
Dimensionality Reduction

A Short Tutorial

Ali Ghodsi
Department of Statistics and Actuarial Science

University of Waterloo

Waterloo, Ontario, Canada, 2006

c�Ali Ghodsi, 2006

Contents

1 An Introduction to Spectral Dimensionality Reduction Methods 1

1.1 Principal Components Analysis . 3

1.1.1 Dual PCA . 6

1.2 Kernel PCA . 8

1.2.1 Centering . 10

1.3 Locally Linear Embedding . 10

1.4 Laplacian Eigenmaps . 12

1.5 Metric Multidimensional Scaling (MDS) 14

1.6 Isomap . 15

1.7 Semidefinite Embedding (SDE) . 16

1.8 Unified Framework . 17

vi

List of Tables

1.1 Direct PCA Algorithm . 6

1.2 Dual PCA Algorithm . 8

1.3 SDE Algorithm . 17

vii

List of Figures

1.1 A canonical dimensionality reduction problem 2

1.2 PCA . 3

1.3 Kernel PCA . 9

1.4 LLE . 11

1.5 LEM . 13

1.6 MDS . 14

1.7 Isomap . 16

1.8 SDE . 18

viii

Chapter 1

An Introduction to Spectral
Dimensionality Reduction Methods

Manifold learning is a significant problem across a wide variety of information processing
fields including pattern recognition, data compression, machine learning, and database
navigation. In many problems, the measured data vectors are high-dimensional but we
may have reason to believe that the data lie near a lower-dimensional manifold. In other
words, we may believe that high-dimensional data are multiple, indirect measurements of
an underlying source, which typically cannot be directly measured. Learning a suitable
low-dimensional manifold from high-dimensional data is essentially the same as learning
this underlying source.

Dimensionality reduction1 can also be seen as the process of deriving a set of degrees
of freedom which can be used to reproduce most of the variability of a data set. Consider
a set of images produced by the rotation of a face through different angles. Clearly only
one degree of freedom is being altered, and thus the images lie along a continuous one-
dimensional curve through image space. Figure 1.1 shows an example of image data that
exhibits one intrinsic dimension.

Manifold learning techniques can be used in different ways including:

•	 Data dimensionality reduction: Produce a compact low-dimensional encoding of a
given high-dimensional data set.

•	 Data visualization: Provide an interpretation of a given data set in terms of intrinsic
degree of freedom, usually as a by-product of data dimensionality reduction.

1 In this tutorial ‘manifold learning’ and ‘dimensionality reduction’ are used interchangeably.

1

2

0

100

200

300

400

500

600

700

800

1st dimension

 In
de

x
of

 im
ag

es

Figure 1.1: A canonical dimensionality reduction problem from visual perception. The input
consists of a sequence of 4096-dimensional vectors, representing the brightness values of 64
pixel by 64 pixel images of a face. Applied to N = 698 raw images. The first coordinate
axis of the embedding correlates highly with one of the degrees of freedom underlying the
original data: left-right pose.

•	 Preprocessing for supervised learning: Simplify, reduce, and clean the data for sub
sequent supervised training.

Many algorithms for dimensionality reduction have been developed to accomplish these
tasks. However, since the need for such analysis arises in many areas of study, contributions
to the field have come from many disciplines. While all of these methods have a similar
goal, approaches to the problem are different.

Principal components analysis (PCA) [8] is a classical method that provides a sequence
of best linear approximations to a given high-dimensional observation. It is one of the
most popular techniques for dimensionality reduction. However, its effectiveness is limited
by its global linearity. Multidimensional scaling (MDS) [3], which is closely related to
PCA, suffers from the same drawback. Factor analysis [4, 17] and independent component
analysis (ICA) [7] also assume that the underling manifold is a linear subspace. However,
they differ from PCA in the way they identify and model the subspace. The subspace
modeled by PCA captures the maximum variability in the data, and can be viewed as
modeling the covariance structure of the data, whereas factor analysis models the correla
tion structure. ICA starts from a factor analysis solution and searches for rotations that

PCA

1st dimension

 2
nd

 d
im

en
si

on

3

lead to independent components [17, 2].The main drawback with all these classical dimen
sionality reduction approaches is that they only characterize linear subspaces (manifolds)
in the data. In order to resolve the problem of dimensionality reduction in nonlinear cases,
many recent techniques, including kernel PCA [10, 15], locally linear embedding (LLE)
[12, 13], Laplacian eigenmaps (LEM) [1], Isomap [18, 19], and semidefinite embedding
(SDE) [21, 20] have been proposed.

