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The Bayesian Approach

6 - Random field model parameters
X - Unknown image

¢ - Physical system model parameters

Y - Observed data

Random Field
[ Mode| |—>| Physical SyStemHData CoIIectlon]

9 (P

e Random field may model:

— Achromatic/color/multispectral image
— Image of discrete pixel classifications

— Model of object cross-section
e Physical system may model:

— Optics of image scanner
— Spectral reflectivity of ground covers (remote sensing)

— Tomographic data collection



Bayesian Versus Frequentist?

e How does the Bayesian approach differ?

— Bayesian makes assumptions about prior behavior.
— Bayesian requires that you choose a model.
— A good prior model can improve accuracy.

— But model mismatch can impair accuracy
e When should you use the frequentist approach?
— When (# of data samples)>>(# of unknowns).

— When an accurate prior model does not exist.

— When prior model is not needed.
e When should you use the Bayesian approach?
— When (# of data samples)~(# of unknowns).

— When model mismatch is tolerable.

— When accuracy without prior is poor.



Examples of Bayesian Versus Frequentist?

Random Field
[ Model I 4" Physical SyStemHData CoIIchon]

9 <P

e Bayesian model of image X
— (# of image points)a(# of data points.)
— Images have unique behaviors which may be modeled.

— Maximum likelihood estimation works poorly.

— Reduce model mismatch by estimating parameter 6.
e Frequentist model for 6 and ¢

— (# of model parameters)<<(# of data points.)
— Parameters are difficult to model.

— Maximum likelihood estimation works well.



Markov Chains

e Topics to be covered:
— 1-D properties
— Parameter estimation

— 2-D Markov Chains

e Notation: Upper case = Random variable



Markov Chains

e Definition of (homogeneous) Markov chains
p(xn|zi t < n) = plz,|r,1)

e Therefore, we may show that the probability of a sequence is given by
N
p(x) = p(zo) T p(zn|zn-1)

n=1

e Notice: X, is not independent of X,, 4

p(llfn|ilfz 1 7& n) — p(ajn|xn—17 xn+1>



Parameters of Markov Chain

e [ransition parameters are:

‘91}2' = p(:Cn = i‘mn—l — ])

1 —
e Example: 6 = l p P
p l—=p
1 1- 1- 1
P Ow O O
D b b b
D P P p
) €Y rre € s € e €
Xo X, X Xa X,

e p is the probability of changing state.
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Parameter Estimation for Markov Chains

e Maximum likelihood (ML) parameter estimation

0 = arg meaxp(a:]@)

e For Markov chain
0=

Ji
> hj k

where f;; is the histogram of transitions
hj,i = %:(5(5671 =¥ & Tpn—1 — ])

e Eixample
x,=20,0,0,1,1,1,0,1,1,1,1,1

g — h()’() hO,l o 2 2
Vhio hia| |16
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2-D Markov Chains

X(0,0) | X0.1) | X0,2)| X03) | X(0,4)

X10 | Xan | X2 | Xa3) | X@.4
N

X2,0) | Xen] X2 | X@3) | X@a)

X3,0 | K@) | X@.2) | X@.3) | X34

e Advantages:

— Simple expressions for probability

— Simple parameter estimation
e Disadvantages:

— No natural ordering of pixels in image

— Anisotropic model behavior

12



Discrete State Markov Random Fields

e Topics to be covered:

— Definitions and theorems
— 1-D MRF’s
— Ising model

— M-Level model

— Line process model

13



Markov Random Fields

e Noncausal model
e Advantages of MRF’s

— Isotropic behavior

— Only local dependencies
e Disadvantages of MRF's
— Computing probability is difficult

— Parameter estimation is difficult

e Key theoretical result: Hammersley-Clifford theorem

14



Definition of Neighborhood System and Clique

e Define

S - set of lattice points
s - a lattice point, s € S
X, - the value of X at s
Js - the neighboring points of s

e A neighborhood system ds must be symmetric

reods=secdr alsos¢ds
e A clique is a set of points, ¢, which are all neighbors of each other

Vs,r € c,r € Os

15



Example of Neighborhood System and Clique

e Eixample of 8 point neighborhood

X00 | X0, | X02 | X©0.3) | X(0.4)

Xwo) | X | Xa2) | X@3) | Xwa

X(2,0) X(z,l) X(z,z) X(2’3) X(2,4) Neighbors of X(z,z)

X@o) | X | Xe2) | X693 | X6

X0 | X@a1) | X@2) | X@a3) | X@

e Eixample of cliques for 8 point neighborhood
1-point clique D

2-point cliques [ || E = N

3-point cliques | |

4-point cliques

Not a clique

16



Gibbs Distribution

x. - The value of X at the points in clique c.

