than the competitors’ results on 64

instances. Some competitors can only tie with our algorithm on the rest 6 instances.

With the second set of only 1 parameter combination, the results of our algorithm

(”Ours (1)”) are still very good. On most instances, ”Ours (1)” results are close to

those achieved with 264 parameter combinations. Moreover, ”Ours (1)” results are

better than the competitors’ results on 61 instances. Some competitors tie with our

algorithm on 6 other instances. On the rest 3 instances, i.e. scpb2, scpnre1 and

32

Table 1.12:
Weighted Set Cover Results with Different Sets of Parameter Combina-
tions (Solution Weight)

Instance Ours (264) Ours (21) Ours (8) Ours (1) Instance Ours (264) Ours (21) Ours (8) Ours (1)
scp41 434 434 434 434 scpc1 235.3 238.1 239 240
scp42 528.3 536 540 540 scpc2 226 226.1 226.1 229.6
scp43 527.2 527.2 527.2 529 scpc3 251 251 251 257
scp44 503 503 503 506 scpc4 228 233.9 233.9 234
scp45 514 518 518 518 scpc5 218.1 218.8 218.8 222
scp46 567.6 570.2 570.2 578 scpd1 61.3 62 62 62
scp47 437 439.6 439.6 447 scpd2 67.5 68 68 68
scp48 496 496 496 507.9 scpd3 74 76 76 78
scp49 664 664 664 664 scpd4 62 63 63 65
scp410 521 525 525 528 scpd5 63 63 63 67
scp51 262.2 263 263 268 scpe1 5 5 5 5
scp52 314 314 314 329 scpe2 5 5 5 5
scp53 229 229 229 231 scpe3 5 5 5 5
scp54 245.5 249 249 252 scpe4 5 5 5 5
scp55 212 213.7 213.7 215 scpe5 5 5 5 5
scp56 221 221 221 226 scpnre1 29 30 30 32
scp57 299 299 299 301 scpnre2 32 32 32 33
scp58 294 302 302.9 305 scpnre3 28 28 28 28
scp59 280 280 280 288 scpnre4 29.3 31 31 31
scp510 273 273.7 273.7 274 scpnre5 29.1 29.4 29.4 30
scp61 140.8 143 143 143 scpnrf1 15 15 15 15
scp62 151.5 154 155.3 164 scpnrf2 15 15 15 15
scp63 149 149 149 156 scpnrf3 15 15 15 15
scp64 132 132 132 136 scpnrf4 15 15 15 15
scp65 171 177.4 177.4 186 scpnrf5 14 14 14 15
scpa1 258 258 258 263 scpnrg1 183 183 183 187
scpa2 259 259 259 259 scpnrg2 160 160 160 167
scpa3 236 236 236 238 scpnrg3 174 174 177 177
scpa4 237 241 241 242 scpnrg4 179 180.9 180.9 185
scpa5 239.1 240 240 240 scpnrg5 175.7 178 178 183
scpb1 71 71 71 71 scpnrh1 68.9 69.9 69.9 70
scpb2 76 79 79 86 scpnrh2 67.1 67.4 67.4 70
scpb3 81 82 82 83 scpnrh3 63.9 63.9 63.9 67
scpb4 80 80 80 86 scpnrh4 62.6 63 63 63
scpb5 72.4 72.4 72.4 74 scpnrh5 58 59 59 60

Table 1.13:
Set Cover Results with Different Sets of Parameter Combinations (Set
Number)

Instance Ours (410) Ours (21) Ours (8) Ours (1) Instance Ours (410) Ours (21) Ours (8) Ours (1)
chess 6 6 6 6 retail 4763.1 4765.4 4766.3 4770.3
mushroom 22 22 22 22 accidents 160 160 160 160
pumsbStar 644.5 644.5 644.5 644.6 kosarak 17555.9 17558.5 17558.7 17561.1
pumsb 644.3 644.3 644.3 644.3 webdocs 405475.6 405478.3 405481.5 405482.2

scpnrh3, ”Ours (1)” results are slightly worse than those of some competitors, i.e. 86

vs 84, 32 vs 30 and 67 vs 66.

For the set cover problem, we run our algorithm on the 8 real world instances

introduced in Table 1.5 with the three sets of parameter combinations.The results

are given in Table 1.13. As we can see, with 21 and 8, or even just 1 parameter

combination, the results of our algorithm are almost identical to those achieved with

the full set of 410 parameter combinations.

For the minimum weighted dominating set problem and minimum dominating set

problem, we run our algorithms on the 139 undirected simple graphs described in

Table A.1 in Appendix A with three sets of parameter combinations. We report the

33

Table 1.14:
Minimum Weighted Dominating Set Results on 23 Real World Graphs
with Different Sets of Parameter Combinations (Solution Weight)

Graph Ours (264) Ours (21) Ours (8) Ours (1) Graph Ours (264) Ours (21) Ours (8) Ours (1)
bio-celegans 1792.8 1828 1838 1838 rt-twitter-copen 15412 15420.1 15435 15639.5
bio-yeast 26305.6 26312 26312 26343.3 sc-ldoor 5443677 5444511 5444511 5448435
ca-AstroPh 135247.9 135416.9 135416.9 136131.1 sc-shipsec5 530423.7 532945.7 532945.7 534082.6
ca-netscience 4264.1 4264.3 4265 4319.3 soc-BlogCatalog 383529.3 383710.6 383776.7 384229.4
socfb-A-anon 17061460 17070800 17070800 17095100 soc-youtube-snap 16773990 16786150 16786370 16805080
socfb-uci-uni 84069030 84084270 84084270 84153010 tech-RL-caida 3143612 3144663 3144663 3153399
inf-power 122513.8 122800.5 122800.5 122973.4 tech-routers-rf 35652 35668.5 35668.5 35702
inf-roadNet-PA 28979500 28979500 28979500 29050040 scc-enron-only 761 761 761 761
ia-email-EU 72359 72367 72367 72408.1 scc-twitter-copen 629220.7 629247.9 629252.8 629274.6
ia-wiki-Talk 973320 974313.5 974326.9 975305.7 web-BerkStan 290274.8 290274.8 290368 290458.1
rec-amazon 2102511 2103468 2104804 2113931 web-wikipedia2009 26954720 26959580 26959580 27046630
rt-retweet 1162 1162 1162 1162

Table 1.15:
Minimum Dominating Set Results on 23 Real World Graphs with Differ-
ent Sets of Parameter Combinations (Vertex Number)

Graph Ours (264) Ours (21) Ours (8) Ours (1) Graph Ours (264) Ours (21) Ours (8) Ours (1)
bio-celegans 29 29 29 29 rt-twitter-copen 199 199 199 199
bio-yeast 353 353 353 353.1 sc-ldoor 65387.7 65556.6 65587.9 65610.9
ca-AstroPh 2070 2073 2073 2076 sc-shipsec5 12069.8 12262.7 12262.7 12273.1
ca-netscience 55 55 55 55 soc-BlogCatalog 4894 4894 4894 4894
socfb-A-anon 201698.6 201699.1 201699.1 201700.7 soc-youtube-snap 213122.1 213122.1 213122.1 213122.2
socfb-uci-uni 865675 865676 865676 865676 tech-RL-caida 40224.8 40234.3 40234.3 40246.5
inf-power 1487.1 1488.5 1488.5 1488.6 tech-routers-rf 479 479 479 479
inf-roadNet-PA 338740.6 339897.8 339897.8 340075.5 scc-enron-only 6 6 6 6
ia-email-EU 755 755 755 755 scc-twitter-copen 6410 6410 6410 6410
ia-wiki-Talk 11935 11935 11935 11935 web-BerkStan 3000 3000 3000 3001
rec-amazon 28365.7 28393.4 28393.4 28407 web-wikipedia2009 347018.1 347052.7 347068 347097.2
rt-retweet 32 32 32 32

results on the first and last graphs in alphabetical order from each of the 12 domains

in Table 1.14 and Table 1.15 in this section. The complete results are given in Table

A.6, Table A.7 and Table A.8 in Appendix A.

As we can see, with much smaller sets of parameter combination, our algorithms

for minimum weighted dominating set problem and minimum dominating set problem

can still achieve very good results.

In practice, we can consider the observations introduced above as guidelines for

choosing appropriate parameter values for our algorithms, when computing time is

important.

Efficiency

In this section, we evaluate the efficiencies of our algorithms for the weighted set

cover and minimum weighted dominating set problems by comparing their running

time with those of the classic greedy algorithms .

34

Table 1.16:
Evaluation of Efficiency on 70 Instances of Weighted Set Cover Problem
(consumed CPU time in seconds)

Instance Gr Ours Instance Gr Ours Instance Gr Ours
scp41 0.005 0.006 scp65 0.003 0.009 scpe4 0.001 0.004
scp42 0.005 0.006 scpa1 0.007 0.017 scpe5 0.001 0.004
scp43 0.002 0.004 scpa2 0.007 0.018 scpnre1 0.071 0.185
scp44 0.002 0.004 scpa3 0.007 0.017 scpnre2 0.071 0.185
scp45 0.001 0.004 scpa4 0.007 0.017 scpnre3 0.071 0.21
scp46 0.001 0.004 scpa5 0.007 0.017 scpnre4 0.071 0.192
scp47 0.001 0.004 scpb1 0.014 0.037 scpnre5 0.071 0.184
scp48 0.001 0.004 scpb2 0.014 0.036 scpnrf1 0.137 0.371
scp49 0.001 0.004 scpb3 0.014 0.037 scpnrf2 0.137 0.359
scp410 0.001 0.004 scpb4 0.014 0.037 scpnrf3 0.137 0.359
scp51 0.003 0.008 scpb5 0.014 0.037 scpnrf4 0.137 0.359
scp52 0.003 0.009 scpc1 0.012 0.029 scpnrf5 0.137 0.359
scp53 0.003 0.008 scpc2 0.012 0.03 scpnrg1 0.063 0.159
scp54 0.003 0.008 scpc3 0.012 0.03 scpnrg2 0.063 0.158
scp55 0.003 0.008 scpc4 0.012 0.029 scpnrg3 0.064 0.158
scp56 0.003 0.008 scpc5 0.012 0.029 scpnrg4 0.064 0.157
scp57 0.003 0.009 scpd1 0.025 0.071 scpnrg5 0.064 0.158
scp58 0.003 0.008 scpd2 0.025 0.065 scpnrh1 0.145 0.381
scp59 0.003 0.008 scpd3 0.025 0.063 scpnrh2 0.146 0.375
scp510 0.003 0.009 scpd4 0.025 0.065 scpnrh3 0.145 0.373
scp61 0.003 0.009 scpd5 0.025 0.063 scpnrh4 0.145 0.393
scp62 0.003 0.009 scpe1 0.001 0.004 scpnrh5 0.145 0.372
scp63 0.003 0.008 scpe2 0.001 0.004
scp64 0.003 0.008 scpe3 0.001 0.005

We run our algorithms and the corresponding classic greedy algorithms, which

are all implemented with the same subroutines and data structures, e.g. max-heap,

on the 70 instances from OR-Library and the 139 graphs from the Network Data

Repository, and record the consumed CPU time. For our algorithms, since different

parameters may affect the number of iterations needed to reach the full coverage in

the second step, we run them with 8 different parameter combinations derived from

βl ∈ {0.75, 1}; βg ∈ {2, 3}; γ ∈ {0.1, 1}, which are chosen based on the guidelines

introduced in Section 1.4.5, and report the average consumed CPU time.

The evaluation results of efficiency are given in Table 1.16 and Table 1.17. ”Gr”

column contains the consumed CPU time of the classic greedy algorithms, while

”Ours” column contains those of our algorithms. As we can see, on all the 70 weighted

set cover instances, our algorithm is slower than the classic greedy algorithm, while

on 69 out of the 139 graphs for minimum weighted dominating set problem, our

algorithm is significantly faster. The main reason is that, as we discuss in Section

1.3.3, our algorithms reduce the problem size after reserving the indispensable sets

or vertices in this first step. This processing does not work for the 70 weighted

set cover instances because they do not contain any indispensable sets. On the 69

35

Table 1.17:
Evaluation of Efficiency on 139 Graphs for Minimum Weighted Dominat-
ing Set Problem (consumed CPU time in seconds)

Graph Gr Ours Graph Gr Ours Graph Gr Ours
bio-celegans 0.004 0.004 ia-wiki-Talk 0.457 0.191 scc-infect-hyper 0.005 0.012
bio-diseasome 0.001 0.002 rec-amazon 0.287 0.464 scc-reality 2.566 0.114
bio-dmela 0.028 0.014 rt-retweet 0 0.002 scc-retweet 0.048 0.011
bio-yeast 0.003 0.002 rt-retweet-crawl 4.739 1.212 scc-retweet-crawl 0.631 0.653
ca-AstroPh 0.147 0.136 rt-twitter-copen 0.006 0.006 scc-rt-alwefaq 0.002 0.01
ca-CSphd 0.003 0.002 sc-ldoor 13.76 38.186 scc-rt-assad 0 0.005
ca-CondMat 0.09 0.125 sc-msdoor 6.103 17.152 scc-rt-bahrain 0.002 0.002
ca-Erdos992 0.011 0.004 sc-nasasrb 0.784 2.275 scc-rt-barackobama 0.004 0.003
ca-GrQc 0.014 0.017 sc-pkustk11 1.56 4.348 scc-rt-damascus 0.001 0.001
ca-HepPh 0.088 0.056 sc-pkustk13 1.975 5.511 scc-rt-dash 0.002 0.002
ca-MathSciNet 1.509 0.943 sc-pwtk 3.564 9.976 scc-rt-gmanews 0.004 0.004
ca-citeseer 1.054 1.213 sc-shipsec1 1.35 3.573 scc-rt-gop 0.001 0.001
ca-coauthors-dblp 10.649 19.136 sc-shipsec5 1.762 4.695 scc-rt-http 0.002 0.002
ca-dblp-2010 1.036 1.064 soc-BlogCatalog 1.692 0.379 scc-rt-israel 0.001 0.001
ca-dblp-2012 1.565 1.394 soc-FourSquare 4.575 1.774 scc-rt-justinbieber 0.004 0.004
ca-hollywood-2009 46.994 21.175 soc-LiveMocha 1.688 0.331 scc-rt-ksa 0.002 0.002
ca-netscience 0.001 0.007 soc-brightkite 0.262 0.153 scc-rt-lebanon 0.001 0.001
socfb-A-anon 31.776 6.74 soc-buzznet 1.975 1.3 scc-rt-libya 0.002 0.002
socfb-B-anon 28.315 5.95 soc-delicious 2.414 1.249 scc-rt-lolgop 0.006 0.004
socfb-Berkeley13 0.543 0.305 soc-digg 7.45 2.428 scc-rt-mittromney 0.003 0.003
socfb-CMU 0.152 0.087 soc-dolphins 0 0.003 scc-rt-obama 0.001 0.001
socfb-Duke14 0.306 0.149 soc-douban 0.528 0.301 scc-rt-occupy 0.001 0.001
socfb-Indiana 0.842 0.874 soc-epinions 0.114 0.056 scc-rt-occupywallstnyc 0.002 0.001
socfb-MIT 0.153 0.069 soc-flickr 4.089 1.579 scc-rt-oman 0.001 0.002
socfb-OR 0.675 0.332 soc-flixster 13.439 5.416 scc-rt-onedirection 0.003 0.003
socfb-Penn94 0.926 0.694 soc-gowalla 1.213 0.884 scc-rt-p2 0.002 0.002
socfb-Stanford3 0.347 0.098 soc-karate 0 0.002 scc-rt-qatif 0.002 0.002
socfb-Texas84 1.053 0.624 soc-lastfm 7.198 2.567 scc-rt-saudi 0.003 0.003
socfb-UCLA 0.482 0.322 soc-livejournal 40.225 20.879 scc-rt-tcot 0.001 0.002
socfb-UCSB37 0.306 0.255 soc-orkut 109.876 88.789 scc-rt-tlot 0.001 0.001
socfb-UConn 0.387 0.288 soc-pokec 27.699 10.652 scc-rt-uae 0.002 0.002
socfb-UF 0.963 0.634 soc-slashdot 0.389 0.178 scc-rt-voteonedirection 0 0.001
socfb-UIllinois 0.801 0.809 soc-twitter-follows 1.291 0.731 scc-twitter-copen 0.281 0.024
socfb-Wisconsin87 0.543 0.559 soc-wiki-Vote 0.006 0.016 web-BerkStan 0.031 0.061
socfb-uci-uni 246.064 83.257 soc-youtube 3.006 1.585 web-arabic-2005 1.325 1.069
inf-power 0.012 0.095 soc-youtube-snap 6.179 4.256 web-edu 0.007 0.013
inf-road-usa 119.168 166.914 tech-RL-caida 0.837 0.915 web-google 0.003 0.003
inf-roadNet-CA 9.264 11.425 tech-WHOIS 0.046 0.023 web-indochina-2004 0.044 0.058
inf-roadNet-PA 4.629 6.244 tech-as-caida2007 0.072 0.034 web-it-2004 5.422 9.543
ia-email-EU 0.077 0.046 tech-as-skitter 13.741 11.308 web-polblogs 0.006 0.003
ia-email-univ 0.004 0.006 tech-internet-as 0.115 0.109 web-sk-2005 0.478 0.737
ia-enron-large 0.166 0.102 tech-p2p-gnutella 0.222 0.133 web-spam 0.03 0.012
ia-enron-only 0 0.003 tech-routers-rf 0.007 0.006 web-uk-2005 6.487 7.177
ia-fb-messages 0.005 0.003 scc-enron-only 0.005 0.015 web-webbase-2001 0.034 0.028
ia-infect-dublin 0.002 0.005 scc-fb-forum 0.037 0.002 web-wikipedia2009 9.38 5.837
ia-infect-hyper 0.001 0.001 scc-fb-messages 0.271 0.012
ia-reality 0.011 0.008 scc-infect-dublin 0.11 0.269

graphs, however, it can significantly reduce the problem size. Therefore, although our

algorithms generally have more iterations in the second step than the classic greedy

algorithms, and have an extra third step, they can be very efficient when processing

large real world instances.