1.1 Principal Components Analysis

Principal components analysis (PCA) is a very popular technique for dimensionality reduc
tion. Given a set of data on n dimensions, PCA aims to find a linear subspace of dimension
d lower than n such that the data points lie mainly on this linear subspace (See Figure 1.2
as an example of a two-dimensional projection found by PCA). Such a reduced subspace
attempts to maintain most of the variability of the data.

Figure 1.2: PCA applied to the same data set. A two-dimensional projection is shown,
with a sample of the original input images.

The linear subspace can be specified by d orthogonal vectors that form a new coordinate
system, called the ‘principal components’. The principal components are orthogonal, linear
transformations of the original data points, so there can be no more than n of them.

4

However, the hope is that only d < n principal components are needed to approximate the
space spanned by the n original axes.

The most common definition of PCA, due to Hotelling [6], is that, for a given set of
data vectors xi, i ∈ 1...t, the d principal axes are those orthonormal axes onto which the
variance retained under projection is maximal.

In order to capture as much of the variability as possible, let us choose the first prin
cipal component, denoted by U1, to have maximum variance. Suppose that all centered
observations are stacked into the columns of an n × t matrix X, where each column corre
sponds to an n-dimensional observation and there are t observations. Let the first principal
component be a linear combination of X defined by coefficients (or weights) w = [w1...wn].
In matrix form:

U1 = w T X

var(U1) = var(w T X) = w T Sw

where S is the n × n sample covariance matrix of X.
Clearly var(U1) can be made arbitrarily large by increasing the magnitude of w. There

fore, we choose w to maximize wT Sw while constraining w to have unit length.

max w T Sw

subject to w T w = 1

To solve this optimization problem a Lagrange multiplier α1 is introduced:

TL(w, α) = w T Sw − α1(w w − 1) (1.1)

Differentiating with respect to w gives n equations,

Sw = α1w

Premultiplying both sides by wT we have:

T w T Sw = α1w w = α1

var(U1) is maximized if α1 is the largest eigenvalue of S.
Clearly α1 and w are an eigenvalue and an eigenvector of S. Differentiating (1.1) with

respect to the Lagrange multiplier α1 gives us back the constraint:

T w w = 1

5

This shows that the first principal component is given by the normalized eigenvector
with the largest associated eigenvalue of the sample covariance matrix S. A similar ar
gument can show that the d dominant eigenvectors of covariance matrix S determine the
first d principal components.

Another nice property of PCA, closely related to the original discussion by Pearson [11],
is that the projection onto the principal subspace minimizes the squared reconstruction

2 nerror,
�t

i=1 ||xi − ˆ . In other words, the principal components of a set of data in �xi||
provide a sequence of best linear approximations to that data, for all ranks d ≤ n.

Consider the rank-d linear approximation model as :

f (y) = x̄ + Udy

This is the parametric representation of a hyperplane of rank d.
For convenience, suppose x̄ = 0 (otherwise the observations can be simply replaced by

their centered versions ˜ x). Under this assumption the rank d linear model would x = xi − ¯
be f (y) = Udy, where Ud is a n × d matrix with d orthogonal unit vectors as columns and
y is a vector of parameters. Fitting this model to the data by least squares leaves us to
minimize the reconstruction error:

min

t�

Ud,yi
i

||xi − Udyi|| 2

By partial optimization for yi we obtain:

d

= 0 ⇒ yi = Ud

T xi
dyi

Now we need to find the orthogonal matrix Ud:

min

t�

2 ||xi − UdUd
T xi||

Ud
i

Define Hd = UdUd
T . Hd is a n × n matrix which acts as a projection matrix and projects

onto its rank d reconstruction. In other words, Hdxi is the orthogonal each data point xi

projection of xi onto the subspace spanned by the columns of Ud. A unique solution U
can be obtained by finding the singular value decomposition of X [17]. For each rank d,
Ud consists of the first d columns of U .