Vi(x.) - A potential function is any function of z..

e A (discrete) density is a Gibbs distribution if
1

C is the set of all cliques

Z is the normalizing constant for the density.

e / is known as the partition function.

o U(x)= cgc V.(x.) is known as the energy function.

17



Markov Random Field

e Definition: A random object X on the lattice .S with neighborhood system
0s is said to be a Markov random field if for all s € S

plas|z, for r # s) = p(zs|zo,)

18



Hammersley-Clifford Theorem[14]

X is a Markov random field
& <—
Ve, P{X =z}>0

P{X =z} has the form
of a Gibbs distribution

e Gives you a method for writing the density for a MRF
e Does not give the value of Z, the partition function.

e Positivity, P{X = x} > 0, is a technical condition which we will generally
assume.

19



Markov Chains are MRF’s

~_

Neighbors of X,

e Neighbors of n are On = {n —1,n + 1}
e Cliques have the form ¢ = {n — 1,n}

e Density has the form

p(a) = plao) T pleafz,-1)

N
— plao)exp | £ logplanen-)|

n=

e The potential functions have the form

v(xm xn—l) — 1ng<$n|xn—1>

20



1-D MRF’s are Markov Chains

o Let X, beal-D MRF with on={n—1,n+1}
e The discrete density has the form of a Gibbs distribution

p(&) = plao) exp| & V(@n,a0-1)]

e [t may be shown that this is a Markov Chain.

e Transition probabilities may be difficult to compute.

21



The Ising Model: A 2-D MRF|[100]

Cliques: | X;|Xq

X

Boundary:

O|0o|l0O|O0O|lO0O|O|O (O
OO0 |O|O (O
O|0o|lOoO|lOoO|j0o|lO|O (O
eollolieoliel NI _} e
eoRiol | ] (o LN _} (e o)
ol (kP |FP(FkP|FL|FL]O
O oo |CO|O|F |FL]O
O|0O|l0O|O0O(O0O|O|O (O

e Potential functions are given by
V<377“> .233) — 65<xr ?A 373)

where 3 is a model parameter.

e Energy function is given by

ZC V.(xz.) = B(Boundary length)
ce

e Longer boundaries = less probable
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Critical Temperature Behavior|[127, 126, 100]

A
Y

Center Pixel X;:

W o|lo|ol—r |RlJO|O|W| 2

prd
W 00|00 |(W0|W ||
W o|jojo|jo|jo|jo|jOo|@
Wo(o|jlo(o|jo(jo|o|@
W o|ojo|jo|jo|jo|jOo|@
O, |OF |P|O O
Ik (FP|IP|IP[(FR[(FR|RL]T
W oo (|, ]I
W WO W(W|(W0|W W |

|

° é is analogous to temperature.

e Peierls showed that for G > (.
lim P(X,=0/B=0)# Nlim P(Xy=0B=1)

N—o0
e The effect of the boundary does not diminish as N — oo!

e 3.~ .88 is known as the critical temperature.
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Critical Temperature Analysis|[122]

e Amazingly, Onsager was able to compute

L
EXo|B = 1] = | (1= @) 1£8> 5

0 if B < B.

15

o

0.5

Mean Field Value

_05 Il Il Il Il Il Il Il Il Il
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Inverse Temperature

e Onsager also computed an analytic expression for Z(T')!