1.5 Conclusion

I propose approximation algorithms for the weighted set cover and minimum

weighted dominating set problems based on a novel greedy heuristic. Extensive exper-

imental evaluations on a large number of synthetic and real world set cover instances

and graphs from many domains demonstrate their superiority over state-of-the-art.

36

CHAPTER 2

Affinity Learning for Mixed Data Clustering

2.1 Introduction

Clustering is the task of partitioning the data objects into a set of groups (clusters)

such that objects in the same group are similar, while objects in different groups are

dissimilar. It is one of the most fundamental problems in data mining and machine

learning. Numerous algorithms have been developed for clustering. Most of them are

designed to handle data with only one type of attributes, e.g. continuous, categorical

or ordinal. Mixed data clustering has received relatively less attention, despite the

fact that data with mixed types of attributes are common in real applications.

For mixed data clustering, one of the greatest challenges is how to measure the

affinities or distances between data points. One of the most straightforward methods

for processing mixed data is the so-called 1-hot or 1-of-K encoding. A categorical

attribute with K distinct values is encoded to K 0− 1 binary attributes. Each cate-

gorical attribute value is transformed into a 1 on its corresponding binary attribute.

Then they are treated just like continuous attributes. The more formal Gower’s

similarity coefficient Gower (1971) and its extensions Legendre & Legendre (1998);

Podani (1999) compute the partial affinity between two data points on each attribute

according to the data type, and then aggregate all of them into a composite similarity

measure. Such methods are widely used in practice. However, they essentially com-

pute the affinity or distance ”locally” between two data points, without considering

the attribute values of other data points. This may result in missing some intrinsic

information. For example, in many real world data sets, some values of a categori-

37

cal attribute are inherently related. Such information would be missed by similarity

measures like Gower’s coefficient, which simply assume different categories are totally

independent and unrelated.

We propose a novel affinity learning based framework for mixed data clustering.

It includes how to process data with mixed-type attributes, how to learn affinities

between data points, and how to exploit the learned affinities for clustering.

First, each original attribute is represented with several abstract objects defined

according to the specific data type and values. Each attribute value is then trans-

formed into the initial affinities between the data point and the abstract objects of

attribute. For categorical attributes, each category is defined as an abstract object.

Its affinities to the data points in this category are initialized to a constant value. For

each continuous attribute, two abstract objects are defined to represent its minimum

and maximum values. Their initial affinities to each data point are transformed from

the individual continuous attribute value with a novel method. For ordinal attributes,

all possible values are first ranked and then replaced by their ranks. The new ordinal

attributes are processed as continuous attributes.

After the data processing, we obtain a bipartite graph consisting of the data

points, the abstract objects of attributes, and the initial affinities between them.

The next step is to learn new affinities, including inferring the unknown affinities

and refining the known affinities. We adopt the algorithm proposed in Li & Latecki

(2015), which essentially implements the von Neumann kernel Kandola et al. (2003)

from the perspective of transitive inference confidence. Specifically, the new affinities

are learned according to the transitive property of the affinitive relation. All the

initial affinities are scaled with a common scaling factor. Any transitive inference

process without self-loops is considered to be effective to reveal the two objects are

affinitive. The confidence of such an inference process is quantified as the product

of the related scaled affinity values. In general, there can be an infinite number of

38

distinct transitive inference processes between two objects. The confidence of all

these inference processes are added up to be the new affinity between two objects.

The details of this affinity learning algorithm are presented in Section 2.3.2.

In comparison to Gower’s similarity coefficient and its extensions, our affinity

learning method shares the similar idea of aggregating partial affinities on individ-

ual attributes into an overall measure. But the significant difference is that our

affinities are computed ”globally” by taking into account the interconnections among

the attribute values of all data points, not just between the two data points. This

is illustrated in Figure 2.1. The numbered blue circles represent data points, i.e.

{x1,x2,x3,x4}. The two rectangles represent categorical attributes R and Y , each

of which has three distinct attribute values. If we compute the affinity Sij just be-

tween the two data points xi and xj , like Gower’s coefficient does, then S13 and S14

are both 0, because they don’t have any common attribute values. However, because

of the existence of x2, which shares one common attribute value with x1 and x3 re-

spectively, it’s intuitive to infer that x1 is more affinitive to x3 in comparison to x4.

Our affinity learning method can capture such information by taking into account all

transitive inference processes, including x1 → R1 → x2 → Y2 → x3.

The inferred affinities between data points can be used by many clustering al-

gorithms. Alternatively, the refined affinities between data point and the abstract

objects of attribute can be transformed into new data features. With such features,

any algorithms can be used for clustering.

The mixed data clustering algorithms derived from the proposed framework achieve

superior performance on many real world data sets. The details of the experimental

evaluation are presented in Section 2.4.

39

Figure 2.1:
An illustration of data point connections via their attribute values. Blue
circles represent data points. Rectangles represent categorical attributes,
each has three distinct attribute values.

2.2 Related Work

For mixed data clustering, in addition to using 1-hot encoding to obtain continuous

features or Gower’s coefficient Gower (1971) and its extensions Legendre & Legendre

(1998); Podani (1999) to measure the similarities between data points, as introduced

in Section 2.1, there are also some specially designed clustering algorithms, including

k-prototypes Z. Huang (1997, 1998), K-means-mixed Ahmad & Dey (2007), CAVE

Hsu & Chen (2007), M-ART Hsu & Huang (2008), INTEGRATE Böhm et al. (2010),

INCONCO Plant & Böhm (2011), SCENIC Plant (2012) and so on. K-prototypes

algorithm Z. Huang (1997, 1998), which essentially follows the same idea of k-means

algorithm, calculates the dissimilarity between two mixed-type objects as a combi-

nation of the squared Euclidean distance measure on the numeric attributes and the

simple matching dissimilarity measure on the categorical attributes. K-means-mixed

Ahmad & Dey (2007), like k-prototypes, is also based on the k-means paradigm and

40

combines distance measures computed separately on numeric attributes and categor-

ical attributes. Unlike k-prototypes, k-means-mixed does not assume a binary or a

discrete measure between two distinct categorical attribute values but computes the

distance as a function of their overall distribution and co-occurrence with other cat-

egorical attributes. This idea of computing distances ”globally” is similar to ours,

but it’s only applied within categorical attributes. CAVE Hsu & Chen (2007) uses

variance to measure the similarity of the numeric part of the data and computes the

similarity of the categorical part based on entropy weighted by the distances in the

hierarchies. Similarly, the incremental clustering algorithm M-ART Hsu & Huang

(2008) also computes the distance between two data points according to distance

hierarchies associated with the mixed-type attributes. INTEGRATE Böhm et al.

(2010) applies ideas from information theory to implement the k-means paradigm. It

models both numerical and categorical attributes with their probability distributions

and minimizes a cost function based on the Minimum Description Length principle

for clustering. INCONCO Plant & Böhm (2011) and SCENIC Plant (2012) process

mixed-type attributes in a similar way as INTEGRATE. Their main advantage is the

capability of modeling and revealing the cluster-specific dependency patterns among

the attributes.

To learn affinities between heterogeneous objects of data points and attributes, we

adopt the algorithm proposed in Li & Latecki (2015), which models the new affini-

ties from the perspective of transitive inference confidence. It essentially implements

the von Neumann kernel defined in Kandola et al. (2003). The idea of learning se-

mantic similarity between terms from a corpus for measuring similarity between text

documents in Kandola et al. (2003) is similar to our idea of capturing the intrinsic

information between attribute values. One significant difference, besides the applica-

tions are different, is that we explicitly model the interconnections among data points

and attribute values together. There are also some other algorithms can be used for

41

affinity learning , such as Zhou et al. (2003) and Yang et al. (2013). The main reasons

we do not choose them include: 1. their row or column normalizations on the initial

affinity matrix change the original relationships between the heterogeneous objects;

and 2. they are not as semantically intuitive and meaningful as the one Li & Latecki

(2015) we adopt.

2.3 Our Framework

2.3.1 Mixed Data Processing

We first transform the data points and their mixed-type attribute values into

abstract objects and initial affinities. For categorical attributes, each category is

defined as an abstract object. Its affinities to the data points in this category are

initialized to 1, while its initial affinities to the rest data points are 0. This is similar

to the 1-hot encoding. For each continuous attribute C, two abstract objects are

defined to represent its minimum and maximum values, i.e. Cmin and Cmax. The

attribute value xC of the data point x is transformed into two initial affinities to the

abstract objects of Cmin and Cmax. Suppose they are Sx,Cmin
= a and Sx,Cmax = b,

we have two requirements,

a2 + b2 = 1

(Cmin × a+ Cmax × b)/(a+ b) = xC

(2.3-1)

To understand the first requirement, consider the illustration in Figure 2.2. a, b, c, d

on the edges represent the initial affinities of two data points x and x′ to the ab-

stract objects of Cmin and Cmax respectively. The diffusion based affinity learning

algorithms essentially compute the affinity Sx,x′ as

Sx,x′ = a× c+ b× d (2.3-2)

42

Figure 2.2:
An illustration for explaining the first requirement in equation (2.3-1) for
transforming a continuous attribute value into initial affinities.

If x and x′ have the same attribute value xC on C, obviously their affinities to

Cmin and Cmax should be the same, i.e. a = c and b = d. It’s also obvious to

require that Sx,x′ to be a constant, e.g. 1, no matter what the attribute value xC is.

Therefore, we get the first requirement,

Sx,x′ = a× c+ b× d = a× a+ b× b = 1 (2.3-3)

The second requirement makes sure the original attribute value can be restored

from the transformed affinities.

Specifically, to transform the attribute value xC of x into the initial affinities, xC

is first scaled with the Min-Max normalization.

x′C =
xC − Cmin
Cmax − Cmin

(2.3-4)

The scaled attribute value x′C is in range [0, 1], i.e. C ′min = 0 and C ′max = 1. We

have
a2 + b2 = 1

(0× a+ 1× b)/(a+ b) = x′C

(2.3-5)

43

Solve the system of equations, we get the affinity transformation formula as

a =

√
(1− x′C)2/(2× x′C

2 − 2× x′C + 1)

b =
√
x′C

2/(2× x′C
2 − 2× x′C + 1)

(2.3-6)

In this way, if two data points have the same value on a continuous attribute, their

partial affinity inferred by the diffusion based affinity learning algorithm described

below based on this agreement is always the same, no matter what the value is.

For ordinal attributes, all possible values are first ranked and then replaced by

their ranks. The new ordinal attributes are processed as continuous attributes.

If an attribute value of x is missing, the related initial affinities are all set to 0.

2.3.2 Affinity Learning

Now we have a bipartite graph consisting of n data points, m abstract objects

of attribute, and the initial affinities between them. We construct a nonnegative

symmetric affinity matrix A = (aij)α×α, where α = m+ n.

A =

ADD ADC

ACD ACC

 (2.3-7)

where ADD is a n×n zero matrix indicating that the affinities between data points are

unknown; ADC = Aᵀ
CD is a n ×m matrix consisting of the initial affinities between

data points and the abstract objects of attributes; ACC is a m × m zero matrix

indicating that the affinities between abstract objects of attributes are unknown.

The next step is to scale the nonzero entries in A, i.e. the initial affinities, with a

common scaling factor ∆ which satisfies

∆ > max(amax, ρ(A)) (2.3-8)

44

where amax is the maximum entry of A; ρ(A) is the spectral radius of A.

Each entry aij of A is scaled with ∆ to obtain another matrix A′ = (a′ij)α×α where

a′ij =
aij
∆

(2.3-9)

Obviously, any entry a′ij of A′ is less than 1. Also, the spectral radius of A′ is less

than 1. Therefore,

lim
l→∞

(A′)l = 0 (2.3-10)

Then we compute a matrix A∗ as

A∗ = (I − A′)−1 (2.3-11)

where I is the α× α identity matrix.

Each entry a∗ij of A∗ denotes a value,

a∗ij =
∞∑
l=0

[(A′)l]ij (2.3-12)

which is the learned affinity between objects i and j.

The inferred affinities between data points are in A∗DD. The refined affinities

between data points and abstract objects of attributes are in A∗DC .

To get the scaling factor ∆, we need to calculate the spectral radius ρ(A) of A.

With iterative eigenvalue algorithms, it can be done in O(α2). Scaling the nonzero

entries of A takes O(α2). The straightforward computation for inverting the matrix

I − A′ takes O(α3). Advanced algorithms, such as Strassen algorithm, can further

reduce the asymptotic computational complexity. Therefore, the straightforward time

complexity of our affinity learning algorithm is O(α3). However, A and I − A′ are

usually very sparse. Consequently, the practical efficiency should be much better.

45

We evaluate it on several real data sets with α up to about 30, 000. The details are

presented in Section 2.4

2.3.3 Clustering with Learned Affinities

In this work, we use the complete-linkage algorithm for clustering with the inferred

affinities between data points in A∗DD. It is one of the agglomerative hierarchical

clustering methods. Specifically, in the beginning, each data point is in a cluster of

its own. Then these clusters are iteratively combined until the target cluster number

is reached. At each step, the two clusters, whose two members (one in each cluster)

have the minimum pair-wise affinity, are combined.

Alternatively, the refined affinities of data points to the abstract objects of at-

tributes can be used as new data features. Specifically, in the n × m matrix A∗DC ,

each row is considered as a m-dimensional feature vector of the corresponding data

point. In this work, we choose k-means algorithm and complete-linkage algorithm for

clustering with such features.

2.4 Experimental Evaluation

2.4.1 Experimental Setup

We evaluate the performance of the proposed clustering framework on several

real world data sets from the UCI Machine Learning Repository, including 5 mixed-

type (Acute Inflammations, Heart Disease, Credit Approval, Contraceptive Method

Choice and Adult) and 2 categorical (Soybean and Tic-Tac-Toe Endgame). The

detailed information of these data sets is summarized in Table 2.1.

Each record of Acute Inflammation data set corresponds to the yes or no diagnoses

of two diseases of the urinary system. We transform the two diagnoses into four

classes, i.e. (yes,yes), (yes,no), (no,yes) and (no,no). For Adult data set, we only

46

Table 2.1:
Data Sets for Experimental Evaluation (number of different types of at-
tributes, number of instances and number of classes)

Data set Continuous Categorical Ordinal #Instance #Class
Acute Inflammations 1 5 - 120 4
Heart Disease 6 6 1 270 2
Credit Approval 6 9 - 690 2
Contraceptive Method Choice 2 7 - 1,473 3
Adult 6 8 - 48,842 2
Soybean - 35 - 47 4
Tic-Tac-Toe Endgame - 9 - 958 2

use the training set, which contains 32, 561 records. For fair comparison, we remove

the records with missing attribute values. The final data set contains 30, 162 records.

We skip the attribute ”education”, because it is fully expressed by another attribute

”education-num”. In Credit Approval data set, 37 (about %5) records have one or

more missing values. We simply remove them.