Clearly the solution for U can be expressed as singular value decomposition (SVD) of
X.

X = U ΣV T

since the columns of U in the SVD contain the eigenvectors of XXT . The PCA procedure
is summarized in Algorithm 1 (see Table 1.1).

6

Algorithm 1

Recover basis: Calculate XX� =
�

i
t
=1 xixi

� and let U = eigenvectors of XX�

corresponding to the top d eigenvalues.

Encode training data: Y = U�X where Y is a d × t matrix of encodings of the
original data.

ˆReconstruct training data: X = UY = UU�X.

Encode test example: y = U�x where y is a d-dimensional encoding of x.

ˆReconstruct test example: x = Uy = UU�x.

Table 1.1: Direct PCA Algorithm

1.1.1 Dual PCA

It turns out that the singular value decomposition also allows us to formulate the principle
components algorithm entirely in terms of dot products between data points and limit
the direct dependence on the original dimensionality n. This fact will become important
below.

Assume that the dimensionality n of the n×t matrix of data X is large (i.e., n >> t). In
this case, Algorithm 1 (Table 1.1) is impractical. We would prefer a run time that depends
only on the number of training examples t, or that at least has a reduced dependence on
n.

Note that in the SVD factorization X = UΣV T , the eigenvectors in U corresponding
to nonzero singular values in Σ (square roots of eigenvalues) are in a one-to-one correspon
dence with the eigenvectors in V .

Now assume that we perform dimensionality reduction on U and keep only the first d
eigenvectors, corresponding to the top d nonzero singular values in Σ. These eigenvectors
will still be in a one-to-one correspondence with the first d eigenvectors in V :

X V = U Σ

where the dimensions of these matrices are:

X U Σ V
n × t n × d d × d t × d

diagonal

7

Crucially, Σ is now square and invertible, because its diagonal has nonzero entries. Thus,
the following conversion between the top d eigenvectors can be derived:

U = X V Σ−1 (1.2)

Replacing all uses of U in Algorithm 1 with XV Σ−1 gives us the dual form of PCA,
Algorithm 2 (see Table 1.2). Note that in Algorithm 2 (Table 1.2), the steps of “Reconstruct
training data” and “Reconstruction test example” still depend on n, and therefore still will
be impractical in the case that the original dimensionality n is very large. However all
other steps can be done conveniently in the run time that depends only on the number of
training examples t.

8

Algorithm 2

Recover basis: Calculate X�X and let V = eigenvectors of X�X corresponding to
the top d eigenvalues. Let Σ = diagonal matrix of square roots of the top d
eigenvalues.

Encode training data: Y = U�X = ΣV � where Y is a d × t matrix of encodings
of the original data.

ˆReconstruct training data: X = UY = UΣV � = XV Σ−1ΣV � = XV V �.

Encode test example: y = U�x = Σ−1V �X�x = Σ−1V �X�x where y is a d di
mensional encoding of x.

ˆReconstruct test example: x = Uy = UU�x = XV Σ−2V �X�x =
XV Σ−2V �X�x.

Table 1.2: Dual PCA Algorithm

1.2 Kernel PCA

PCA is designed to model linear variabilities in high-dimensional data. However, many high
dimensional data sets have a nonlinear nature. In these cases the high-dimensional data lie
on or near a nonlinear manifold (not a linear subspace) and therefore PCA can not model
the variability of the data correctly. One of the algorithms designed to address the problem
of nonlinear dimensionality reduction is Kernel PCA (See Figure 1.3 for an example). In
Kernel PCA, through the use of kernels, principle components can be computed efficiently
in high-dimensional feature spaces that are related to the input space by some nonlinear
mapping.

Kernel PCA finds principal components which are nonlinearly related to the input
space by performing PCA in the space produced by the nonlinear mapping, where the
low-dimensional latent structure is, hopefully, easier to discover.

Consider a feature space H such that:

Φ : x → H

x �→ Φ(x)

Kernel PCA

1st dimension

 2
nd

 d
im

en
si

on

9

Figure 1.3: Kernel PCA with Gaussian kernel applied to the same data set. A two-
dimensional projection is shown, with a sample of the original input images.