24



M-Level MRF|[16]
E

x| x|
ENRRIN

Cliques:

O|O|O0O(0O[O0O|O0|O|O
OO0 |O]N]O
O |OIN[(N]JO OO |O
OIN N[N |P]O|O
OO IN]F |P]O|O
O |k, (kP[P |F|FL]O
OO0 (O[O | ]O
OO0 |0 |O

Neighbors: Xs

e Define C; 2 ( hor. /vert. cliques) and Co 2 ( diag. cliques)

e Then
V(. z.) = B10(x, # x4) for {x,, x5} € C
D Bed(x, #£ xs) for {x,, x5} € Co

e Define

1>

> oz, # x,
{s,r}eCy ( # )

> oz, # s
{s,r}eCs ( ?é )

1>

e Then the probability is given by

1

pla) = exp{—(Bita(x) + Bt}

25



Conditional Probability of a Pixel

Cliques Containing Xq

Neighbors Xq Xs Xq Xg
X5| X1 Xg Ks] [ Xs[Xs
Xa| Xs| Xo Xa| Xs Xs| Xo
X8 X3 X7 Xs Xs Xs

Xg X3 X5

e The probability of a pixel given all other pixels is

= _
p(xs‘x#Q — M€1e>1<p {—Scec Velze) }
Sr=0 7 eXP { — Zeec Ve(ze) }

e Notice: Any term V,(x.) which does not include z, cancels.

exp {—ﬁ1 £i 1 0(xs # xi) — Bo=b_s 0(ws # 372)}

Lg|Lits) = —_

26



Conditional Probability of a Pixel (Continued)

Neighbors X

11110 V1(0,%39 = 2 V5(0,%5¢) = 1
11X 0 Vi(1X39 =2 Vy(l,x5¢) = 3

ololo
e Define
v1 (s, 0T ) 2 4 of horz. /vert. neighbors # x
v9(xs, Ox) = # of diag. neighbors # x,
e Then
p<x3|xi7és> = leexp {—51711(3357 8%) — Bova(zs, 3%)}

where Z’ is an easily computed normalizing constant

e When 31, 32 > 0, X, is most likely to be the majority neighboring class.
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Line Process MRF [68]

Pixels Clique Potentials

B1=0

o o

o o

¢ o MRF

e o eloeieolole@ =27

o o cieicieie
“““ B3=1.8

“““ 34=0.9

=

_ - _>

()

-Q

—

D

_ _Wu

ol el 0

ol el 0

ole1 0

ole1l 0

ole1 0
o/l ® o/ 06 o066 o/ 0 00 o
o/l ® o/ 06 o066 o ©o o o o

™
]
1
[ueY
[ee]

™

o
il
N
~

e Line sites fall between pixels
e The values (3, - - -, #o determine the potential of line sites

e The potential of pixel values is
(s —x,)* ifls=0

Viws, @ lrs) = 4 if 1, = 1

e The field is

— Smooth between line sites

— Discontinuous at line sites
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Simulation

e Topics to be covered:

— Metropolis sampler
— Gibbs sampler

— Generalized Metropolis sampler

29



Generating Samples from a Gibbs Distribution

e How do we generate a random variable X with a Gibbs distribution?

1

p(z) = - exp {~U(z)}

e Generally, this problem is difficult.
e Markov Chains can be generated sequentially

e Non-causal structure of MRF’s makes simulation difficult.

30



The Metropolis Sampler[118, 100]

e How do we generate a sample from a Gibbs distribution?

1

pla) = exp {~U(2)}

e Start with the sample 2¥, and generate a new sample W with probability
q(wlz").
Note: g(w|z") must be symmetric.
q(wlz") = g(a*|w)
e Compute AE(W) = U(W) — U(z"), then do the following:
If AE(W) < 0
— Accept: Xt =W
It AE(W) >0
— Accept: X*! = W with probability exp{—AE((W)}
— Reject: X*! = 2* with probability 1 — exp{—AE (W)}

31



Ergodic Behavior of Metropolis Sampler

e The sequence of random fields, X*, form a Markov chain.

o Let p(z12*) be the transition probabilities of the Markov chain.

e Then X¥ is reversible
p(z* ") exp{—U(a")} = exp{—U(z""")}p(z"]z"*")

e Therefore, if the Markov chain is irreducible, then

lim P{X* = o} = ;exp{—U(m)}

o If every state can be reached, then as & — oo, X* will be a sample from
the Gibbs distribution.