The clustering algorithms derived from the proposed framework include: 1. IA+CL

(Inferred Affinities between data points + Complete-Linkage algorithm); 2. FRA+CL

(Feature from Refined Affinities of the data point to the abstract objects of attributes

+ Complete-Linkage algorithm); 3. FRA+KM (Feature from Refined Affinities of

the data point to the abstract objects of attributes + K-Means algorithm).

For the three derived clustering algorithms, we vary the scaling factor ∆ in

equation 2.3-9 in the range of (max(amax, ρ(A)), 4×max(amax, ρ(A))] (see equation

(2.3-8)) with a step size of 10. The best results achieved by each algorithm in this

process are reported. For FRA+CL and FRA+KM, we use the squared Euclidean

distance measure.

The comparison algorithms include: 1. OH+CL (Feature from One-Hot encod-

ing + Complete-Linkage algorithm); 2. OH+KM (Feature from One-Hot encoding

+ K-Means algorithm); 3. GC+CL (Gower’s Coefficient + Complete-Linkage al-

gorithm); 4. KP (k-prototypes) Z. Huang (1997, 1998); 5. KMM (K-means-mixed)

47

Ahmad & Dey (2007). These algorithms are widely used in practice for mixed data

clustering. Some of them are still state-of-the-art in performance. Many recent

algorithms, such as Plant & Böhm (2011); Plant (2012) are very complex to be im-

plemented. We are not able to obtain the source code from the authors.

The Gower’s coefficient in GC+CL processes ordinal attributes according to Eqs.

2a-b of Podani (1999). For KP (k-prototypes), we scale all numeric attributes to the

range of [0, 1] with Min-Max normalization and randomly select k data points without

missing values to be the initial prototypes. The parameter γ is varied from 0.5 to 1.5

with a step size of 0.1 for the 5 mixed-type data sets. When using k-means technique,

including k-prototypes and K-means-mixed, the maximum number of iterations is set

to be 1000 for the Adult data set, which contains much more data, and 100 for the

other 6 data sets. Moreover, all the tests are run for 100 times and the average results

are reported.

For all the clustering algorithms above, we set the target number of clusters to be

the number of classes in each data set. The clustering quality is measured in terms of

Jaccard Coefficient, Fowlkes and Mallows Index, and FScore Jing et al. (2007). The

results are consistent, so only FScore is reported. Suppose k is the class and cluster

number, n is the number of data points, ni and nj are the numbers of data points in

class CLAi and cluster CLUj respectively, nij is the number of data points in both

CLAi and CLUj, FScore is defined as

FScore =
k∑
i=1

(
ni
n
× max

1≤j≤k

2×Rij × Pij
Rij + Pij

) (2.4-13)

where Rij = nij/ni and Pij = nij/nj.

All the experiments are implemented in MATLAB R2016a and conducted on a

PC with Intel(R) Core(TM) i7 processor up to 3.4 GHz and 16GB RAM.

48

Table 2.2:
Clustering Results (FScore on AI: Acute Inflammations; HD: Heart Dis-
ease; CA: Credit Approval; CMC: Contraceptive Method Choice; Adult;
Soybean; TTT: Tic-Tac-Toe Endgame)

AI HD CA CMC Adult Soybean TTT
IA+CL 0.92 0.78 0.78 0.52 0.75 1 0.71

FRA+CL 0.92 0.79 0.75 0.51 0.73 1 0.76
FRA+KM 0.80 0.79 0.70 0.44 0.73 0.89 0.58
GC+CL 0.92 0.71 0.63 0.47 0.58 1 0.68
OH+CL 0.76 0.63 0.64 0.48 0.69 1 0.68
OH+KM 0.72 0.76 0.69 0.44 0.73 0.88 0.57

KP 0.51 0.76 0.62 0.42 0.68 0.84 0.58
KMM 0.79 0.78 0.77 0.43 0.73 0.91 0.60

2.4.2 Experimental Results

As shown in Table 2.2, the three clustering algorithms derived from the proposed

framework achieve superior performance (with ties) on all the 7 data sets. Apparently,

among these three algorithms, IA+CL is the best. It achieves the best performance

on 5 data sets. In comparison to GC+CL, the performance of IA+CL is consistently

better (with ties). Since they use the same clustering algorithm, it proves that our

inferred affinities between data points, which are computed ”globally”, capture more

useful information than the ”locally” computed similarities. We can see FRA+CL

is consistently better (with ties) than OH+CL, and FRA+KM is consistently better

(with ties) than OH+KM. It means the feature derived from the refined affinities of

the data point to the abstract objects of attributes, which is also computed ”globally”

in our framework, is more effective than the 1-hot encoding feature. On some data

sets, the performance of KP and KMM are competitive. But overall, our IA+CL

and FRA+CL are superior. Obviously, the algorithms derived from the proposed

framework are effective for mixed data clustering.

In order to further prove that it is beneficial to take into account the intercon-

nections among the attribute values of all data points, we compare the performance

of IA+CL, FRA+CL and FRA+KM, which are reported in Table 2.2, with those

49

Table 2.3:
Clustering Results with Locally and Globally Learned Affinities (FScore
on AI: Acute Inflammations; HD: Heart Disease; CA: Credit Approval;
CMC: Contraceptive Method Choice; Adult; Soybean; TTT: Tic-Tac-Toe
Endgame)

LIA+CL IA+CL FNRA+CL FRA+CL FNRA+KM FRA+KM
AI 0.92 0.92 0.92 0.92 0.79 0.80
HD 0.71 0.78 0.71 0.79 0.78 0.79
CA 0.60 0.78 0.60 0.75 0.69 0.70

CMC 0.49 0.52 0.49 0.51 0.44 0.44
Adult 0.67 0.75 0.67 0.73 0.69 0.73

Soybean 1 1 1 1 0.88 0.89
TTT 0.68 0.71 0.68 0.76 0.57 0.58

achieved with ”locally” inferred affinities and features from non-refined affinities.

Specifically, after scaling the initial affinities with equation 2.3-9, we obtain the ma-

trix A′. A′DC contains the non-refined affinities of data points to the abstract objects

of attributes. We use them as data feature (FNRA: Feature from Non-Refined

Affinities) for clustering with the complete-linkage (CL) and k-means (KM) algo-

rithms. To obtain the ”local” affinities between data points, we compute A∗ = A′×A′.

The affinities in A∗DD are inferred ”locally” just between each pair of data points. We

call them LIA (Locally Inferred Affinities) and use the complete-linkage (CL) algo-

rithm for clustering. When comparing LIA+CL versus IA+CL, FNRA+CL versus

FRA+CL and FNRA+KM versus FRA+KM, on each data set, LIA+CL, FNRA+CL

and FNRA+KM use the same scaling factors ∆ as IA+CL, FRA+CL and FRA+KM

respectively. Table 2.3 shows the performance comparisons. As we can see, the per-

formance of using ”globally” inferred or refined affinities are always better or equal

to those of using ”locally” inferred or non-refined affinities. It demonstrates that

the proposed framework is effective for modeling and exploiting the interconnections

among the attribute values of all data points to improve clustering performance.

In order to show that the proposed framework for mixed data clustering is ap-

plicable in practice, we evaluate its efficiency on real world data sets. The proposed

50

Table 2.4: Time Consumed on Affinity Learning (sec.)
Data set #Instance #Attribute #Object Time Consumed
Acute Inflammations 120 6 132 0.005
Heart Disease 270 13 300 0.01
Credit Approval 653 15 705 0.03
Contraceptive Method Choice 1473 9 1493 0.09
Adult 30,162 13 30,256 40
Soybean 47 35 105 0.005
Tic-Tac-Toe Endgame 958 9 985 0.04

framework consists of three main components: 1. processing mixed data; 2. learning

affinities; 3. clustering with the learned affinities. As introduced in Section 2.3.1,

it takes linear time to process the mixed data. When clustering with the learned

affinities, the time complexity totally depends on the selected clustering algorithm.

Therefore, we only evaluate the efficiency of affinity learning. The average time con-

sumed on this step in the clustering experiments are reported in Table 2.4.

As shown in Table 2.4, for small data sets, which contain at most thousands

of objects, the time consumed on affinity learning is negligible. For medium data

sets, such as Adult, it may take a few minutes. Since these results are obtained on

an ordinary PC, we can say, with modern computation technologies and computing

power, the proposed framework is applicable in practice.

2.5 Conclusions

The main contributions of this work include: 1. we develop a novel framework

for mixed data clustering; 2. our approach to mixed data processing, especially the

way we transform continuous attribute values into initial affinities, is novel; 3. it’s

novel to transform the refined affinities between data points and the abstract objects

of attributes into new data features. Experimental results on several real world data

sets demonstrate the proposed framework is effective.

51

CHAPTER 3

Clustering Aggregation as Maximum-Weight

Independent Set

3.1 Introduction

Clustering is a fundamental problem in data analysis, and has extensive applica-

tions in artificial intelligence, statistics and even in social sciences. The goal is to

partition the data objects into a set of groups (clusters) such that objects in the same

group are similar, while objects in different groups are dissimilar.

In the past few decades, many different clustering algorithms have been developed.

Some popular ones include K-means, DBSCAN, Ward’s algorithm, EM-clustering and

so on. However, there are potential shortcomings for each of the known clustering

algorithms. For instance, K-means Lloyd (1982) and its variations have difficulty

detecting the ”natural” clusters, which have non-spherical shapes or widely different

sizes or densities. Furthermore, in order to achieve good performance, they require an

appropriate number of clusters as the input parameter, which is usually very hard to

specify. DBSCAN Ester et al. (1996), a density-based clustering algorithm, can detect

clusters of arbitrary shapes and sizes. However, it has trouble with data which have

widely varying densities. Also, DBSCAN requires two input parameters specified by

the user: the radius, Eps, to define the neighborhood of each data object, and the

minimum number, minPts, of data objects required to form a cluster.

Clustering aggregation, also known as consensus clustering or clustering ensemble,

refers to a kind of methods which try to find a single (consensus) superior clustering

52

from a number of input clusterings obtained by different algorithms with different

parameters. The basic motivation of these methods is to combine the advantages of

different clustering algorithms and overcome their respective shortcomings. Besides

generating stable and robust clusterings, consensus clustering methods can be applied

in many other scenarios, such as categorical data clustering, ”privacy-preserving” clus-

tering and so on. Some representative methods include Gionis et al. (2007); Strehl &

Ghosh (2002a); Fred & Jain (2002); Singh et al. (2008); Nguyen & Caruana (2007);

Fern & Brodley (2004); Topchy et al. (2003); Mimaroglu & Erdil (2011); D. Huang

et al. (2015, 2016b,a). Strehl & Ghosh (2002a) formulates clustering ensemble as a

combinatorial optimization problem in terms of shared mutual information. That is,

the relationship between each pair of data objects is measured based on their cluster

labels from the multiple input clusterings, rather than the original features. Then

a graph representation is constructed according to these relationships, and finding

a single consolidated clustering is reduced to a graph partitioning problem. Simi-

larly, in Gionis et al. (2007), a number of deterministic approximation algorithms

are proposed to find an ”aggregated” clustering which agrees as much as possible

with the input clusterings. Fred & Jain (2002) also applies a similar idea to combine

multiple runs of K-means algorithm. Singh et al. (2008) proposes to capture the

notion of agreement using an measure based on a 2D string encoding. They derive

a nonlinear optimization model to maximize the new agreement measure and trans-

form it into a strict 0-1 Semidefinite Program. Nguyen & Caruana (2007) presents

three iterative EM-like algorithms for the consensus clustering problem. The CO-

MUSA algorithm proposed in Mimaroglu & Erdil (2011) first constructs a similarity

graph based on the co-association matrix. Then it identifies new clusters by itera-

tively selecting a pivot data object and expanding the cluster with its immediate free

neighbors which are most similar to the pivot. D. Huang et al. (2015) proposed two

algorithms termed weighted evidence accumulation clustering (WEAC) and graph

53

partitioning with multi-granularity link analysis (GP-MGLA). WEAC integrates the

reliability of each base clustering into the co-association matrix and uses agglomer-

ative algorithms to obtain the final clustering. GP-MGLA models the three levels

of granularity in clustering aggregation, i.e., data objects, clusters and base cluster-

ings, in a single bipartite graph, and partitions it to divide data objects into the final

clusters. D. Huang et al. (2016b) proposed to sparsify the co-association matrix of

”microcluster” with the k-nearest neighbors strategy and learn new similarities based

on random walks. Two algorithms, probability trajectory accumulation (PTA) and

probability trajectory based graph partitioning (PTGP) were proposed to obtain the

final clustering with the learned similarities. PTA is based on agglomerative algo-

rithms, while PTGP is based on the graph partitioning technique. D. Huang et al.

(2016a) formulated clustering aggregation as a binary linear programming problem

and proposed a solver based on max-product belief propagation on a factor graph.

A common feature of these consensus clustering methods is that they usually do

not access to the original features of the data objects. They utilize the cluster la-

bels in different input clusterings as the new features of each data object to find an

optimal clustering. Consequently, the success of these consensus clustering methods

heavily relies on a premise that the majority of the input clusterings are reasonably

good and consistent, which is not often the case in practice. For example, given a

new challenging dataset, it is probable that only some few of the chosen underlying

clustering algorithms can generate good clusterings. Many moderate or even bad

input clustering can mislead the final ”consensus”. Furthermore, even if we choose

the appropriate underlying clustering algorithms, in order to obtain good input clus-

terings, we still have to specify the appropriate input parameters. Therefore, it is

desired to devise new consensus clustering methods which are more robust and do

not need the optimal input parameters to be specified.

Our definition of ”clustering aggregation” is different. Informally, for each of the

54

clusters in the input clusterings, we evaluate its quality with some internal indices

measuring both the cohesion and separation. Then we select an optimal subset of

clusters, which partition the dataset together and have the best overall quality, as the

”aggregated clustering”. (We give a formal statement of our ”clustering aggregation”

problem in Section 3.2). In this framework, ideally, we can find the optimal ”aggre-

gated clustering” even if only a minority of the input clusterings are good enough.

Therefore, we only need to specify an appropriate range of the input parameters,

rather than the optimal values, for the underlying clustering algorithms.

We formulate this ”clustering aggregation” problem as a special instance of Maximum-

Weight Independent Set (MWIS) problem. An attributed graph is constructed from

the union of the input clusterings. The vertices, which represent the distinct clusters,

are weighted by an internal index measuring both cohesion and separation. The edges

connect the vertices whose corresponding clusters overlap (In practice, we may toler-

ate a relatively small amount of overlap for robustness). Then selecting an optimal

subset of non-overlapping clusters partitioning the dataset together can be formu-

lated as seeking the MWIS of the attributed graph, which is the heaviest subset of

mutually non-adjacent vertices. Moreover, this MWIS problem exhibits a special

structure. Since the clusters of each input clustering form a partition of the dataset,

the vertices corresponding to each clustering form a maximal independent set (MIS)

in the attributed graph.

The most important source of motivation for this work is Brendel & Todorovic

(2010). In Brendel & Todorovic (2010), image segmentation is formulated as a MWIS

problem. Specifically, given an image, they first segment it with different bottom-

up segmentation schemes to get an ensemble of distinct superpixels. Then they

select a subset of the most ”meaningful” non-overlapping superpixels to partition the

image. This selection procedure is formulated as solving a MWIS problem. In this

respect, our work is very similar to Brendel & Todorovic (2010). The only difference

55

is that our work applies the MWIS formulation to a more general problem, clustering

aggregation.

The maximum-weight independent set problem, which is complementary to the

maximum-weight clique problem, is known to be NP-hard. Many heuristic or local

search algorithms are proposed to find the approximate solutions. Some of the most

effective algorithms include LSCC and LSCC+BMS Y. Wang et al. (2016), FastWClq

Cai & Lin (2016), WLMC Jiang et al. (2017) and RRWL Fan et al. (2017). They are

all proposed for solving the maximum-weight clique problem. Obviously, they can

also be used for solving the maximum-weight independent set problem. LSCC and

LSCC+BMS Y. Wang et al. (2016) consist of two phases: (1) randomly generating a

maximal clique C and then (2) improving C in a deterministic way. In each local move,

they select the neighboring clique with the greatest weight according to the strong

configuration checking criterion. FastWClq Cai & Lin (2016) interleaves between

clique construction and graph reduction. WLMC Jiang et al. (2017) is an exact

branch-and-bound algorithm. It exploits a novel preprocessing to derive an initial

vertex ordering and to reduce the size of the graph, and incremental vertex-weight

splitting to reduce the number of branches in the search space. RRWL Fan et al.

(2017) uses the restart and the random walk strategies to improve local search. If a

solution is revisited in some particular situation, the search will restart. In addition,

when the local search has no other options except dropping vertices, it will use random

walk.