Suppose
�t

i Φ(xi) = 0 (we will return to this point below, and show how this condition
can be satisfied in a Hilbert space). This allows us to formulate the kernel PCA objective
as follows:

t

min
�

||Φ(xi) − Uq Uq
T Φ(xi)||

i

By the same argument used for PCA, the solution can be found by SVD:

Φ(X) = U ΣV T

where U contains the eigenvectors of Φ(X)Φ(X)T . Note that if Φ(X) is n × t and the
dimensionality of the feature space n is large, then U is n × n which will make PCA
impractical.

To reduce the dependence on n, first assume that we have a kernel K(·, ·) that allows us
to compute K(x, y) = Φ(x)�Φ(y). Given such a function, we can then compute the matrix
Φ(X)�Φ(X) = K efficiently, without computing Φ(X) explicitly. Crucially, K is t × t here
and does not depend on n. Therefore it can be computed in a run time that depends only
on t. Also, note that PCA can be formulated entirely in terms of dot products between
data points (Algorithm 2 represented in Table 1.2). Replacing dot products in Algorithm
2 (1.2) by kernel function K, which is in fact equivalent to the inner product of a Hilbert
space yields to the Kernel PCA algorithm.

10

1.2.1 Centering

In the derivation of the kernel PCA we assumed that Φ(X) has zero mean. The following
normalization of the kernel satisfies this condition.

K̃(x, y) = K(x, y) − Ex[K(x, y)] − Ey [K(x, y)] + Ex[Ey [K(x, y)]]

In order to prove that, define:

Φ̃(X) = Φ(X) − Ex[Φ(X)]

Finally, the corresponding kernel is:

K(x, y) = ˜˜ Φ(x)Φ(̃y)

This expands as follows:

K̃(x, y) = (Φ(x) − Ex[Φ(x)]).(Φ(y) − Ey [Φ(y)])

= K(x, y) − Ex[K(x, y)] − Ey [K(x, y)] + Ex[Ey [K(x, y)]]

˜To perform Kernel PCA, one needs to replace all dot products xT y by K(x, y) in
Algorithm 2 (Table 1.2). Note that V is the eigenvectors of K(X, X) corresponding to the
top d eigenvalues, and Σ is diagonal matrix of square roots of the top d eigenvalues.

Unfortunately Kernel PCA does not inherit all the strength of PCA. More specifically
reconstruction of training and test data points is not a trivial practice in Kernel PCA.

ˆAlgorithm 2 (Table 1.2) shows that data can be reconstructed in feature space Φ(x).
However finding the corresponding pattern x is difficult and sometimes even impossible
[14].

1.3 Locally Linear Embedding

Locally linear embedding (LLE) is another approach which address the problem of nonlin
ear dimensionality reduction (See Figure 1.4 for an example) by computing low-dimensional,
neighbourhood preserving embedding of high-dimensional data. A data set of dimension
ality n, which is assumed to lie on or near a smooth nonlinear manifold of dimensionality
d < n, is mapped into a single global coordinate system of lower dimensionality, d. The
global nonlinear structure is recovered by locally linear fits.

Consider t n-dimensional real-valued vectors xi sampled from some underlying manifold.
We can assume each data point and its neighbours lie on, or are close to, a locally linear

LLE

1st dimension

 2
nd

 d
im

en
si

on

11

Figure 1.4: LLE applied (k = 5) to the same data set. A two-dimensional projection is
shown, with a sample of the original input images.

patch of the manifold. By a linear mapping, consisting of a translation, rotation, and
rescaling, the high-dimensional coordinates of each neighbourhood can be mapped to global
internal coordinates on the manifold. Thus, the nonlinear structure of the data can be
identified through two linear steps: first, compute the locally linear patches, and second,
compute the linear mapping to the coordinate system on the manifold.

The main goal here is to map the high-dimensional data points to the single global
coordinate system of the manifold such that the relationships between neighbouring points
are preserved. This proceeds in three steps:

1. Identify the neighbours of each data point	 xi. This can be done by finding the k
nearest neighbours, or by choosing all points within some fixed radius, �.

2. Compute the weights that best linearly reconstruct xi from its neighbours.

3. Find the low-dimensional embedding vector	 yi which is best reconstructed by the
weights determined in the previous step.