32



Example Metropolis Sampler for Ising Model

0
1(X|0
0

e Assume 2% = 0.

e Generate a binary R.V., W such that P{W =0} = 0.5.
AE(W) = UW) = Ul(a")

S

(0 #W=0
28 if W =1
It AE(W) < 0
— Accept X! =W
It AE(W) >0

— Accept: XFT1 = W with probability exp{—AE(W)}
— Reject: XFH = 2% with probability 1 — exp{—AE (W)}

e Repeat this procedure for each pixel.

e Warning: for 8 > (3. convergence can be extremely slow!
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Example Simulation for Ising Model(3 = 1.0)

e Jest 1

Ising mocel: Beta = 1000000, Heration = 10

Ising mocel: Beta = 1000000, Heration = 50

Ising modet: Beta = 1.000000, eraton = 100

]
! ! [
! ! [
: : o
-
1 1 m
. [
! ! -
[ -
ol -
] -
= -

e Test 3

Ising model: Beta = 1000000, Heration = 10

e Test 3

1sing model. Beta = 1000000, Heraton = 1

34
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Advantages and Disadvantages of Metropolis
Sampler

e Advantages

— Can be implemented whenever AFE is easy to compute.
— Has guaranteed geometric convergence.

e Disadvantages
— Can be slow if there are many rejections.

— Is constrained to use a symmetric transition function g(z*|z%).
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Gibbs Sampler|68]

e Replace each point with a sample from its conditional distribution
pla|a; i # s5) = plag|as)
e Scan through all the points in the image.
e Advantage
— Eliminates need for rejections = faster convergence

e Disadvantage

— Generating samples from p(xs|xss) can be difficult.
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Generalized Metropolis Sampler|80, 129]

e Hastings and Peskun generalized the Metropolis sampler for transition func-
tions g(w|z*) which are not symmetric.

e The acceptance probability is then

q(z"|w)

q(wlz®)

az" w) = min {1,

exp{—AE(w)}

e Special cases
q(w|z*) = q(2*|z) = conventional Metropolis
q(ws|x¥) = p(:z:ﬂxi%s)‘x,;:ws = Gibbs sampler
e Advantage

— Transition function may be chosen to minimize rejections|76]
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Parameter Estimation for Discrete State MRF’s

e Topics to be covered:
— Why is it difficult?
— Coding/maximum pseudolikehood

— Least squares

38



Why is Parameter Estimation Difficult?

e Consider the ML estimate of 4 for an Ising model.

e Remember that
t1(x) = (# horz. and vert. neighbors of different value.)

e Then the ML estimate of 3 is

75 e =B (@)

= argmax {—Bti(x) —log Z(B)}

B = arg mgx

e However, log Z(3) has an intractable form
log Z(8) = log > exp {—Bt1(z)}

e Partition function can not be computed.

39



Coding Method /Maximum Pseudolikelihood[15, 16]

OV e vV e vVew
4 pt A B A B AR AR

Neighborhood e T 06T 6T o T ® Codel
A H A EH AR AR ¥ Code 2
oV eV eV ew A Code 3
A B A EBAHER AR
m Code 4

oV e VeV e vV
A B A B A AR

e Assume a 4 point neighborhood
e Separate points into four groups or codes.

e Group (code) contains points which are conditionally independent given the
other groups (codes).

B:argmﬁax I plxs|Tss)

seCodey,

e This is tractable (but not necessarily easy) to compute

40
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Least Squares Parameter Estimation|49]

e [t can be shown that for an Ising model
P{XS — 1|£Ijas}
P{X,; =0|zrss}

log = = (Vi(l|zas) — Vi(0]zps))
e For each unique set of neighboring pixel values, xgs, we may compute

P{Xs=1|zps}
P{Xs=0lzgs}

— The value of (Vi(1]zgs) — Vi(0]zss))

— This produces a set of over-determined linear equations which can be
solved for 3.

— The observed rate of log

e This least squares method is easily implemented.

41



Theoretical Results in Parameter Estimation for
MRF’s

e Inconsistency of ML estimate for Ising model|[130, 131]

— Caused by critical temperature behavior.

— Single sample of Ising model cannot distinguish between high (G with
mean 1/2, and low § with large mean.

— Not identifiable
e Consistency of maximum pseudolikelihood estimate[69]

— Requires an identifiable parameterization.

42



Application of MRF’s to Segmentation

e Topics to be covered:

— The Model

— Bayesian Estimation
— MAP Optimization

— Parameter Estimation

— Other Approaches

43



Bayesian Segmentation Model

Y - Texture feature vectors
observed from image.