As we mentioned before, in the context of clustering aggregation, the formulated

MWIS problem exhibits a special structure. That is, the vertices corresponding to

each clustering form a maximal independent set (MIS) in the attributed graph. This

special structure is valuable for finding good approximations to the MWIS because,

although these MISs may not be the global optimum of the MWIS, they are close to

distinct local optimums. We propose a variant of simulated annealing method that

56

takes advantage of this special structure. Our algorithm, simulated annealing based

on maximal independent set (SAMIS), starts from each MIS and utilizes a local search

heuristic to explore its neighborhood in order to find better approximations to the

MWIS. The best solution found in this process is returned as the final approximate

MWIS. Since the exploration for each MIS is independent, our algorithm is suitable

for parallel computation.

Finally, since the selected clusters may not be able to cover the entire dataset,

our approach performs a post-processing to assign the missing data objects to their

nearest clusters.

3.2 Our Work

Consider a set of n data objects D = {d1, d2, ..., dn}. A clustering Ci of D is

obtained by applying an exclusive clustering algorithm with a specific set of input

parameters on D. The disjoint clusters ci1, ci2, ..., cik of Ci are a partition of D, i.e.⋃k
j=1 cij = D and cip ∩ ciq = ∅ for all p 6= q.

With different clustering algorithms and different parameters, we can obtain a set

of m different clusterings of D: C1, C2, ..., Cm. For each cluster cij in the union of

these m clusterings, we evaluate its quality with an internal index measuring both

cohesion and separation.

We use the average silhouette coefficient of a cluster as such an internal index in

this work. The silhouette coefficient is defined for an individual data object. It is a

measure of how similar that data object is to data objects in its own cluster compared

to data objects in other clusters. Formally, the silhouette coefficient for the tth data

object, St, is defined as

St =
bt − at

max(at, bt)
(3.2-1)

where at is the average distance from the tth data object to the other data objects

57

in the same cluster as t, and bt is the minimum average distance from the tth data

object to data objects in a different cluster, minimized over clusters.

Silhouette coefficient ranges from -1 to +1 and a positive value is desirable. The

quality of a particular cluster cij can be evaluated with the average of the silhouette

coefficients of the data objects belonging to it.

ASCcij =

∑
t∈cij St

|cij|
(3.2-2)

where St is the silhouette coefficient of the tth data object in cluster cij, |cij| is the

cardinality of cluster cij.

We select an optimal subset of non-overlapping clusters from the union of all the

clusterings, which partition the dataset together and have the best overall quality,

as the ”aggregated clustering”. The selection of clusters is formulated as a special

instance of the Maximum-Weight Independent Set (MWIS) problem.

Formally, consider an undirected and weighted graph G = (V,E), where V =

{1, 2, ..., n} is the vertex set and E ⊆ V × V is the edge set. For each vertex i ∈ V ,

a positive weight wi is associated with i. A = (aij)n×n is the adjacency matrix of G,

where aij = 1 if (i, j) ∈ E is an edge of G, and aij = 0 if (i, j) /∈ E. A subset of V can

be represented by an indicator vector x = (xi) ∈ {0, 1}n, where xi = 1 means that i

is in the subset, and xi = 0 means that i is not in the subset. An independent set is

a subset of V , whose elements are pairwise nonadjacent. Then finding a maximum-

weight independent set, denoted as x∗ can be posed as the following:

x∗ = argmaxxw
Tx,

s.t. ∀i ∈ V : xi ∈ {0, 1}, xTAx = 0

(3.2-3)

58

The weight wi on vertex i is defined as:

wi = ASCci × |ci| (3.2-4)

where ci is the cluster represented by vertex i, ASCci and |ci| are its quality measure

and cardinality respectively.

Our problem (3.2-3) is a special instance of MWIS problem, since graph G ex-

hibits an additional structure, which we will unitize in the proposed algorithm. The

vertex set V can be partitioned into disjoint subsets P = {P1, P2, ..., Pm}, where Pi

corresponds to the clustering Ci, such that each Pi is also a maximal independent

set (MIS), which means it is not a subset of any other independent set. This follows

from the fact that each clustering Ci is a partition of the dataset D. Formally,

m⋃
i=1

Pi = V, Pi ∩ Pj = ∅, i 6= j, and Pi is MIS, ∀ i, j ∈ {1, 2, ...,m} (3.2-5)

The basic idea of our maximum-weight independent set algorithm is to explore

the neighborhood of each known MIS Pi independently with a local search heuristic

in order to find better solutions. The proposed algorithm is an instance of simulated

annealing methods Kirkpatrick et al. (1983) with multiple initializations.

Our algorithm starts with a particular MIS Pi, denoted by x0. xt+1, which is a

neighbor of xt, is obtained by replacing some lower-weight vertices in xt with higher-

weight vertices under the constraint of always being an independent set. Specifically,

we first reduce xt by removing a proportion q of lower-weight vertices. Here we

remove a proportion, rather than a fixed number, of vertices in order to make the

reduction adaptive with respect to the number s of vertices in xt. In practice, we

use ceil(s× q) to make sure at least one vertex will be removed. Note that this step

is probabilistic, rather than deterministic. The probability that a vertex i will be

59

retained is proportional to its WD value, which is defined as follows.

WDi =
wi∑
j∈Ni

wj
(3.2-6)

where Ni is the set of vertices which are connected with vertex i in G.

Intuitively, larger WD value indicates larger weight, less conflict with other ver-

tices or both. Therefore, the obtained x′t is likely to contain vertices with large weights

and have large potential room for improvement. The parameter of proportion q is

used to control the ”radius” of the neighborhood to be explored.

Then our algorithm iteratively improves x′t by adding compatible vertices one by

one. In each iteration, it first identifies all the vertices compatible with the existing

ones in current x′t, called candidates. Then a ”local” measure WD′ is calculated to

evaluate each of these candidates:

WD′i =
wi∑
j∈N ′

i
wj

(3.2-7)

where N ′i is the set of candidate vertices which are connected with vertex i.

The large value of WD′i indicates that candidate i either can bring large im-

provement this time (numerator) or has small conflict with further improvements

(denominator) or both.

The candidate with the largest WD′ value is added to x′t. In next iteration, this

new x′t will be further improved. This iterative procedure continues until x′t cannot

be further improved. We obtain x′t as a randomized neighbor of xt.

Now our algorithm calculates the acceptance ratio α = e(W (x′t)−W (xt))/βt
, where

W (x) = wTx; 0 < β < 1 is a constant which is usually picked to be close to 1. If

α ≥ 1, then x′t is accepted as xt+1. Otherwise, it is accepted with probability α.

This exploration starting from Pi continues for a number of iterations, or until xt

converges. The best solution encountered in this process is recorded. After exploring

60

Algorithm 1: Simulated Annealing based on Maximal Independent Set
(SAMIS)

Input: Graph G, weights w, adjacency matrix A, the known MIS
P = {P1, P2, ..., Pm}

Output: An approximate solution to MWIS
1 Calculate WD for each vertex;
2 for Each MIS Pi do
3 Initialize x0 with Pi;
4 for t = 1, 2, ..., n do
5 Reduce xt to x′t probabilistically by removing a proportion q of

vertices with relatively lower WD values;
6 repeat
7 Identify candidate vertices compatible with current x′t;
8 Calculate WD′ for each candidate;
9 Update x′t by adding the candidate with the largest WD′;

10 until x′t cannot be further improved ;

11 Calculate α = min[1, e(W (x′t)−W (xt))/βt
];

12 Update xt+1 as x′t with probability α, otherwise xt+1 = xt;

13 end

14 end
15 return the best solution found in the process;

the neighborhood for all the known MISs, the best solution is returned. A formal

description can be found in Algorithm 1.

Our algorithm is essentially a variant of simulated annealing method Kirkpatrick

et al. (1983), since the maximization of W (x) = wTx is equivalent to the minimization

of the energy function E(x) = −W (x) = −wTx. Lines 5 to 10 in Alg. 1 define a

randomized ”moving” procedure of making a transition from xt to its neighbor x′t.

When calculating the acceptance ratio α = e(W (x′t)−W (xt))/βt
, suppose T0 = 1 (initial

temperature), then it is equivalent to α = e(−(W (xt)−W (x′t)))/(β
t) = e(−(E(x′t)−E(xt)))/(βt).

Hence Algorithm 1 is a variant of simulated annealing. Therefore, our algorithm

converges in theory.

In practice, the convergence of our algorithm is fast. In all the experiments pre-

sented in next section, our algorithm converges in less than 100 iterations. The reason

is that our algorithm takes advantage of that the known MISs are close to distinct

61

local maximum. Also, the local search heuristic of our algorithm is effective to find

better candidate in the neighborhood.

The parameter q controls the ”radius” of the neighborhood to be explored in each

iteration. Small q means small ”radius” and results in more iterations to converge.

On the other side, using large q will take less advantage of the known MISs. Unstable

exploration also results in more iterations to converge.

Since our algorithm explores the neighborhood of each known MIS independently,

its efficiency can be further improved by using parallel computation.

3.3 Experimental Evaluation

We evaluate the performance of our approach to clustering aggregation and SAMIS

algorithm for MWIS problem with three experiments.

In these experiments, for the underlying clustering algorithms, including K-means,

single linkage, complete linkage and Ward’s clustering, we use the implementations in

MATLAB. Unless specified explicitly, the parameters are MATLAB’s defaults. For

example, when using K-means, we only specify the number K of desired clusters.

The default ”Squared Euclidean distance” is used as the distance measure. When

calculating silhouette coefficients, we use MATLAB’s function ”silhouette(X,clust)”

and the default metric ”Squared Euclidean distance”. For robustness in our experi-

ments, we tolerate slight overlap between clusters. That is, for the adjacency matrix

A = (aij)n×n, aij = 1 if
|ci∩cj |

min(|ci|,|cj |) > 0.05, and aij = 0 otherwise. In these ex-

periments, the parameters of our local search algorithm are: q = 0.3; β = 0.999;

iteration number n = 100. We test different combinations of q = 0.1 : 0.1 : 0.5 and

n = 100 : 100 : 1000. The results are almost the same.

In the first experiment, we evaluate our approach’s ability to achieve good perfor-

mance without specifying the optimal input parameters for the underlying clustering

algorithms. We use the data set from Fränti & Virmajoki (2006). This data set con-

62

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S1

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S2

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S3

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 S4

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S1

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S2

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S3

0 5 10

x 10
5

0

2

4

6

8

10
x 10

5 Our S4

Figure 3.1:
Clustering aggregation without parameter tuning. (top row) Original
data. (bottom row) Clustering results of our approach. Best viewed in
color.

sists of 4 subsets (S1, S2, S3, S4) of synthetic 2-d data points. Each subset contains

5000 vectors in 15 Gaussian clusters, but with different degree of cluster overlapping.

We choose K-means as the underlying clustering algorithm and vary the parameter

K = 5 : 1 : 25, which is the desired number of clusters. Since different runs of

K-means starting from random initialization of centroids typically produce different

clustering results, we run K-means 5 times for each value of K. That is, there are a

total of 21× 5 = 105 different input clusterings. Note that, in order to show the per-

formance of our approach clearly, we do not perform the post-processing of assigning

the missing data points to their nearest clusters.

As shown in Fig. 3.1, on each of the four subsets, the aggregated clustering

obtained by our approach has the correct number (15) of clusters and near-perfect

63

0 10 20 30 40
0

10

20

30
Single Linkage

0 10 20 30 40
0

10

20

30
Complete Linkage

0 10 20 30 40
0

10

20

30
Ward's clustering

0 10 20 30 40
0

10

20

30
K-means

0 10 20 30 40
0

10

20

30
Original data

0 10 20 30 40
0

10

20

30
Our result

Figure 3.2:
Clustering aggregation on four different input clusterings. Best viewed in
color.

structure. Only a very small portion of data points is not assigned to any cluster.

These results confirm that our approach can automatically decide the optimal number

of clusters without any parameter tuning for the underlying clustering algorithms.

In the second experiment, we evaluate our approach’s ability of combining the

advantages of different underlying clustering algorithms and canceling out the errors

introduced by them. The data set is from Gionis et al. (2007). As shown in the

fifth panel of Fig. 3.2, this synthetic data set consists of 7 distinct groups of 2-

d data points, which have significantly different shapes and sizes. There are also

some ”bridges” between different groups of data points. Consequently, this data

set is very challenging for any single clustering algorithm. In this experiment, we

64

use four different underlying clustering algorithms implemented in MATLAB: single

linkage, complete linkage, Ward’s clustering and K-means. The first two are both

agglomerative bottom-up algorithms. The only difference between them is that when

merging pairs of clusters, single linkage is based on the minimum distance, while

complete linkage is based on maximum distance. The third one, Ward’s clustering

algorithm, is also an agglomerative bottom-up algorithm. In each merging step, it

chooses the pair of clusters which minimize the sum of the square of distances from

each point to the mean of the two clusters. The fourth algorithm is K-means.

For each of the underlying clustering algorithms, we vary the input parameter of

desired number of clusters as 4 : 1 : 10. That is, we have a total of 7× 4 = 28 input

clusterings.

Note that, unlike Gionis et al. (2007), we do not use the average linkage clustering

algorithm, because by specifying the correct number of clusters, it can generate near-

perfect clustering by itself. We abandon the best algorithm here in order to show the

performance of our approach clearly. But, in practice, by utilizing good underlying

clustering algorithms, it can significantly increase the chance for our approach to

obtain superior aggregated clusterings. Like the first experiment, we do not perform

the post-processing in this experiment.

In the first four panels of Fig. 3.2, we show the clustering results obtained by

the four underlying clustering algorithms with the number of clusters set to be 7.

Obviously, even with the optimal input parameters, the results of these algorithms

are far from being correct. The ground truth and the result of our approach are shown

in the fifth and sixth panels, respectively. As we can see, our aggregated clustering

is almost perfect, except for the three green data points in the ”bridge” between

the cyan and green ”balls”. These results confirm that our approach can effectively

combine the advantages of different clustering algorithms and cancel out the errors

introduced by them. Also, in contrast to the other consensus clustering algorithms,

65

Table 3.1: Data Sets for Experimental Evaluation
Data set #Instance #Attribute #Class

Iris 150 4 3

Zoo 101 16 7

Semeion 1593 256 10

PD 10992 16 10

Vowel 990 10 11

ISOLET 7797 617 26

Letter 20000 16 26

Table 3.2: Base Clusterings and Graph Information
Data set k #Clustering #Cluster |V | |E| davg
Iris 2:1:10 18 108 108 1422.5 26.3

Zoo 3:1:11 18 126 126 1791 28.4

Semeion 6:1:14 18 180 180 5467 60.7

PD 6:1:14 18 180 180 4403 48.9

Vowel 7:1:15 18 198 198 4633.9 46.8

ISOLET 22:1:30 18 468 468 20273 86.6

Letter 22:1:30 18 468 468 22859.3 97.7

such as Gionis et al. (2007), our aggregated clustering is obtained without specifying

the optimal input parameters for any of the underlying clustering algorithm. This is

a very desirable feature in practice.

The third experiment is performed on 7 real data sets from the UCI machine

learning repository Lichman (2013), including Iris, Zoo, Semeion Handwritten Digit

(Semeion), Pen Digits (PD), Vowel, ISOLET and Letter Image Recognition (Letter).

The detailed information of these data sets are given in Table 3.1. For instance, Iris

has 150 data objects; each of them has 4 attributes; and the data objects are from 3

classes.

To generate multiple base clusterings for each data set, we use two classic cluster-

ing algorithms, k-means and complete-linkage, and vary the desired cluster number

k in the range shown in Table 3.2. For instance, on Iris data set, we vary k from 2

to 10 with a step size of 1 for both k-means and complete-linkage algorithms. As a

result, we obtain 18 base clusterings with a total of 108 clusters.

Then a simple undirected and vertex-weighted graph is constructed. Each vertex

66

Table 3.3: Average Performance in Terms of MWIS Weight
Method Iris Zoo Semeion PD Vowel ISOLET Letter

MWBC 127.5 64.9 192 5265.7 319.5 1353.4 5014.8

FastWClq 132.9 73.1 205.8 5532.7 347.7 1422.4 5184.4

LSCC 132.9 73.1 205.8 5535.2 348.1 1498 5364.2

LSCC+BMS 132.9 73.1 205.8 5535.2 348.1 1497.2 5364.5

RRWL 132.9 73.1 205.8 5535.2 348.1 1500.1 5364.5

SAMIS 132.9 73.1 205.2 5518.5 347.9 1497.6 5322.7

represents a cluster. If two clusters ci and cj, which are from two different cluster-

ings, contain some common data objects, we say they are overlapping. For any two

overlapping clusters, there is an edge connecting the vertices representing them. The

basic statistics of the derived graph of each data set are given in Table 3.2. Note that

since k-means may return different clusterings for the same data set and the same

k due to its randomness in initialization, we construct 100 graphs for each data set

and report the average edge number and average vertex degree. The weight of each

vertex is defined as sum of the silhouette coefficients of the data objects belonging to

the corresponding cluster.