After finding the nearest neighbours in the first step, the second step must compute
a local geometry for each locally linear patch. This geometry is characterized by linear

12

coefficients that reconstruct each data point from its neighbours.

min

t�

w
i=1

||xi −
k�

j=1

wij xNi (j)|| 2

where Ni(j) is the index of the jth neighbour of the ith point. It then selects code vectors
so as to preserve the reconstruction weights by solving

min

t�

Y
i=1

||yi −
k�

j=1

wij yNi (j)|| 2

This objective can be reformulated as

min Tr(Y T Y L) (1.3)
Y

where L = (I − W)T (I − W).
The solution for Y can have an arbitrary origin and orientation. In order to make

the problem well-posed, these two degrees of freedom must be removed. Requiring the
coordinates to be centered on the origin (

�
i yi = 0), and constraining the embedding

vectors to have unit covariance (Y T Y = I), removes the first and second degrees of freedom
respectively.

The cost function can be optimized initially by the second of these two constraints.
Under this constraint, the cost is minimized when the columns of Y T (rows of Y) are the
eigenvectors associated with the lowest eigenvalues of L.

Discarding the eigenvector associated with eigenvalue 0 satisfies the first constraint.

1.4 Laplacian Eigenmaps

A closely related approach to locally linear embedding is Laplacian eigenmaps (See Figure
1.5 for an example). Given t points in n-dimensional space, the Laplacian eigenmaps
Method (LEM) [1] starts by constructing a weighted graph with t nodes and a set of
edges connecting neighbouring points. Similar to LLE, the neighbourhood graph can be
constructed by finding the k nearest neighbours, or by choosing all points within some fixed
radius �. For weighting the edges, there are two variations: either each edge is weighted by

2

Wij = e−
||xi−xj ||

s , where s is a free parameter which should be chosen a priori, or simply
all Wij is set to 1 if vertices i and j are connected. The embedding map is then provided

LEM

1st dimension

 2
nd

 d
im

en
si

on

13

Figure 1.5: LEM applied (k = 7) to the same data set. A two-dimensional projection is
shown, with a sample of the original input images.

by the following objective

min
Y

t�t�
(yi − yj)

2Wij

i=1 j=1

subject to appropriate constraints. This objective can be reformulated as

min Tr(Y LY T)
Y

where L = R − W , R is diagonal, and Rii =
�t Wij . This L is called the Laplacian

j=1

function. Similar to (1.3), after adding orthogonality and centering constraint, a solution
to this problem can be found by making Y to be the eigenvectors of L (non-normalized
solution). As an alternative, (1.3) can be constrained to Y T LY = I. In this case, the
solution is provided by the eigenvectors of the generalized eigenvalue problem M y = λDy
(normalized solution). Note that the final objectives for both LEM and LLE have the
same form and differ only in how the matrix L is constructed. Therefore, same closed form
solution (taking Y to be the eigenvectors of L) works.

�

14

MDS

1st dimension

 2
nd

 d
im

en
si

on

Figure 1.6: MDS applied to the same data set. A two-dimensional projection is shown,
with a sample of the original input images.

1.5 Metric Multidimensional Scaling (MDS)

An alternative perspective on dimensionality reduction is offered by Multidimensional scal
ing (MDS). MDS is another classical approach that maps the original high dimensional
space to a lower dimensional space, but does so in an attempt to preserve pairwise dis
tances (See Figure 1.6 for an example). That is MDS addresses the problem of constructing
a configuration of t points in Euclidean space by using information about the distances
between the t patterns. Although it has a very different mathematics from PCA, it winds
up being closely related, and in fact yields a linear embedding, as we will see.

A t × t matrix D is called a distance or affinity matrix if it is symmetric, dii = 0, and
dij > 0, i = j.

Given a distance matrix D, MDS attempts to find t data points y1, ..., yt in d dimensions,
ˆsuch that if d̂ij denotes the Euclidean distance between yi and yj , then D is similar to D.