X - Unobserved field containing
the class of each pixel

e Discrete MRF is used to model the segmentation field.

e Each class is represented by a value X, € {0,--- M — 1}

e The joint probability of the data and segmentation is
P{Y € dy, X =z} = p(y|z)p(z)

where

— p(y|x) is the data model

— p(x) is the segmentation model

44



Bayes Estimation

o C'(x, X) is the cost of guessing x when X is the correct answer.
e X is the estimated value of X
e E[C(X, X)] is the expected cost (risk).

e Objective: Choose the estimator X which minimizes E[C(X, X)].

45



Maximum A Posteriori (MAP) Estimation

o Let Cx, X)=0d(x # X)
e Then the optimum estimator is given by

XMAP = arngpr\y(x\Y)

Py(Y, )
py(Y)

= argmax {log p(Y'|z) + log p(z)}

= argmax log

e Advantage:
— Can be computed through direct optimization
e Disadvantage:

— Cost function is unreasonable for many applications

46



Maximizer of the Posterior Marginals (MPM)
Estimation|116]

o Let C(z, X) = 825(5(335 # X;)
e Then the optimum estimator is given by

XMPM — arg H}%prs\y@sly)
e Compute the most likely class for each pixel

e Method:

— Use simulation method to generate samples from p,, (z|y).

— For each pixel, choose the most frequent class.

e Advantage:
— Minimizes number of misclassified pixels
e Disadvantage:

— Difficult to compute

47



MAP Optimization for Segmentation

e Assume the data model

py\x(y’x> — sle_[Sp<yS|xS>

e And the prior model (Ising model)

pa(z) = = exp{—Ph())

=
e Then the MAP estimate has the form
& = argmin {—log py,(y|z) + Bt1(z)]

e This optimization problem is very difficult

48



Iterated Conditional Modes [16]

e The problem:

aAjMAP — al'g mlin {_ gS 1ngy3|x5<ys‘xs) + ﬂt1<ZIZ>}

e [teratively minimize the function with respect to each pixel, z5.

Ts = arg I%lsn {_ log py, [« (Ys|Ts) + ﬁvl@jsm@s)}

e This converges to a local minimum in the cost function

49



Simulated Annealing [68]

e Consider the Gibbs distribution

;exp{—;U(x)}

where
U(@ = S%:S 1ngys|$8<y5‘x5) + 5t1<37>
e AsT'— 0, the distribution becomes clustered about 2 ,4p.

e Use simulation method to generate samples from distribution.

e Slowly let T" — 0.

o If T} =+ ﬁgg - for iteration k, the the simulation converges to Z;4p almost
surely.

e Problem: This is very slow!
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Multiscale MAP Segmentation

e Renormalization theory|72]

— Theoretically results in the exact MAP segmentation
— Requires the computation of intractable functions

— Can be implemented with approximation
e Multiscale resolution segmentation|23]

— Performs ICM segmentation in a coarse-to-fine sequence

— Each MAP optimization is initialized with the solution from the previous
coarser resolution

— Used the fact that a discrete MRF constrained to be block constant is
still a MRF.

e Multiscale Markov random fields|97]
— Extended MRF to the third dimension of scale

— Formulated a parallel computational approach
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Segmentation Example

e [terated Conditional Modes (ICM): ML ; ICM 1; ICM 5; ICM 10
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Texture Segmentation Example

al|b
c|d

a) Synthetic image with 3 textures b) ICM - 29 iterations ¢) Simulated
Annealing - 100 iterations d) Multiresolution - 7.8 iterations
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Parameter Estimation

Random Field
[ Model I _’l Physical SyStemHData Collectlon]

9 <P

e (Question: How do we estimate 6 from Y7

e Problem: We don’t know X!
e Solution 1: Joint MAP estimation [104]
(0,2) = arg nfelaxp(y, x|6)

— Problem: The solution is biased.

e Solution 2: Expectation maximization algorithm [9, 70]
o"1 = arg max Ellogp(Y, X|0)|Y =1y, 0"]

— Expectation may be computed using simulation techniques or mean field
theory.
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Other Approaches to using Discrete MRFs

e Dynamic programming does not work in 2-D, but a number of researchers

have formulated approximate recursive solutions to MAP estimation[48,
169].

e Mean field theory has also been studied as a method for computing the
MPM estimate[176].
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Gaussian Random Process Models

e Topics to be covered:

— Autoregressive (AR) models

— Simultaneous Autoregressive (SAR) models
— Gaussian MRE’s

— Generalization to 2-D

o6



Autoregressive (AR) Models

00
€n = Tp — kz xn—k’hk
=1

e H(e’*) is an optimal predictor = e(n) is white noise.

e The density for the N point vector X is given by

1 1
pe(x) = ~ CXP {—éaztAtAx}

where

e The power spectrum of X is
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Simultaneous Autoregressive (SAR) Models[95, 94]

v
0 ~ HE) |-
€n = Tp — Z (xn—k - xn—i—k‘)hk’

€n

e c(n) is white noise = H(e’*) is not an optimal non-causal predictor.

e The density for the N point vector X is given by

1 1
pe(x) = 7 &XP {—éxtAtAx}

where

1 _hm—n
A = -
—Hhy—m 1

N & :
Z = 2mN2| A7 & (2m) N2 exp{—Q—/ log |1 — H(ejw)\dw}
T /T

e The power spectrum of X is

0.2

Sx(ejw) — ‘1 - He(ejw)‘Q
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Conditional Markov (CM) Models (i.e.
MRF’s)[95, 94]

v
% ~ G(e") |-
€n = Ty — Z (xn—k - xn+k)gk

€n

e G(e/¥) is an optimal non-causal predictor = e(n) is not white noise.

e The density for the N point vector X is given by

1 1
() = —exp {——xth}

Z 2
where
1 —9m—n
B = g
—9n—m 1
_ N/2|1a(—1/2 N/2 N = w
Z = (2m)" BT & (2m)" C exp . log(1 — G(e’*))dw
T —T
e The power spectrum of X is
2
: o
S.(eY) = L
) = T Gy
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Generalization to 2-D

e Same basic properties hold.
e Circulant matrices become circulant block circulant.
e Toeplitz matrices become Toeplitz block Toeplitz.

e SAR and MRF models are more important in 2-D.
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Non-Gaussian Continuous State MRF'’s

e Topics to be covered:

— Quadratic functions
— Non-Convex functions
— Continuous MAP estimation

— Convex functions
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Why use Non-Gaussian MRF’s?

e Gaussian MRF’s do not model edges well.

e In applications such as image restoration and tomography, Gaussian MRE’s
either

— Blur edges

— Leave excessive amounts of noise
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Gaussian MRF’s

e Gaussian MRF’s have density functions with the form

1 2 2
— 5 — S - bsr s — Ly
o = |- st 5 ble =]

e We will assume a, = 0.

e The terms |z, — z,|* penalize rapid changes in gray level.

e MAP estimate has the form

= g {~Yogp(yle) + 5 bale, o,/
x {s,r}eC

e Problem: Quadratic function, | - |?, excessively penalizes image edges.
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Non-Gaussian MRF’s Based on Pair-Wise Cliques

e We will consider MRF’s with pair-wise cliques

(@)= { > b (x - :1:)}
T) = —expi— -
b A P {s,r}eC P o

|zs — x| - is the change in gray level.

o - controls the gray level variation or scale.

p(A):
— Known as the potential function.

— Determines the cost of abrupt changes in gray level.

— p(A) = |AJ* is the Gaussian model.

dp(A).
p(A) =43
— Known as the influence function from “M-estimation”[139, 85].

— Determines the attraction of a pixel to neighboring gray levels.
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Non-Convex Potential Functions

Authors p(A) Ref.  Potential func. Influence func.

Geman and McClure %ZQ 70, 71]

Bike_Zsserman Ptental Furcton Blake_Zssermn nfuence Funcion

Blake and Zisserman min {A% 1} [20, 19]

Hebert_Leahy Infuence Funcron

Hebert and Leahy log (1+ A?)  [81]

‘Geman Reynolis posenal Funcion Geman_Reynos nfuence Functon

15} .\J\

Geman and Reynolds THAl 66]
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Properties of Non-Convex Potential Functions

e Advantages
— Very sharp edges

— Very general class of potential functions
e Disadvantages

— Difficult (impossible) to compute MAP estimate
— Usually requires the choice of an edge threshold

— MAP estimate is a discontinuous function of the data
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Continuous (Stable) MAP Estimation|[25]

e Minimum of non-convex function can change abruptly.

A LN

TXl %) X1 }(2
location of location of
minimum minimum

e Discontinuous MAP estimate for Blake and Zisserman potential.