We first compare our SAMIS algorithm with state-of-the-art maximum-weight

clique solvers, which are applied on the complementary graphs. In consideration

of the randomness of k-means, we generate 10 graphs for each data set and report

the average performance. The algorithms for comparison include FastWClq, LSCC,

LSCC+BMS, RRWL and MWBC, which serves as the baseline and just returns the

set of vertices belonging to the same base clustering and having the maximum sum of

weights. For LSCC, the search depth L was set to 4,000. When employing the BMS

heuristic, the parameter k was set to 100, as in Y. Wang et al. (2016). For FastWClq,

the parameters k0 and kmax for the dynamic BMS heuristic were set to 4 and 64

respectively, as in Cai & Lin (2016). For RRWL, we set the cut off to be 10 minutes

and use one seed. FastWClq, LSCC, LSCC+BMS and RRWL are implemented in

C++ and invoked from MATLAB.

67

As shown in Table 3.3, the performance of SAMIS is very close to those of state-

of-the-art.

Then we evaluate the performance of our clustering aggregation approach CA+SAMIS.

The comparison algorithms include COMUSA Mimaroglu & Erdil (2011), WEAC+SL

D. Huang et al. (2015), WEAC+CL D. Huang et al. (2015), WEAC+AL D. Huang

et al. (2015), GP-MGLA D. Huang et al. (2015), ECFG D. Huang et al. (2016a),

PTA+SL D. Huang et al. (2016b), PTA+CL D. Huang et al. (2016b), PTA+AL

D. Huang et al. (2016b) and PTGP D. Huang et al. (2016b). For these algorithms,

we follow the author-recommended or default settings and parameters.

Note that COMUSA, ECFG and our CA+SAMIS can automatically determine

the cluster number in the aggregated clustering, while the rest algorithms need it as

an input parameter. For fair comparisons, we follow the experimental protocol in

D. Huang et al. (2016a) and specify the cluster number for those ”non-automatic”

algorithms to be the one automatically estimated by CA+SAMIS. For CA+SAMIS,

there may be a couple of data objects which are not covered by the aggregated

clustering or are covered by more than one cluster due to the slight overlap. In that

case, we perform the post-processing to assign such data objects to their nearest

clusters.

The quality of the final aggregated clustering is measured in terms of the nor-

malized mutual information (NMI) Strehl & Ghosh (2002b). A higher NMI indicates

that the aggregated clustering matches the ground-truth class memberships better.

In consideration of the randomness of k-means, we run experiment on each data set

100 times and report the average NMI.

As shown in Table 3.4, CA+SAMIS is very competitive in clustering aggregation

compared with other state-of-the-art techniques.

68

Table 3.4: Average Performance of Clustering Aggregation in Terms of NMI
Method Iris Zoo Semeion PD Vowel ISOLET Letter

COMUSA 0.346 0.577 0.395 0.509 0.409 0.534 0.360

WEAC+SL 0.688 0.687 0.419 0.496 0.404 0.575 0.274

WEAC+CL 0.700 0.688 0.434 0.516 0.412 0.588 0.280

WEAC+AL 0.700 0.696 0.434 0.534 0.411 0.596 0.281

GP-MGLA 0.706 0.692 0.445 0.548 0.411 0.602 0.291

ECFG 0.533 0.698 0.487 0.575 0.409 0.652 0.282

PTA+SL 0.345 0.668 0.431 0.463 0.375 0.563 0.249

PTA+CL 0.331 0.644 0.475 0.556 0.402 0.640 0.301

PTA+AL 0.348 0.660 0.473 0.541 0.399 0.639 0.301

PTGP 0.754 0.687 0.469 0.554 0.403 0.616 0.274

CA+SAMIS 0.700 0.712 0.552 0.676 0.427 0.698 0.359

3.4 Conclusion

We formulate clustering aggregation as a special instance of maximum-weight in-

dependent set problem and propose a novel local search algorithm for solving it. Ex-

perimental results on many real-world data sets demonstrate that both our algorithm

for the maximum-weight independent set problem and our approach to clustering

aggregation achieve good performance.

69

BIBLIOGRAPHY

Ablanedo-Rosas, J. H., & Rego, C. (2010). Surrogate constraint normalization for the
set covering problem. European Journal of Operational Research, 205 (3), 540–551.

Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and
categorical data. Data & Knowledge Engineering , 63 (2), 503–527.

Aoun, B., Boutaba, R., Iraqi, Y., & Kenward, G. (2006). Gateway placement opti-
mization in wireless mesh networks with qos constraints. IEEE Journal on Selected
Areas in Communications , 24 (11), 2127–2136.

Bautista, J., & Pereira, J. (2007). A grasp algorithm to solve the unicost set covering
problem. Computers & Operations Research, 34 (10), 3162–3173.

Beasley, J. E. (1990). Or-library: distributing test problems by electronic mail.
Journal of the operational research society , 41 (11), 1069–1072.

Beasley, J. E., & Chu, P. C. (1996). A genetic algorithm for the set covering problem.
European journal of operational research, 94 (2), 392–404.

Böhm, C., Goebl, S., Oswald, A., Plant, C., Plavinski, M., & Wackersreuther, B.
(2010). Integrative parameter-free clustering of data with mixed type attributes.
In Pacific-asia conference on knowledge discovery and data mining (pp. 38–47).

Bouamama, S., & Blum, C. (2016). A hybrid algorithmic model for the minimum
weight dominating set problem. Simulation Modelling Practice and Theory , 64 ,
57–68.

Brendel, W., & Todorovic, S. (2010). Segmentation as maximum-weight independent
set. In Advances in neural information processing systems (pp. 307–315).

Cai, S., & Lin, J. (2016). Fast solving maximum weight clique problem in massive
graphs. In Proceedings of the twenty-fifth international joint conference on arti-
ficial intelligence, IJCAI 2016, new york, ny, usa, 9-15 july 2016 (pp. 568–574).
Retrieved from http://www.ijcai.org/Abstract/16/087

Cai, S., Su, K., & Sattar, A. (2011). Local search with edge weighting and con-
figuration checking heuristics for minimum vertex cover. Artificial Intelligence,
175 (9-10), 1672–1696.

70

http://www.ijcai.org/Abstract/16/087

Campan, A., Truta, T. M., & Beckerich, M. (2015). Fast dominating set algorithms
for social networks. In Maics (pp. 55–62).

Cao, S., & Snavely, N. (2013). Graph-based discriminative learning for location
recognition. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 700–707).

Caprara, A., Fischetti, M., & Toth, P. (1999). A heuristic method for the set covering
problem. Operations research, 47 (5), 730–743.

Caserta, M. (2007). Tabu search-based metaheuristic algorithm for large-scale set
covering problems. In Metaheuristics (pp. 43–63). Springer.

Chaurasia, S. N., & Singh, A. (2015). A hybrid evolutionary algorithm with guided
mutation for minimum weight dominating set. Applied Intelligence, 43 (3), 512–
529.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of
operations research, 4 (3), 233–235.

Cooper, C., Klasing, R., & Zito, M. (2005). Lower bounds and algorithms for
dominating sets in web graphs. Internet Mathematics , 2 (3), 275–300.

Cormode, G., Karloff, H., & Wirth, A. (2010). Set cover algorithms for very large
datasets. In Proceedings of the 19th acm international conference on information
and knowledge management (pp. 479–488).

Crawford, B., Soto, R., Cuesta, R., & Paredes, F. (2014). Application of the artificial
bee colony algorithm for solving the set covering problem. The Scientific World
Journal , 2014 .

El Houmaidi, M., & Bassiouni, M. A. (2003). k-weighted minimum dominating sets
for sparse wavelength converters placement under nonuniform traffic. In Modeling,
analysis and simulation of computer telecommunications systems, 2003. mascots
2003. 11th ieee/acm international symposium on (pp. 56–61).

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, pp.
226–231).

Eubank, S., Kumar, V., Marathe, M. V., Srinivasan, A., & Wang, N. (2004). Struc-
tural and algorithmic aspects of massive social networks. In Proceedings of the
fifteenth annual acm-siam symposium on discrete algorithms (pp. 718–727).

Fan, Y., Li, N., Li, C., Ma, Z., Jan Latecki, L., & Su, K. (2017, 08). Restart and
random walk in local search for maximum vertex weight cliques with evaluations
in clustering aggregation.

71

Feige, U. (1998). A threshold of ln n for approximating set cover. Journal of the
ACM (JACM), 45 (4), 634–652.

Fern, X. Z., & Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite
graph partitioning. In Proceedings of the twenty-first international conference on
machine learning (p. 36).

Fränti, P., & Virmajoki, O. (2006). Iterative shrinking method for clustering prob-
lems. Pattern Recognition, 39 (5), 761–775.

Fred, A. L., & Jain, A. K. (2002). Data clustering using evidence accumulation.
In Pattern recognition, 2002. proceedings. 16th international conference on (Vol. 4,
pp. 276–280).

Gionis, A., Mannila, H., & Tsaparas, P. (2007). Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1 (1), 4.

Golab, L., Karloff, H., Korn, F., Srivastava, D., & Yu, B. (2008). On generating
near-optimal tableaux for conditional functional dependencies. Proceedings of the
VLDB Endowment , 1 (1), 376–390.

Gomes, F. C., Meneses, C. N., Pardalos, P. M., & Viana, G. V. R. (2006). Experi-
mental analysis of approximation algorithms for the vertex cover and set covering
problems. Computers & Operations Research, 33 (12), 3520–3534.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties.
Biometrics , 857–871.

Grossman, T., & Wool, A. (1997). Computational experience with approximation
algorithms for the set covering problem. European Journal of Operational Research,
101 (1), 81–92.

Hedar, A.-R., & Ismail, R. (2010). Hybrid genetic algorithm for minimum domi-
nating set problem. In International conference on computational science and its
applications (pp. 457–467).

Hedar, A.-R., & Ismail, R. (2012). Simulated annealing with stochastic local search
for minimum dominating set problem. International Journal of Machine Learning
and Cybernetics , 3 (2), 97–109.

Ho, C. K., Singh, Y. P., & Ewe, H. T. (2006). An enhanced ant colony optimiza-
tion metaheuristic for the minimum dominating set problem. Applied Artificial
Intelligence, 20 (10), 881–903.

Hsu, C.-C., & Chen, Y.-C. (2007). Mining of mixed data with application to catalog
marketing. Expert Systems with Applications , 32 (1), 12–23.

Hsu, C.-C., & Huang, Y.-P. (2008). Incremental clustering of mixed data based on
distance hierarchy. Expert Systems with Applications , 35 (3), 1177–1185.

72

Huang, D., Lai, J., & Wang, C. (2015). Combining multiple clusterings via crowd
agreement estimation and multi-granularity link analysis. Neurocomputing , 170 ,
240–250. Retrieved from http://dx.doi.org/10.1016/j.neucom.2014.05.094

doi: 10.1016/j.neucom.2014.05.094

Huang, D., Lai, J., & Wang, C. (2016a). Ensemble clustering using factor graph.
Pattern Recognition, 50 , 131–142. Retrieved from http://dx.doi.org/10.1016/

j.patcog.2015.08.015 doi: 10.1016/j.patcog.2015.08.015

Huang, D., Lai, J., & Wang, C. (2016b). Robust ensemble clustering using prob-
ability trajectories. IEEE Trans. Knowl. Data Eng., 28 (5), 1312–1326. Re-
trieved from http://dx.doi.org/10.1109/TKDE.2015.2503753 doi: 10.1109/
TKDE.2015.2503753

Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical
values. In Proceedings of the 1st pacific-asia conference on knowledge discovery and
data mining,(pakdd) (pp. 21–34).

Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets
with categorical values. Data mining and knowledge discovery , 2 (3), 283–304.

Jiang, H., Li, C., & Manyà, F. (2017). An exact algorithm for the maximum weight
clique problem in large graphs. In Proceedings of the thirty-first AAAI confer-
ence on artificial intelligence, february 4-9, 2017, san francisco, california, USA.
(pp. 830–838). Retrieved from http://aaai.org/ocs/index.php/AAAI/AAAI17/

paper/view/14370

Jing, L., Ng, M. K., & Huang, J. Z. (2007). An entropy weighting k-means algorithm
for subspace clustering of high-dimensional sparse data. IEEE Transactions on
Knowledge and Data Engineering , 19 (8), 1026–1041.

Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal
of computer and system sciences , 9 (3), 256–278.

Kandola, J., Cristianini, N., & Shawe-taylor, J. S. (2003). Learning semantic simi-
larity. In Advances in neural information processing systems (pp. 673–680).

Kann, V. (1992). On the approximability of np-complete optimization problems (Un-
published doctoral dissertation). Royal Institute of Technology Stockholm.

Kelleher, L. L., & Cozzens, M. B. (1988). Dominating sets in social network graphs.
Mathematical Social Sciences , 16 (3), 267–279.

Kinney, G. W., Barnes, J. W., & Colletti, B. W. (2007). A reactive tabu search algo-
rithm with variable clustering for the unicost set covering problem. International
Journal of Operational Research, 2 (2), 156–172.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated
annealing. science, 220 (4598), 671–680.

73

http://dx.doi.org/10.1016/j.neucom.2014.05.094
http://dx.doi.org/10.1016/j.patcog.2015.08.015
http://dx.doi.org/10.1016/j.patcog.2015.08.015
http://dx.doi.org/10.1109/TKDE.2015.2503753
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370

Lan, G., DePuy, G. W., & Whitehouse, G. E. (2007). An effective and simple
heuristic for the set covering problem. European journal of operational research,
176 (3), 1387–1403.

Legendre, P., & Legendre, L. (1998). Numerical ecology, volume 24, (developments
in environmental modelling).

Li, N., & Latecki, L. J. (2012). Clustering aggregation as maximum-weight indepen-
dent set. In Advances in neural information processing systems (pp. 782–790).

Li, N., & Latecki, L. J. (2015). Affinity inference with application to recom-
mender systems. In Web intelligence and intelligent agent technology (wi-iat), 2015
ieee/wic/acm international conference on (Vol. 1, pp. 393–400).

Li, N., & Latecki, L. J. (2017, 08). Affinity learning for mixed data clustering.

Lichman, M. (2013). UCI machine learning repository. Retrieved from http://

archive.ics.uci.edu/ml

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on informa-
tion theory , 28 (2), 129–137.

Lovász, L. (1975). On the ratio of optimal integral and fractional covers. Discrete
mathematics , 13 (4), 383–390.

Magri, L., & Fusiello, A. (2016). Multiple model fitting as a set coverage problem. In
Proceedings of the ieee conference on computer vision and pattern recognition (pp.
3318–3326).

Mihail, M. (1999). Set cover with requirements and costs evolving over time. In Ran-
domization, approximation, and combinatorial optimization. algorithms and tech-
niques (pp. 63–72). Springer.

Mimaroglu, S., & Erdil, E. (2011). Combining multiple clusterings using similarity
graph. Pattern Recognition, 44 (3), 694–703. Retrieved from http://dx.doi.org/

10.1016/j.patcog.2010.09.008 doi: 10.1016/j.patcog.2010.09.008

Mulati, M. H., & Constantino, A. A. (2011). Ant-line: A line-oriented aco algo-
rithm for the set covering problem. In Computer science society (sccc), 2011 30th
international conference of the chilean (pp. 265–274).

Nacher, J. C., & Akutsu, T. (2016). Minimum dominating set-based methods for
analyzing biological networks. Methods , 102 , 57–63.

Naji-Azimi, Z., Toth, P., & Galli, L. (2010). An electromagnetism metaheuristic
for the unicost set covering problem. European Journal of Operational Research,
205 (2), 290–300.

Nguyen, N., & Caruana, R. (2007). Consensus clusterings. In Data mining, 2007.
icdm 2007. seventh ieee international conference on (pp. 607–612).

74

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.patcog.2010.09.008
http://dx.doi.org/10.1016/j.patcog.2010.09.008

Nitash, C., & Singh, A. (2014). An artificial bee colony algorithm for minimum
weight dominating set. In Swarm intelligence (sis), 2014 ieee symposium on (pp.
1–7).