In particular, we consider metric MDS [3], which minimizes

min

t�t�

Y
i=1 i=1

(d
(X) − d(Y)

)2
ij ij (1.4)

where d(X)
= ||xi − xj ||2 and d(Y)

= ||yi − yj ||2 . The distance matrix D(X) can be converted ij ij

15

1

to a kernel matrix of inner products XT X by

1
XT X = −

2
HD(X)H

where H = I −
t ee

T and e is a column vector of all 1’s. Now (1.4) can be reduced to

min

t�t�

Y
i=1 i=1

(x
T T
i xj − yi yi)

2

It can be shown [3] that the solution is Y = Λ1/2V T where V is the eigenvectors of XT X
corresponding to the top d eigenvalues, and Λ is the top d eigenvalues of XT X. Clearly
the solution for MDS is identical to dual PCA (see Table 1.2), and as far as Euclidean
distance is concerned, MDS and PCA produce the same results. However, the distances
need not be based on Euclidean distances and can represent many types of dissimilarities
between objects.

1.6 Isomap

Similar to PCA, MDS has been recently extended to perform nonlinear dimensionality
reduction. A recent approach to nonlinear dimensionality reduction based on MDS is the
Isomap algorithm (See Figure 1.7 for an example). Unlike the linear case, nonlinear forms
of MDS are different from nonlinear forms of PCA—a fact I exploit in Chapter 2 below.

Isomap is a nonlinear generalization of classical MDS. The main idea is to perform
MDS, not in the input space, but in the geodesic space of the nonlinear data manifold. The
geodesic distances represent the shortest paths along the curved surface of the manifold
measured as if the surface were flat. This can be approximated by a sequence of short
steps between neighbouring sample points. Isomap then applies MDS to the geodesic
rather than straight line distances to find a low-dimensional mapping that preserves these
pairwise distances.

Like LLE, the Isomap algorithm proceeds in three steps:

1. Find the neighbours of each data point in high-dimensional data space.

2. Compute the geodesic pairwise distances between all points.

3. Embed the data via MDS so as to preserve these distances.

16

Isomap

1st dimension

 2
nd

 d
im

en
si

on

Figure 1.7: Isomap applied (k = 6) to the same data set. A two-dimensional projection is
shown, with a sample of the original input images.

Again like LLE, the first step can be performed by identifying the k nearest neighbours,
or by choosing all points within some fixed radius, �. These neighbourhood relations are
represented by a graph G in which each data point is connected to its nearest neighbours,
with edges of weight dX (i, j) between neighbours.

The geodesic distances dM (i, j) between all pairs of points on the manifold M are then
estimated in the second step. Isomap approximates dM (i, j) as the shortest path distance
dG(i, j) in the graph G. This can be done in different ways including Dijkstra’s algorithm
[16] and Floyd’s algorithm [9].

These algorithms find matrix of graph distances D(G) contains the shortest path distance
between all pairs of points in G. In its final step, Isomap applies classical MDS to D(G)

to generate an embedding of the data in a d-dimensional Euclidean space Y . The global
minimum of the cost function is obtained by setting the coordinates of yi to the top d
eigenvectors of the inner-product matrix B obtained from D(G)

1.7 Semidefinite Embedding (SDE)

In 2004, Weinberger and Saul introduced semidefinite embedding (SDE) [21, 20] (See Figure
1.8 for an example). SDE can be seen as a variation on kernel PCA, in which the kernel

17

matrix is also learned from the data. This is in contrast with classical kernel PCA which
chooses a kernel function a priori. To derive SDE, Weinberger and Saul formulated the
problem of learning the kernel matrix as an instance of semidefinite programming. Since
the kernel matrix K represents inner products of vectors in a Hilbert space it must be
positive semidefinite. Also the kernel should be centered, i.e.,

�
ij Kij = 0. Finally, SDE

imposes constraints on the kernel matrix to ensure that the distances and angles between
points and their neighbours are preserved under the neighbourhood graph η. That is, if
both xi and xj are neighbours (i.e.,ηij = 1) or are common neighbours of another input
(i.e., [ηT η]ij > 0), then the distance should be preserved

||Φ(xi) − Φ(xj)|| 2 2 = .||xi − xj ||
In terms of the kernel matrix, this constraint can be written as:

Kij − 2Kij + Kjj = 2 .||xi − xj ||
By adding an objective function to maximize Tr(K) which represents the variance of the
data points in the learned feature space, SDE constructs a semidefinite program for learning
the kernel matrix K. The last detail of SDE is the construction of the neighbourhood graph
ηij . This graph is constructed by connecting the k nearest neighbours using a similarity
function over the data, ||xi − xj ||. In its last step, SDE runs kernel PCA on learned kernel
K. The algorithm is summarized in Algorithm SDE (Table 1.3).