Noisy Signals Unstable Reconstructions

ignal #2
/sgn

signal #2

/

signal #1

N R O PN WA~ OO

N R O PN W A O oo

0 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50

e Theorem:|25] - If the log of the posterior density is strictly convex, then
the MAP estimate is a continuous function of the data.

67



Convex Potential Functions
Authors(Name) p(A) Ref. Potential func. Influence func.

Besag |A| 117]

Geenpommspuncon . Creen fuence Functon

Green log cosh A 75]

Stevenson and Delp
(Huber function)

min {|A[%,2|A] -1} [155]

Bouman and Sauer I
(Generalized Gaus- |AP 25 '1
sian MRF)
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Properties of Convex Potential Functions

e Both log cosh(A) and Huber functions

— Quadratic for |A| << 1
— Linear for |A| >> 1

— Transition from quadratic to linear determines edge threshold.
e Generalized Gaussian MRF (GGMRF) functions

— Include |A| function
— Do not require an edge threshold parameter.

— Convex and differentable for p > 1.

69



Parameter Estimation for Continuous MRF’s

e Topics to be covered:

— Estimation of scale parameter, o

— Estimation of temperature, T, and shape, p
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ML Estimation of Scale Parameter, o, for
Continuous MRF’s [26]

e For any continuous state Gibbs distribution

1
Zo) P {=Ula/o))

p(x) =

the partition function has the form
Z(o)=o"Z(1)

e Using this result the ML estimate of o is given by

o d
o4 1=
NdOU(a:/a) . 0

e This equation can be solved numerically using any root finding method.
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ML Estimation of ¢ for GGMRF’s (108, 26]

e For a Generalized Gaussian MRF (GGMRF)

ple) = gy o |~ U]

where the energy function has the property that for all o > 0
Ulax) = o’U(x)

e Then the ML estimate of o is

i (]ifU@))(l/p)

e Notice for that for the i.i.d. Gaussian case, this is

1
~ — 2
7 JNny'
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Estimation of Temperature, 7', and Shape, p,
Parameters

e ML estimation of T'|71]

— Used to estimate 1" for any distribution.

— Based on “off line” computation of log partition function.

e Adaptive method [133]
— Used to estimate p parameter of GGMRF.

— Based on measurement of kurtosis.

e ML estimation of p[145, 144]
— Used to estimate p parameter of GGMRF.

— Based on “off line” computation of log partition function.
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Example Estimation of p Parameter

—log-likelinood ———>
& & &
-log-likelihood --->

-log likelinood --->
&

a7k

381

b8 T 12

pi__> 18 18 88 T iz ga o 1s 18 2%%5 I iz g4 16 18

(@ (b) (©

e ML estimation of p for (a) transmission phantom (b) natural image (c) image corrupted
with Gaussian noise. The plot below each image shows the corresponding negative log-

likelihood as a function of p. The ML estimate is the value of p that minimizes the plotted
function.
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Application to Tomography

e Topics to be covered:

— Tomographic system and data models
— MAP Optimization

— Parameter estimation
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The Tomography Problem

e Recover image cross-section from integral projections

e Transmission problem

e Fmission problem

Emit@
\\

y - dosage

X ; - absorption of pixel |

Y, - detected events

AN

Detector i
Detector i

X- emission rate
*

Pij X;- detection rate

Detector i
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Statistical Data Model|27]

e Notation

— 1 - vector of photon counts
— x - vector of image pixels
— P - projection matrix

— P, - 7t row of projection matrix

e Fmission formulation

log plylz) = X (=Fuzx +yilog{ Pra} — log(y!))

1=

<

e 'Transmission formulation

M

log p(y|z) = El <—?JT€_PZ'*:C +yi(logyr — Pix) — 10%(%0)

e Common form

logp(y|z) = — =, fi( Pux)

— fi(+) is a convex function

— Not a hard problem!
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Maximum A Posteriori Estimation (MAP)

e MAP estimate incorporates prior knowledge about image

T = argmaxp(z|y)

M
= argmax{— > fi( Pyx) — X bi: p(z) — %’)
x>0 i=1 k<j

e Can be solved using direct optimization

e Incorporates positivity constraint
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MAP Optimization Strategies

e Expectation maximization (EM) based optimization strategies

— ML reconstruction[151, 107]
— MAP reconstruction|81, 75, 84]