Plant, C. (2012). Dependency clustering across measurement scales. In Proceedings
of the 18th acm sigkdd international conference on knowledge discovery and data
mining (pp. 361–369).

Plant, C., & Böhm, C. (2011). Inconco: interpretable clustering of numerical and
categorical objects. In Proceedings of the 17th acm sigkdd international conference
on knowledge discovery and data mining (pp. 1127–1135).

Podani, J. (1999). Extending gower’s general coefficient of similarity to ordinal
characters. Taxon, 331–340.

Potluri, A., & Singh, A. (2013). Hybrid metaheuristic algorithms for minimum weight
dominating set. Applied Soft Computing , 13 (1), 76–88.

Raka, J., Milan, T., & Dana, S. (2010). Ant colony optimization applied to minimum
weight dominating set problem. In Proceedings of the 12th wseas international
conference on automatic control, modelling & simulation (pp. 322–326).

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial intelligence,
32 (1), 57–95.

Ren, Z.-G., Feng, Z.-R., Ke, L.-J., & Zhang, Z.-J. (2010). New ideas for apply-
ing ant colony optimization to the set covering problem. Computers & Industrial
Engineering , 58 (4), 774–784.

Saha, B., & Getoor, L. (2009). On maximum coverage in the streaming model &
application to multi-topic blog-watch. In Proceedings of the 2009 siam international
conference on data mining (pp. 697–708).

Samuel, H., Zhuang, W., & Preiss, B. (2009). Dtn based dominating set routing for
manet in heterogeneous wireless networking. Mobile Networks and Applications ,
14 (2), 154–164.

Sanchis, L. A. (2002). Experimental analysis of heuristic algorithms for the dominat-
ing set problem. Algorithmica, 33 (1), 3–18.

Sellis, T. K. (1988). Multiple-query optimization. ACM Transactions on Database
Systems (TODS), 13 (1), 23–52.

Shen, C., & Li, T. (2010). Multi-document summarization via the minimum dom-
inating set. In Proceedings of the 23rd international conference on computational
linguistics (pp. 984–992).

Singh, V., Mukherjee, L., Peng, J., & Xu, J. (2008). Ensemble clustering using
semidefinite programming. In Advances in neural information processing systems
(pp. 1353–1360).

75

Stergiou, S., & Tsioutsiouliklis, K. (2015). Set cover at web scale. In Proceedings
of the 21th acm sigkdd international conference on knowledge discovery and data
mining (pp. 1125–1133).

Stojmenovic, I., Seddigh, M., & Zunic, J. (2002). Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks. IEEE Transactions
on parallel and distributed systems , 13 (1), 14–25.

Strehl, A., & Ghosh, J. (2002a). Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. Journal of machine learning research, 3 (Dec),
583–617.

Strehl, A., & Ghosh, J. (2002b). Cluster ensembles — A knowledge reuse framework
for combining multiple partitions. Journal of Machine Learning Research, 3 , 583–
617. Retrieved from http://www.jmlr.org/papers/v3/strehl02a.html

Subhadrabandhu, D., Sarkar, S., & Anjum, F. (2004). Efficacy of misuse detection
in ad hoc networks. In Sensor and ad hoc communications and networks, 2004.
ieee secon 2004. 2004 first annual ieee communications society conference on (pp.
97–107).

Sundar, S., & Singh, A. (2012). A hybrid heuristic for the set covering problem.
Operational Research, 12 (3), 345–365.

Topchy, A., Jain, A. K., & Punch, W. (2003). Combining multiple weak clusterings.
In Data mining, 2003. icdm 2003. third ieee international conference on (pp. 331–
338).

Wang, F., Du, H., Camacho, E., Xu, K., Lee, W., Shi, Y., & Shan, S. (2011).
On positive influence dominating sets in social networks. Theoretical Computer
Science, 412 (3), 265–269.

Wang, Y., Cai, S., & Yin, M. (2016). Two efficient local search algorithms for
maximum weight clique problem. In Proceedings of the thirtieth AAAI confer-
ence on artificial intelligence, february 12-17, 2016, phoenix, arizona, USA. (pp.
805–811). Retrieved from http://www.aaai.org/ocs/index.php/AAAI/AAAI16/

paper/view/11915

Wang, Y., Cai, S., & Yin, M. (2017). Local search for minimum weight dominating
set with two-level configuration checking and frequency based scoring function.
Journal of Artificial Intelligence Research, 58 , 267–295.

Wang, Y., Ouyang, D., Zhang, L., & Yin, M. (2017). A novel local search for unicost
set covering problem using hyperedge configuration checking and weight diversity.
Science China Information Sciences , 60 (6), 062103.

Wu, P., Wen, J.-R., Liu, H., & Ma, W.-Y. (2006). Query selection techniques for
efficient crawling of structured web sources. In Data engineering, 2006. icde’06.
proceedings of the 22nd international conference on (pp. 47–47).

76

http://www.jmlr.org/papers/v3/strehl02a.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2005). A simple model to
generate hard satisfiable instances. arXiv preprint cs/0509032 .

Yagiura, M., Kishida, M., & Ibaraki, T. (2006). A 3-flip neighborhood local search
for the set covering problem. European Journal of Operational Research, 172 (2),
472–499.

Yang, X., Prasad, L., & Latecki, L. J. (2013). Affinity learning with diffusion on tensor
product graph. IEEE transactions on pattern analysis and machine intelligence,
35 (1), 28–38.

Yao, B., & Fei-Fei, L. (2012). Action recognition with exemplar based 2.5 d graph
matching. In European conference on computer vision (pp. 173–186).

Zhao, X., & Ouyang, D. (2007). Improved algorithms for deriving all minimal conflict
sets in model-based diagnosis. In International conference on intelligent computing
(pp. 157–166).

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning
with local and global consistency. In Nips (Vol. 16, pp. 321–328).

77

APPENDIX A

Appendix A

78

Table A.1: Details of 139 Undirected Simple Graphs in Network Data Repository
Graph #Vertex #Edge Graph #Vertex #Edge
bio-celegans 453 2025 soc-flickr 513969 3190452
bio-diseasome 516 1188 soc-flixster 2523386 7918801
bio-dmela 7393 25569 soc-gowalla 196591 950327
bio-yeast 1458 1948 soc-karate 34 78
ca-AstroPh 17903 196972 soc-lastfm 1191805 4519330
ca-CSphd 1882 1740 soc-livejournal 4033137 27933062
ca-CondMat 21363 91286 soc-orkut 2997166 106349209
ca-Erdos992 6100 7515 soc-pokec 1632803 22301964
ca-GrQc 4158 13422 soc-slashdot 70068 358647
ca-HepPh 11204 117619 soc-twitter-follows 404719 713319
ca-MathSciNet 332689 820644 soc-wiki-Vote 889 2914
ca-citeseer 227320 814134 soc-youtube 495957 1936748
ca-coauthors-dblp 540486 15245729 soc-youtube-snap 1134890 2987624
ca-dblp-2010 226413 716460 tech-RL-caida 190914 607610
ca-dblp-2012 317080 1049866 tech-WHOIS 7476 56943
ca-hollywood-2009 1069126 56306653 tech-as-caida2007 26475 53381
ca-netscience 379 914 tech-as-skitter 1694616 11094209
socfb-A-anon 3097165 23667394 tech-internet-as 40164 85123
socfb-B-anon 2937612 20959854 tech-p2p-gnutella 62561 147878
socfb-Berkeley13 22900 852419 tech-routers-rf 2113 6632
socfb-CMU 6621 249959 scc enron-only 151 9828
socfb-Duke14 9885 506437 scc fb-forum 897 71011
socfb-Indiana 29732 1305757 scc fb-messages 1899 531893
socfb-MIT 6402 251230 scc infect-dublin 10972 175573
socfb-OR 63392 816886 scc infect-hyper 113 6222
socfb-Penn94 41536 1362220 scc reality 6809 4714485
socfb-Stanford3 11586 568309 scc retweet 18469 65990
socfb-Texas84 36364 1590651 scc retweet-crawl 1131801 24015
socfb-UCLA 20453 747604 scc rt alwefaq 4157 355
socfb-UCSB37 14917 482215 scc rt assad 2035 96
socfb-UConn 17206 604867 scc rt bahrain 4659 129
socfb-UF 35111 1465654 scc rt barackobama 9551 226
socfb-UIllinois 30795 1264421 scc rt damascus 2962 41
socfb-Wisconsin87 23831 835946 scc rt dash 5968 39
socfb-uci-uni 58790782 92208195 scc rt gmanews 8330 1078
inf-power 4941 6594 scc rt gop 3716 7
inf-road-usa 23947347 28854312 scc rt http 5691 6
inf-roadNet-CA 1957027 2760388 scc rt israel 3686 12
inf-roadNet-PA 1087562 1541514 scc rt justinbieber 9364 442
ia-email-EU 32430 54397 scc rt ksa 5775 23
ia-email-univ 1133 5451 scc rt lebanon 3370 5
ia-enron-large 33696 180811 scc rt libya 5021 26
ia-enron-only 143 623 scc rt lolgop 9742 4510
ia-fb-messages 1266 6451 scc rt mittromney 7850 108
ia-infect-dublin 410 2765 scc rt obama 3040 4
ia-infect-hyper 113 2196 scc rt occupy 3090 60
ia-reality 6809 7680 scc rt occupywallstnyc 3594 931
ia-wiki-Talk 92117 360767 scc rt oman 4452 13
rec-amazon 91813 125704 scc rt onedirection 7704 368
rt-retweet 96 117 scc rt p2 4785 15
rt-retweet-crawl 1112702 2278852 scc rt qatif 6718 11
rt-twitter-copen 761 1029 scc rt saudi 6805 91
sc-ldoor 952203 20770807 scc rt tcot 4506 18
sc-msdoor 415863 9378650 scc rt tlot 3513 8
sc-nasasrb 54870 1311227 scc rt uae 4757 12
sc-pkustk11 87804 2565054 scc rt voteonedirection 1833 5
sc-pkustk13 94893 3260967 scc twitter-copen 8580 473614
sc-pwtk 217891 5653221 web-BerkStan 12305 19500
sc-shipsec1 140385 1707759 web-arabic-2005 163598 1747269
sc-shipsec5 179104 2200076 web-edu 3031 6474
soc-BlogCatalog 88784 2093195 web-google 1299 2773
soc-FourSquare 639014 3214986 web-indochina-2004 11358 47606
soc-LiveMocha 104103 2193083 web-it-2004 509338 7178413
soc-brightkite 56739 212945 web-polblogs 643 2280
soc-buzznet 101163 2763066 web-sk-2005 121422 334419
soc-delicious 536108 1365961 web-spam 4767 37375
soc-digg 770799 5907132 web-uk-2005 129632 11744049
soc-dolphins 62 159 web-webbase-2001 16062 25593
soc-douban 154908 327162 web-wikipedia2009 1864433 4507315
soc-epinions 26588 100120

79

Table A.2:
Minimum Weighted Dominating Set Results on 139 Real World Graphs
from Network Data Repository (Solution Weight), Part 1

Graph Gr GrR ACO-PP-LS CC2FS Ours
bio-celegans 1907.3 1871.1 N/A N/A 1792.8
bio-diseasome 7183 6940.5 N/A N/A 6601
bio-dmela 121123.5 118310 117222 113500.3 113830.9
bio-yeast 28345 27178.1 27091.5 26285 26305.6
ca-AstroPh 148904 144617.5 n/a 134418.9 135247.9
ca-CSphd 49424.9 48244.9 47194.8 46456 46487.5
ca-CondMat 228645 223809 n/a 207176.9 209028.4
ca-Erdos992 142783.5 141440 140849 140362 140378
ca-GrQc 62114.9 59647.2 60389 56035.1 56351.9
ca-HepPh 134563.5 131327.5 n/a 122729.4 123935.1
ca-MathSciNet 5648130 5456670 n/a 5326405.3 5240994
ca-citeseer 3064205 3021815 n/a 2940554.6 2889754
ca-coauthors-dblp 2749605 2700820 n/a 2595357.9 2534643
ca-dblp-2010 3535630 3496300 n/a 3472060.5 3444017
ca-dblp-2012 4013930 3900240 n/a 3757678.9 3685284
ca-hollywood-2009 3897650 3841835 N/A N/A 3606478
ca-netscience 4645.6 4610.3 N/A N/A 4264.1
socfb-A-anon 17861750 17400200 N/A N/A 17061460
socfb-B-anon 16931550 16460500 N/A N/A 16126930
socfb-Berkeley13 103100 100609.5 n/a 94297.5 94541.8
socfb-CMU 28505.2 27666.2 28349 26054.7 26360.7
socfb-Duke14 37528.4 36644.5 n/a 33994.7 34046.7
socfb-Indiana 104758 102822 n/a 94858.4 95513.5
socfb-MIT 33384 32697.1 33081 30821.4 31096.7
socfb-OR 840032 818234 n/a 4463030 785667.2
socfb-Penn94 186478 181802 n/a 168791.6 169507.2
socfb-Stanford3 64388.2 62445 n/a 58800.9 59056.7
socfb-Texas84 130883 127694.5 n/a 118419.7 118939.6
socfb-UCLA 107818 105645.5 n/a 98778.3 99423
socfb-UCSB37 66753.7 65035 n/a 60588.8 60873.3
socfb-UConn 67309.8 65413.4 n/a 60941.3 61256.5
socfb-UF 121989.5 119357.5 n/a 110979.5 111322.4
socfb-UIllinois 105872 103401 n/a 95639.1 96473.9
socfb-Wisconsin87 91720.1 89420.1 n/a 83315.2 83819
socfb-uci-uni 86992900 85142100 N/A N/A 84069030
inf-power 129175 127528 127745 121060.1 122513.8
inf-road-usa 670320500 649191000 N/A N/A 628835100
inf-roadNet-CA 56264000 54060800 N/A N/A 52519970
inf-roadNet-PA 31095850 29812350 N/A N/A 28979500
ia-email-EU 74503.5 73033.4 n/a 72359 72359
ia-email-univ 17253.7 16920.8 16723.6 15704 15862.3
ia-enron-large 152112.5 150945 n/a 147191.9 146819.2
ia-enron-only 1700.8 1704 N/A N/A 1514
ia-fb-messages 19243 18420.6 18464.4 17915 17926
ia-infect-dublin 2866.6 2847.7 N/A N/A 2373.9
ia-infect-hyper 99 70 N/A N/A 70
ia-reality 3610 3601 3601 3601 3601
ia-wiki-Talk 1002125 986974.5 n/a 972951.6 973320
rec-amazon 2239510 2184010 n/a 2093432.6 2102511
rt-retweet 1190 1172 N/A N/A 1162
rt-retweet-crawl 7540515 7283490 N/A N/A 7130382
rt-twitter-copen 16709.3 15996.9 N/A N/A 15412
sc-ldoor 5533210 5533210 n/a 5459928.6 5443677
sc-msdoor 1606400 1606400 n/a 1578798.7 1571300
sc-nasasrb 46542.3 46542.3 n/a 37792.3 39612.4
sc-pkustk11 103030 103030 n/a 94835 95938.9
sc-pkustk13 66665.5 66665.5 n/a 58797 57050.6
sc-pwtk 353438.5 353737.5 n/a 278306.8 291743.8
sc-shipsec1 435447.5 435447.5 n/a 390430.7 403784.6
sc-shipsec5 570797 570830 n/a 516918.3 530423.7
soc-BlogCatalog 396890 389767.5 n/a 383122.5 383529.3
soc-FourSquare 5512305 5448815 n/a 5416931.7 5391189
soc-LiveMocha 102282 99674.7 n/a 94551.9 94283.7
soc-brightkite 1012095 997156 n/a 978472 981078.9
soc-buzznet 7898.8 7699.3 n/a 7050.4 7025
soc-delicious 5070800 4964710 n/a 4929250.4 4903925
soc-digg 5683720 5557835 n/a 5502484.2 5453174
soc-dolphins 421.2 389 N/A N/A 361
soc-douban 827531.5 814256.5 n/a 809674.8 809560.6
soc-epinions 522156 511182 n/a 499497.6 500945.6

80

Table A.3:
Minimum Weighted Dominating Set Results on 139 Real World Graphs
from Network Data Repository (Solution Weight), Part 2