— Slow convergence; Similar to gradient search.
— Accelerated EM approach[59]

e Direct optimization

— Preconditioned gradient descent with soft positivity constraint|45]
— ICM iterations (also known as ICD and Gauss-Seidel)[27]
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Convergence of ICM Iterations:
MAP with Generalized Gaussian Prior ¢ = 1.1

e [CM also known as iterative coordinate descent (ICD) and Gauss-Seidel
GGMREF Prior, g=1.1

y=30
-3.5e+03 |
§®)
S e —— - T TI T TIIZTT -
o s
= P e S
DT o
= o
-
S .45et03 |
O
< v T GEM
ch | -——- osL
- ' —-—-- DePierro’s
,i
-5.5e+03 ‘ ‘ g | | | | |
0 10 20 20 20 =0

[teration Number

e Convergence of MAP estimates using ICD /Newton-Raphson updates, Green’s
(OSL), and Hebert/Leahy’s GEM, and De Pierro’s method, and a general-

ized Gaussian prior model with ¢ = 1.1 and v = 3.0.
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Estimation of ¢ from Tomographic Data

e Assume a GGMREF prior distribution of the form
@)=, L U()
= —U(x
P oNZ (1) b po?

e Problem: We don’t know X!

e EM formulation for incomplete data problem

oY = argmgx B {log p(X|0)|Y =y, 0]

) (E {]tU(XNY =y, O(k)Dl/p

e [terations converge toward the ML estimate.

e [ixpectations may be computed using stochastic simulation.
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Example of Estimation of ¢ from Tomographic Data

0.28

—— Accelerated Metropolis
— — Metropolis
— - Projected sigma

0.26

0.241

3
0.22

Sigma ———>
o
)

0.18

0.16

0.14r

e The above plot shows the EM updates for o for the emission phantom
modeled by a GGMRF prior (p = 1.1) using conventional Metropolis (CM)
method, accelerated Metropolis (AM) and the extrapolation method. The
parameter s denotes the standard deviation of the symmetric transition

distribution for the CM method.
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Example of Tomographic Reconstructions

e (a) Original transmission phantom and (b) CBP reconstruction. Recon-
structed transmission phantom using GGMREF prior with p = 1.1 The scale

parameter o is (¢c) oarr = opp, (d) s0m1, and (e) 26

e Phantom courtesy of J. Fessler, University of Michigan
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Multiscale Stochastic Models

e Generate a Markov chain in scale

e Some references

— Continuous models[12, 5, 111]
— Discrete models[29, 111]

e Advantages:

— Does not require a causal ordering of image pixels
— Computational advantages of Markov chain versus MRF

— Allows joint and marginal probabilities to be computed using forward /backward
algorithm of HMM’s.
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Multiscale Stochastic Models for Continuous State
Estimation

e Theory of 1-D systems can be extended to multiscale trees|6, 7].
e Can be used to efficiently estimate optical flow[111].
e These models can approximate MRF’s[112].

e The structure of the model allows exact calculation of log likelihoods for
texture segmentation|113].
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Multiscale Stochastic Models for Segmentation|[29]

e Multiscale model results in non-iterative segmentation

e Sequential MAP (SMAP) criteria minimizes size of largest misclassification.

e Computational comparison

Replacements per pixel

SMAP

SMAP| | . [SA 500| SA 100 | 1CM

est.
imagel | 1.33 3.13 504 105 28

mmage2 | 1.33 | 3.9 506 108 28
imaged | 1.33 | 3.14 505 104 10
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Segmentation of Synthetic Test Image

Synthetic Image Correct Segmentation

(= Synthetic_Image_2 =] True_Segmentation

o

TitleBar %,y : 161 142 value: 158

[TitleBar | [s,y : 509 508 wvalue:

rﬂ Image2_SMAP 7rj Image2_SA_100

SMAP 100 Iterations of SA
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Multispectral Spot Image Segmentation

SPOT image

3
&

SMAP Maximum Likelihood
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High Level Image Models

e MRF’s have been used to

— model the relative location of objects in a scene[119].

— model relational constraints for object matching problems[109].
e Multiscale stochastic models

— have been used to model complex assemblies for automated inspection|166).

— have been used to model 2-D patterns for application in image search|154].
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