Graph Gr GrR ACO-PP-LS CC2FS Ours
soc-flickr 8140620 8018110 n/a 7946198.7 7888499
soc-flixster 8754370 8657125 N/A N/A 8604676
soc-gowalla 3185410 3134890 n/a 3098493.3 3066474
soc-karate 77 77 N/A N/A 70
soc-lastfm 6170720 6106535 N/A N/A 6062298
soc-livejournal 62905200 61379500 N/A N/A 59628020
soc-orkut 7975515 7782095 N/A N/A 7102610
soc-pokec 15754250 15306400 N/A N/A 14600560
soc-slashdot 1090485 1078410 n/a 1064886.6 1066510
soc-twitter-follows 231233 229546.5 n/a 228759 228773.1
soc-wiki-Vote 15027.7 14526.4 N/A N/A 14205.9
soc-youtube 7231355 7070885 n/a 6994482.9 6923370
soc-youtube-snap 17295600 17007750 N/A N/A 16773990
tech-RL-caida 3339890 3245995 n/a 3170840.2 3143612
tech-WHOIS 50328.9 49459.4 48007 46218.1 46409.8
tech-as-caida2007 203676 199092.5 n/a 194595.9 194861.3
tech-as-skitter 13733200 13574950 N/A N/A 13131270
tech-internet-as 312165 304226.5 n/a 297112.8 297452.3
tech-p2p-gnutella 1090755 1069930 n/a 1056833.7 1058023
tech-routers-rf 38621.6 36924.5 36443.4 35485 35652
scc-enron-only 766.2 766.2 N/A N/A 761
scc-fb-forum 38913 38827 N/A N/A 38793.4
scc-fb-messages 61323 61316.5 N/A N/A 61308
scc-infect-dublin 42407.4 42033.6 N/A N/A 39273.2
scc-infect-hyper 2 2 N/A N/A 2
scc-reality 2288 2238 N/A N/A 2059
scc-retweet 1741310 1740940 N/A N/A 1740641
scc-retweet-crawl 112468000 112457000 N/A N/A 112448000
scc-rt-alwefaq 408523 408521 N/A N/A 408445
scc-rt-assad 199216 199163 N/A N/A 199153
scc-rt-bahrain 458554 458551 N/A N/A 458551
scc-rt-barackobama 949067 949039 N/A N/A 949039
scc-rt-damascus 292184.5 292132 N/A N/A 292132
scc-rt-dash 595126 595097 N/A N/A 595074
scc-rt-gmanews 819630 819546 N/A N/A 819546
scc-rt-gop 367859 367859 N/A N/A 367859
scc-rt-http 566894 566894 N/A N/A 566861
scc-rt-israel 364585 364585 N/A N/A 364585
scc-rt-justinbieber 932178 932159 N/A N/A 932075
scc-rt-ksa 576943 576943 N/A N/A 576943
scc-rt-lebanon 335789 335789 N/A N/A 335789
scc-rt-libya 500742 500742 N/A N/A 500742
scc-rt-lolgop 946802 946761 N/A N/A 946761
scc-rt-mittromney 777502.5 777350 N/A N/A 777325
scc-rt-obama 301927 301927 N/A N/A 301927
scc-rt-occupy 301361 301361 N/A N/A 301276
scc-rt-occupywallstnyc 348615 348525 N/A N/A 348513
scc-rt-oman 442537 442530 N/A N/A 442530
scc-rt-onedirection 766678 766678 N/A N/A 766640
scc-rt-p2 477965 477965 N/A N/A 477965
scc-rt-qatif 669249 669238 N/A N/A 669238
scc-rt-saudi 681221 681221 N/A N/A 681215
scc-rt-tcot 445941 445936 N/A N/A 445936
scc-rt-tlot 347267 347267 N/A N/A 347267
scc-rt-uae 473533.5 473506.5 N/A N/A 473488
scc-rt-voteonedirection 180898 180898 N/A N/A 180898
scc-twitter-copen 630476 629775.5 N/A N/A 629220.7
web-BerkStan 296346.5 295995 n/a 288930.1 290274.8
web-arabic-2005 1644745 1616085 n/a 1582922 1579468
web-edu 23534 23110.1 23108.6 23105 23106
web-google 16449.4 15810.2 15419 15036 15059.3
web-indochina-2004 120243.5 119038 n/a 116995.9 117075.6
web-it-2004 2799590 2676965 n/a 2622204.3 2579465
web-polblogs 7779.1 7467.9 N/A N/A 7217
web-sk-2005 2299320 2276545 n/a 2257320.7 2253954
web-spam 66204.7 64036.2 64817 61938 62012.9
web-uk-2005 93629.4 93254.9 n/a 93183 93183
web-webbase-2001 99465 97384.6 n/a 94954 95217.8
web-wikipedia2009 28569150 27789900 N/A N/A 26954720

81

Table A.4:
Minimum Dominating Set Results on 139 Real World Graphs from Net-
work Data Repository (Vertex Number), Part 1

Graph Gr GrR Gr Rev Gr V ote SAMDS Ours
bio-celegans 30.5 30.5 29 30 31 29
bio-diseasome 99.1 96 96 97 98.4 96
bio-dmela 1479 1456.1 1481.1 1458.5 1486 1453
bio-yeast 359.1 353.6 356.9 355.4 359.6 353
ca-AstroPh 2179.2 2131.5 2153.7 2114.2 2220 2070
ca-CSphd 530.7 523.5 524.9 526.7 528.5 523
ca-CondMat 3108 3050.7 3055.5 3049 3149.6 2996.1
ca-Erdos992 1446.2 1446 1446 1446 1447.6 1446
ca-GrQc 801.6 781.1 786.9 785.1 805 776
ca-HepPh 1733.4 1686 1696.3 1690.7 1737.6 1665
ca-MathSciNet 66387.9 65701.5 65852.4 65783.5 286928.1 65577.3
ca-citeseer 33991.3 33479.5 33469.9 33519.4 120732.7 33214.8
ca-coauthors-dblp 40323.5 38863.3 38969.7 37938.4 N/A 36010
ca-dblp-2010 36079.6 35604.1 35605.1 35611.8 118643 35367.4
ca-dblp-2012 46967.9 46421.2 46464.9 46444.3 225713.5 46153.2
ca-hollywood-2009 53250.8 52147.7 53612.5 50822.9 N/A 49493.8
ca-netscience 55.8 55.8 55 56 59 55
socfb-A-anon 203464 201844 203077 201852 N/A 201698.6
socfb-B-anon 188089.5 187077.5 187774 187104 N/A 187032.8
socfb-Berkeley13 1830.4 1744.7 1882.5 1664 1935.9 1642
socfb-CMU 499.9 472.5 506.6 454 516.7 444.1
socfb-Duke14 666.2 638.7 679.1 608.1 710.1 598
socfb-Indiana 1984.1 1893.8 2074.8 1745.9 2128 1729
socfb-MIT 567.6 544.5 563 523 577.6 520.2
socfb-OR 11366.6 10919.6 11290.6 10854.2 21427.3 10728.6
socfb-Penn94 3408.6 3249.8 3502 3068.4 3605.8 3038.8
socfb-Stanford3 1006 964.6 1029.1 939 1037.8 931
socfb-Texas84 2465.7 2335.1 2587.3 2179.1 2670.7 2163
socfb-UCLA 1849.4 1756.8 1912.9 1678 1940.6 1651.1
socfb-UCSB37 1250 1186.1 1297.1 1128.2 1348.7 1109
socfb-UConn 1255.1 1201.4 1297.9 1117 1325 1098
socfb-UF 2333.7 2247 2505.9 2077.4 2570.3 2065.4
socfb-UIllinois 2022.2 1953.6 2138.7 1804.2 2201.4 1788.2
socfb-Wisconsin87 1699.5 1627.8 1769.5 1526 1832.5 1511.2
socfb-uci-uni 865896.5 865676.5 865702 865684.5 58790782 865675
inf-power 1565.5 1507.2 1547.8 1514.7 1554.3 1487.1
inf-road-usa 8628450 8147765 8431275 8184455 N/A 7974437
inf-roadNet-CA 663688 625317 655848 622936.5 N/A 609320.4
inf-roadNet-PA 370808 347003 363593 346400.5 N/A 338740.6
ia-email-EU 755.2 755 755 755 755.8 755
ia-email-univ 224.5 215.3 225.4 214 225 211
ia-enron-large 2000.9 1992.1 2020.6 1990.3 2085.6 1979.3
ia-enron-only 21.3 21.3 23 21 23.5 21
ia-fb-messages 259.9 250.8 255 254 257.3 249
ia-infect-dublin 51 50.8 54 50 56.6 47.9
ia-infect-hyper 3 3 3 3 6 3
ia-reality 81 81 81 81 81.1 81
ia-wiki-Talk 11952 11935 11952.1 11936.8 46626 11935
rec-amazon 30819.4 28775.9 29224.6 29064.8 57388.3 28365.7
rt-retweet 32 32 32 32 32.3 32
rt-retweet-crawl 75901.9 75740 75768.5 75753.4 N/A 75740
rt-twitter-copen 201.3 199 199.3 200 200.9 199
sc-ldoor 66709.2 66709.2 67363 65992.3 496162 65387.7
sc-msdoor 21592 21592 21797.2 21351.3 N/A 21073.1
sc-nasasrb 1429.7 1429.7 1518.7 1360.6 1785.7 1306.7
sc-pkustk11 2709.6 2709.6 2683.1 2671.1 N/A 2573.5
sc-pkustk13 1480.8 1480.8 1597.1 1462.5 45262 1399.1
sc-pwtk 5660.7 5659.2 6087.4 5620.4 141625.8 5455.1
sc-shipsec1 9420.9 9420.9 11544.3 9305.3 61189.1 9091.4
sc-shipsec5 12670 12665.4 16586.5 12350.5 89572.7 12069.8
soc-BlogCatalog 4899.9 4894 4901 4895 46114.3 4894
soc-FourSquare 61441.2 61017.8 61159 61050 366356 60984.9
soc-LiveMocha 1484.7 1471.8 1564.8 1434 41257 1430.1
soc-brightkite 13085.2 12951.5 13025.8 12977.4 33406.2 12940
soc-buzznet 133.4 131.5 136.4 130 42455.8 128.2
soc-delicious 56071.4 55765.2 55929.4 55770.3 358228.5 55725.2
soc-digg 66826.4 66179.7 66583 66227.6 N/A 66155
soc-dolphins 15.7 14 16 15 16 14
soc-douban 8373.1 8364 8364 8364 81199.9 8364
soc-epinions 6496.5 6437.5 6458.7 6443.5 6520.9 6435

82

Table A.5:
Minimum Dominating Set Results on 139 Real World Graphs from Net-
work Data Repository (Vertex Number), Part 2
Graph Gr GrR Gr Rev Gr V ote SAMDS Ours
soc-flickr 98758.6 98104.6 98404 98179.8 394866.5 98064.3
soc-flixster 91245.6 91019 91019.4 91043.3 N/A 91019
soc-gowalla 42554.6 41777.9 42245.6 41830.5 169392.6 41627.4
soc-karate 4 4 4 4 4.9 4
soc-lastfm 67401.6 67226.8 67233.4 67237.4 N/A 67226
soc-livejournal 816264 797399 807055.5 798791.5 N/A 794323.6
soc-orkut 125093.5 120744.5 134075 114415 N/A 113901
soc-pokec 222260 213956 222004.5 210930 N/A 209070.7
soc-slashdot 14207.7 14158.9 14208.4 14162.5 48639.9 14157
soc-twitter-follows 2269.1 2269 2269 2269 201632.3 2269
soc-wiki-Vote 216 210.2 213.4 210.4 213.6 209.2
soc-youtube 90671 89788.3 90495.7 89893.2 449984.4 89733.5
soc-youtube-snap 214184 213140 213581 213275.5 N/A 213122.1
tech-RL-caida 41465.6 40594.2 41559.8 40651.6 109468.6 40224.8
tech-WHOIS 621.8 615.1 624 617.6 635.9 611
tech-as-caida2007 2407.6 2400.2 2405.1 2400.2 2411.1 2400
tech-as-skitter 186905 184377 189407 183934 N/A 182386.6
tech-internet-as 3688.6 3679.3 3684.4 3681.3 3707.9 3679
tech-p2p-gnutella 12740.2 12572 12592 12581.3 45771.5 12571
tech-routers-rf 488.6 480.7 486.7 482.1 487.1 479
scc-enron-only 6 6 6 6 6.4 6
scc-fb-forum 436 436 436 436 436.1 436
scc-fb-messages 635 635 635 635 635 634
scc-infect-dublin 879.3 865.5 835.9 850 872.5 826.5
scc-infect-hyper 1 1 1 1 1 1
scc-reality 53.1 53 53 53 56.5 53
scc-retweet 17417.6 17415.2 17417 17416 17417.5 17415
scc-retweet-crawl 1120790 1120720 1120725 1120740 N/A 1120710
scc-rt-alwefaq 4102 4102 4102 4102 4102 4102
scc-rt-assad 2010 2010 2010 2010 2010 2010
scc-rt-bahrain 4614 4614 4614 4614 4614 4614
scc-rt-barackobama 9486 9486 9486 9486 9486.1 9486
scc-rt-damascus 2939 2939 2940 2939 2939.4 2939
scc-rt-dash 5949 5949 5949 5949 5949 5949
scc-rt-gmanews 8207 8207 8207 8207 8207 8207
scc-rt-gop 3709 3709 3709 3709 3709 3709
scc-rt-http 5687 5687 5687 5687 5687 5687
scc-rt-israel 3675 3675 3675 3675 3675 3675
scc-rt-justinbieber 9309 9309 9309 9309 9309 9309
scc-rt-ksa 5762 5762 5762 5762 5762 5762
scc-rt-lebanon 3365 3365 3365 3365 3365 3365
scc-rt-libya 5004 5004 5004 5004 5004 5004
scc-rt-lolgop 9483 9483 9483 9483 9483 9483
scc-rt-mittromney 7784 7784 7784 7784 7784.3 7784
scc-rt-obama 3036 3036 3036 3036 3036 3036
scc-rt-occupy 3054 3054 3054 3054 3054.3 3054
scc-rt-occupywallstnyc 3477 3477 3477 3477 3477 3477
scc-rt-oman 4441 4441 4441 4441 4441 4441
scc-rt-onedirection 7672 7672 7672 7672 7672.1 7672
scc-rt-p2 4771 4771 4771 4771 4771 4771
scc-rt-qatif 6708 6708 6708 6708 6708 6708
scc-rt-saudi 6783 6783 6783 6783 6783.1 6783
scc-rt-tcot 4491 4491 4491 4491 4491 4491
scc-rt-tlot 3506 3506 3506 3506 3506 3506
scc-rt-uae 4746 4746 4746 4746 4746 4746
scc-rt-voteonedirection 1829 1829 1829 1829 1829 1829
scc-twitter-copen 6413.6 6410.3 6412 6410 6416.6 6410
web-BerkStan 3053.6 3015.2 3052.3 3028.1 3072.7 3000
web-arabic-2005 17432.3 17050.9 17236.6 17114.4 81385.8 16946.9
web-edu 249 249 249 249 252.6 249
web-google 209.3 206 206.2 206 208 205
web-indochina-2004 1499.7 1489.7 1489 1495 1502.2 1489
web-it-2004 33274 33010.4 33015.2 33022.6 N/A 32997
web-polblogs 107.3 104 107 104.1 106.8 104
web-sk-2005 26760.3 26547.9 28315.2 26601.4 69232.6 26472.9
web-spam 847 834.9 837.8 835 845.4 831
web-uk-2005 1423.7 1421 1421 1421 N/A 1421
web-webbase-2001 1020.8 1006.5 1050.7 1011 1040.5 1005
web-wikipedia2009 353065 348155 352885 348537.5 N/A 347018.1

83

Table A.6:
Minimum Weighted Dominating Set Results on 139 Real World Graphs
with Different Sets of Parameter Combinations (solution weight), Part 1

Graph Ours (264) Ours (21) Ours (8) Ours (1)
bio-celegans 1792.8 1828 1838 1838
bio-diseasome 6601 6611 6611 6615.1
bio-dmela 113830.9 113830.9 113830.9 114560.2
bio-yeast 26305.6 26312 26312 26343.3
ca-AstroPh 135247.9 135416.9 135416.9 136131.1
ca-CSphd 46487.5 46523.2 46535.2 46945.2
ca-CondMat 209028.4 209037.1 209439.3 210572.1
ca-Erdos992 140378 140378 140378 140563
ca-GrQc 56351.9 56431 56568.6 56747.6
ca-HepPh 123935.1 124056.9 124056.9 124265.3
ca-MathSciNet 5240994 5244600 5244600 5269835
ca-citeseer 2889754 2894713 2896497 2914613
ca-coauthors-dblp 2534643 2546158 2546158 2555403
ca-dblp-2010 3444017 3445555 3445555 3447730
ca-dblp-2012 3685284 3689587 3689866 3712836
ca-hollywood-2009 3606478 3606478 3606478 3617160
ca-netscience 4264.1 4264.3 4265 4319.3
socfb-A-anon 17061460 17070800 17070800 17095100
socfb-B-anon 16126930 16132080 16132080 16161110
socfb-Berkeley13 94541.8 94541.8 94541.8 94924.5
socfb-CMU 26360.7 26360.7 26361 26553.3
socfb-Duke14 34046.7 34109 34131 34304
socfb-Indiana 95513.5 95577.5 95577.5 95886
socfb-MIT 31096.7 31096.7 31101 31177.1
socfb-OR 785667.2 786089.8 786089.8 788519.2
socfb-Penn94 169507.2 169559.3 169580.7 170542.9
socfb-Stanford3 59056.7 59090.5 59090.5 59267
socfb-Texas84 118939.6 119017.9 119017.9 119442.1
socfb-UCLA 99423 99423 99423 99775.5
socfb-UCSB37 60873.3 60873.3 60873.3 61014.2
socfb-UConn 61256.5 61260.4 61329.5 61610.3
socfb-UF 111322.4 111322.4 111322.4 111735.2
socfb-UIllinois 96473.9 96705.6 96745.6 97053.6
socfb-Wisconsin87 83819 83879 83879 83936.7
socfb-uci-uni 84069030 84084270 84084270 84153010
inf-power 122513.8 122800.5 122800.5 122973.4
inf-road-usa 628835100 628951500 628951500 630609900
inf-roadNet-CA 52519970 52524450 52524450 52639340
inf-roadNet-PA 28979500 28979500 28979500 29050040
ia-email-EU 72359 72367 72367 72408.1
ia-email-univ 15862.3 15862.3 15862.3 15935.1
ia-enron-large 146819.2 146819.2 146819.2 147147.8
ia-enron-only 1514 1516 1516 1522
ia-fb-messages 17926 17926 17926 18015.4
ia-infect-dublin 2373.9 2374 2374 2431
ia-infect-hyper 70 70 70 70
ia-reality 3601 3601 3601 3601
ia-wiki-Talk 973320 974313.5 974326.9 975305.7
rec-amazon 2102511 2103468 2104804 2113931
rt-retweet 1162 1162 1162 1162
rt-retweet-crawl 7130382 7131385 7131543 7147075
rt-twitter-copen 15412 15420.1 15435 15639.5
sc-ldoor 5443677 5444511 5444511 5448435
sc-msdoor 1571300 1571547 1571573 1573072
sc-nasasrb 39612.4 39964 39964 41523.8
sc-pkustk11 95938.9 96100.7 96100.7 96158.9
sc-pkustk13 57050.6 57383.4 57383.4 58036.2
sc-pwtk 291743.8 295548.7 295548.7 300450.7
sc-shipsec1 403784.6 404992.4 404992.4 406244.9
sc-shipsec5 530423.7 532945.7 532945.7 534082.6
soc-BlogCatalog 383529.3 383710.6 383776.7 384229.4
soc-FourSquare 5391189 5392623 5394607 5395300
soc-LiveMocha 94283.7 94292.9 94301.1 94737.2
soc-brightkite 981078.9 981336.1 981336.1 982608.6
soc-buzznet 7025 7070.4 7070.4 7160
soc-delicious 4903925 4904882 4906103 4908477
soc-digg 5453174 5459081 5459081 5463582
soc-dolphins 361 361 361 385
soc-douban 809560.6 809573.1 809933.4 809977.6
soc-epinions 500945.6 500961.5 500961.5 501857.6

84

Table A.7:
Minimum Weighted Dominating Set Results on 139 Real World Graphs
with Different Sets of Parameter Combinations (solution weight), Part 2

Graph Ours (264) Ours (21) Ours (8) Ours (1)
soc-flickr 7888499 7895167 7898808 7899993
soc-flixster 8604676 8605179 8608010 8608244
soc-gowalla 3066474 3067010 3067010 3073083
soc-karate 70 70 70 70
soc-lastfm 6062298 6062867 6064896 6065356
soc-livejournal 59628020 59635580 59635580 59816360
soc-orkut 7102610 7104485 7104485 7157335
soc-pokec 14600560 14601440 14601440 14659990
soc-slashdot 1066510 1067030 1067108 1067507
soc-twitter-follows 228773.1 228773.1 228774 228954
soc-wiki-Vote 14205.9 14205.9 14249.2 14272
soc-youtube 6923370 6924653 6924653 6941947
soc-youtube-snap 16773990 16786150 16786370 16805080
tech-RL-caida 3143612 3144663 3144663 3153399
tech-WHOIS 46409.8 46420.1 46441.7 46671.4
tech-as-caida2007 194861.3 195015.9 195057.2 195802
tech-as-skitter 13131270 13131270 13131270 13162260
tech-internet-as 297452.3 297509 297568.7 298265.4
tech-p2p-gnutella 1058023 1058458 1058920 1059031
tech-routers-rf 35652 35668.5 35668.5 35702
scc-enron-only 761 761 761 761
scc-fb-forum 38793.4 38793.4 38793.4 38813
scc-fb-messages 61308 61308 61308 61312.6
scc-infect-dublin 39273.2 39311.5 39398.4 39462.6
scc-infect-hyper 2 2 2 2
scc-reality 2059 2077 2077 2077.1
scc-retweet 1740641 1740641 1740670 1740702
scc-retweet-crawl 112448000 112448000 112449000 112450000
scc-rt-alwefaq 408445 408445 408445 408445
scc-rt-assad 199153 199153 199153 199153
scc-rt-bahrain 458551 458551 458551 458551
scc-rt-barackobama 949039 949039 949039 949039
scc-rt-damascus 292132 292132 292132 292132
scc-rt-dash 595074 595074 595074 595097
scc-rt-gmanews 819546 819546 819546 819546
scc-rt-gop 367859 367859 367859 367859
scc-rt-http 566861 566861 566894 566894
scc-rt-israel 364585 364585 364585 364585
scc-rt-justinbieber 932075 932098 932098 932098
scc-rt-ksa 576943 576943 576943 576943
scc-rt-lebanon 335789 335789 335789 335789
scc-rt-libya 500742 500742 500742 500742
scc-rt-lolgop 946761 946761 946761 946761
scc-rt-mittromney 777325 777325 777350 777350
scc-rt-obama 301927 301927 301927 301927
scc-rt-occupy 301276 301276 301276 301317
scc-rt-occupywallstnyc 348513 348513 348513 348513
scc-rt-oman 442530 442530 442530 442530
scc-rt-onedirection 766640 766640 766640 766677
scc-rt-p2 477965 477965 477965 477965
scc-rt-qatif 669238 669238 669238 669238
scc-rt-saudi 681215 681215 681215 681215
scc-rt-tcot 445936 445936 445936 445936
scc-rt-tlot 347267 347267 347267 347267
scc-rt-uae 473488 473488 473488 473488
scc-rt-voteonedirection 180898 180898 180898 180898
scc-twitter-copen 629220.7 629247.9 629252.8 629274.6
web-BerkStan 290274.8 290274.8 290368 290458.1
web-arabic-2005 1579468 1579468 1579468 1580014
web-edu 23106 23106 23106 23106.2
web-google 15059.3 15067.5 15069.3 15148.4
web-indochina-2004 117075.6 117075.6 117082.3 117100.1
web-it-2004 2579465 2587880 2587880 2592358
web-polblogs 7217 7245 7296.6 7331.2
web-sk-2005 2253954 2254966 2254966 2254966
web-spam 62012.9 62012.9 62012.9 62242
web-uk-2005 93183 93183.1 93183.1 93183.2
web-webbase-2001 95217.8 95266.8 95266.8 95590.2
web-wikipedia2009 26954720 26959580 26959580 27046630

85

Table A.8:
Minimum Dominating Set Results on 139 Real World Graphs with Dif-
ferent Sets of Parameter Combinations (Vertex Number)

Graph Ours (410) Ours (21) Ours (8) Ours (1) Graph Ours (410) Ours (21) Ours (8) Ours (1)
bio-celegans 29 29 29 29 soc-flickr 98064.3 98066.5 98067 98067.4
bio-diseasome 96 96 96 96 soc-flixster 91019 91019 91019 91019
bio-dmela 1453 1453 1453 1453 soc-gowalla 41627.4 41636.2 41636.9 41642.8
bio-yeast 353 353 353 353.1 soc-karate 4 4 4 4
ca-AstroPh 2070 2073 2073 2076 soc-lastfm 67226 67226 67226 67226
ca-CSphd 523 523 523 523 soc-livejournal 794323.6 794389.9 794389.9 794501.4
ca-CondMat 2996.1 3003.3 3004 3005.2 soc-orkut 113901 113901.5 113911.3 114318.5
ca-Erdos992 1446 1446 1446 1446 soc-pokec 209070.7 209201.8 209201.8 209549.3
ca-GrQc 776 777.9 777.9 778.1 soc-slashdot 14157 14157.3 14157.3 14157.3
ca-HepPh 1665 1667.8 1667.8 1668.2 soc-twitter-follows 2269 2269 2269 2269
ca-MathSciNet 65577.3 65585.1 65585.1 65588.2 soc-wiki-Vote 209.2 209.6 209.6 209.8
ca-citeseer 33214.8 33227.5 33227.5 33240.9 soc-youtube 89733.5 89733.7 89734.1 89734.4
ca-coauthors-dblp 36010 36425 36425 36637.9 soc-youtube-snap 213122.1 213122.1 213122.1 213122.2
ca-dblp-2010 35367.4 35379.6 35379.6 35391.3 tech-RL-caida 40224.8 40234.3 40234.3 40246.5
ca-dblp-2012 46153.2 46167.3 46167.3 46174.8 tech-WHOIS 611 611 611.5 612
ca-hollywood-2009 49493.8 49921 49921 50188.6 tech-as-caida2007 2400 2400 2400 2400
ca-netscience 55 55 55 55 tech-as-skitter 182386.6 182472.6 182483.3 182538.8
socfb-A-anon 201698.6 201699.1 201699.1 201700.7 tech-internet-as 3679 3679 3679 3679
socfb-B-anon 187032.8 187034.3 187034.3 187034.9 tech-p2p-gnutella 12571 12571 12571 12571
socfb-Berkeley13 1642 1644.1 1644.1 1658.1 tech-routers-rf 479 479 479 479
socfb-CMU 444.1 449 449 455 scc-enron-only 6 6 6 6
socfb-Duke14 598 602 602 605 scc-fb-forum 436 436 436 436
socfb-Indiana 1729 1731.1 1731.1 1742.8 scc-fb-messages 634 635 635 635
socfb-MIT 520.2 522 522 524.1 scc-infect-dublin 826.5 830 830 831.1
socfb-OR 10728.6 10744.2 10744.2 10757.5 scc-infect-hyper 1 1 1 1
socfb-Penn94 3038.8 3038.8 3039.1 3060.9 scc-reality 53 53 53 53
socfb-Stanford3 931 932 932 936.1 scc-retweet 17415 17415 17415 17415
socfb-Texas84 2163 2167 2167 2183.1 scc-retweet-crawl 1120710 1120710 1120710 1120710
socfb-UCLA 1651.1 1651.1 1651.1 1664.2 scc-rt-alwefaq 4102 4102 4102 4102
socfb-UCSB37 1109 1111 1111 1118.2 scc-rt-assad 2010 2010 2010 2010
socfb-UConn 1098 1106.8 1106.8 1115.1 scc-rt-bahrain 4614 4614 4614 4614
socfb-UF 2065.4 2068.1 2074 2088.1 scc-rt-barackobama 9486 9486 9486 9486
socfb-UIllinois 1788.2 1789.1 1789.1 1805 scc-rt-damascus 2939 2939 2939 2939
socfb-Wisconsin87 1511.2 1517.1 1517.1 1526.2 scc-rt-dash 5949 5949 5949 5949
socfb-uci-uni 865675 865676 865676 865676 scc-rt-gmanews 8207 8207 8207 8207
inf-power 1487.1 1488.5 1488.5 1488.6 scc-rt-gop 3709 3709 3709 3709
inf-road-usa 7974437 7987953 7987953 7999017 scc-rt-http 5687 5687 5687 5687
inf-roadNet-CA 609320.4 610960.9 610960.9 611801.4 scc-rt-israel 3675 3675 3675 3675
inf-roadNet-PA 338740.6 339897.8 339897.8 340075.5 scc-rt-justinbieber 9309 9309 9309 9309
ia-email-EU 755 755 755 755 scc-rt-ksa 5762 5762 5762 5762
ia-email-univ 211 211 211 212 scc-rt-lebanon 3365 3365 3365 3365
ia-enron-large 1979.3 1982 1982.3 1982.4 scc-rt-libya 5004 5004 5004 5004
ia-enron-only 21 21 21 21 scc-rt-lolgop 9483 9483 9483 9483
ia-fb-messages 249 249 249 249 scc-rt-mittromney 7784 7784 7784 7784
ia-infect-dublin 47.9 49.1 50 50 scc-rt-obama 3036 3036 3036 3036
ia-infect-hyper 3 3 3 3 scc-rt-occupy 3054 3054 3054 3054
ia-reality 81 81 81 81 scc-rt-occupywallstnyc 3477 3477 3477 3477
ia-wiki-Talk 11935 11935 11935 11935 scc-rt-oman 4441 4441 4441 4441
rec-amazon 28365.7 28393.4 28393.4 28407 scc-rt-onedirection 7672 7672 7672 7672
rt-retweet 32 32 32 32 scc-rt-p2 4771 4771 4771 4771
rt-retweet-crawl 75740 75740 75740 75740 scc-rt-qatif 6708 6708 6708 6708
rt-twitter-copen 199 199 199 199 scc-rt-saudi 6783 6783 6783 6783
sc-ldoor 65387.7 65556.6 65587.9 65610.9 scc-rt-tcot 4491 4491 4491 4491
sc-msdoor 21073.1 21122 21133.1 21140.3 scc-rt-tlot 3506 3506 3506 3506
sc-nasasrb 1306.7 1310.5 1316.8 1317.9 scc-rt-uae 4746 4746 4746 4746
sc-pkustk11 2573.5 2593.3 2601 2601.4 scc-rt-voteonedirection 1829 1829 1829 1829
sc-pkustk13 1399.1 1423 1428 1439.9 scc-twitter-copen 6410 6410 6410 6410
sc-pwtk 5455.1 5455.1 5461.7 5466.6 web-BerkStan 3000 3000 3000 3001
sc-shipsec1 9091.4 9126.6 9143.1 9143.8 web-arabic-2005 16946.9 16957 16957 16967.8
sc-shipsec5 12069.8 12262.7 12262.7 12273.1 web-edu 249 249 249 249
soc-BlogCatalog 4894 4894 4894 4894 web-google 205 205 205 205.1
soc-FourSquare 60984.9 60987.5 60987.5 60987.5 web-indochina-2004 1489 1489 1489 1489.1
soc-LiveMocha 1430.1 1430.1 1430.1 1434.8 web-it-2004 32997 32997 32997 32997.2
soc-brightkite 12940 12941 12941 12941 web-polblogs 104 104 104 104
soc-buzznet 128.2 129 129 129 web-sk-2005 26472.9 26476.1 26480.7 26482.3
soc-delicious 55725.2 55726.4 55726.4 55727.9 web-spam 831 832 832 832.1
soc-digg 66155 66155.1 66155.1 66156.5 web-uk-2005 1421 1421 1421 1421
soc-dolphins 14 14 14 14 web-webbase-2001 1005 1005.3 1005.8 1005.8
soc-douban 8364 8364 8364 8364 web-wikipedia2009 347018.1 347052.7 347068 347097.2
soc-epinions 6435 6435 6435 6435

86

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF FIGURES
	LIST OF TABLES
	Algorithms for Weighted Set Cover and Minimum Weighted Dominating Set Problems
	Introduction
	Related Work
	Our Work
	Weighted Set Cover Problem
	Minimum Weighted Dominating Set
	Theoretic Analysis

	Experimental Evaluation
	Weighted Set Cover Problem
	Set Cover Problem
	Minimum Weighted Dominating Set Problem
	Minimum Dominating Set Problem
	Discussion
	Parameter Setting
	Efficiency

	Conclusion

	Affinity Learning for Mixed Data Clustering
	Introduction
	Related Work
	Our Framework
	Mixed Data Processing
	Affinity Learning
	Clustering with Learned Affinities

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions

	Clustering Aggregation as Maximum-Weight Independent Set
	Introduction
	Our Work
	Experimental Evaluation
	Conclusion

	BIBLIOGRAPHY
	APPENDICES