Algorithm: SDE

Construct neighbours, η, using k-nearest neighbours.

Maximize Tr(K) subject to K � 0,
�

ij Kij = 0, and

∀ij ηij > 0 ∨ [ηT η]ij > 0

2Kii − 2Kij + Kjj =
⇒
||xi − xj ||

Run Kernel PCA with learned kernel, K.

Table 1.3: SDE Algorithm

1.8 Unified Framework

All of the algorithms presented above can be cast as kernel PCA, which I now show.
Although this is obvious in some cases, it is less obvious for MDS, Isomap, LLE and
Laplacian eigenmaps.

18

SDE

1st dimension

 2
nd

 d
im

en
si

on

Figure 1.8: SDE applied (k = 5) to the same data set. A two-dimensional projection is
shown, with a sample of the original input images.

A straightforward connection between LLE and Kernel PCA has been shown in [15]
and [23]. Let λmax be the largest eigenvalue of L = (I − W)T (I − W). Then define the
LLE kernel to be:

KLLE = λmaxI − L (1.5)

This kernel is, in fact, a similarity measure based on the similarity of the weights
required to reconstruct two patterns in terms of k neighbouring patterns. The leading
eigenvector of KLLE is e, and the eigenvectors 2, . . . , d + 1 provide the LLE embedding.

An alternative interpretation of LLE as a specific form of Kernel PCA has been dis
cussed in [5] in details. Based on this discussion, performing Kernel PCA on pseudo-inverse
L† is equivalent to LLE up to scaling factors.

KLLE = L† (1.6)

Similarly Laplacian eigenmaps can be cast as Kernel PCA [5] by defining KLEM as:

KLEM = L† (1.7)

where L = R− W , R is diagonal, and Rii =
�t Wij , as discussed in Section 1.4. KLEM j=1

here is related to commute times of diffusion on the underlying graph.

19

It has been also shown [22] that metric MDS can be interpreted as kernel PCA. Given
a distance matrix D, one can define KM DS as:

KM DS =
1
(I − ee T)D(I − ee T) (1.8)−

2

where e is a column vector of all ones.
In the same fashion, given the geodesic distance D(G) used in Isomap, KIsomap can be

defined as [5]:

1 TKIsomap = −
2
(I − ee T)D(G)(I − ee) (1.9)

The eigenvectors of (1.8) and (1.9) yield solutions identical to MDS and Isomap, up to
scaling factor

�
λp, where λp is the p-th eigenvector.

The connection between kernel PCA and SDE is even more obvious. In fact, SDE is
an instance of kernel PCA and the only difference is that SDE learns a kernel from data
which is suitable for manifold discovery, while classical kernel PCA chose a kernel function
a priori.

Bibliography

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

[2] V. Cherkassky and F. Mulier. Learning from data. Wiley, New York, 1998.

[3] T. Cox and M. Cox.	 Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd
edition, 2001.

[4] B. Frey.	 Graphical models for machine learning and digital communication. MIT
Press, Cambridge, Mass, 1998.

[5] J. Ham, D. Lee, S. Mika, and Schölkopf B. A kernel view of the dimensionality
reduction of manifolds. In International Conference on Machine Learning, 2004.

[6] H. Hotelling.	 Analysis of a complex of statistical variables into components. J. of
Educational Psychology, 24:417–441, 1933.

[7] A. Hyvärinen. Survey on independent component analysis. Neural Computing Surveys,
2:94–128, 1999.

[8] I. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karypis.	 Introduction to parallel computing.
Benjamin, Cummings, 1994.

[10] S. Mika, B. Sch¨	 uller, M. Scholz, and G. R¨olkopf, A. Smola, K.-R. M¨ atsch. Kernel
PCA and de-noising in feature spaces. In M. S. Kearns, S. A. Solla, and D. A. Cohn,
editors, Proceedings NIPS 11. MIT Press, 1999.

[11] K. Pearson.	 On lines and planes of closest fit to systems of points in space. The
London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Sixth
Series 2:559–572, 1901.

20

21

[12] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

[13] L. Saul and S. Roweis. Think globally, fit locally: Unsupervised learning of nonlinear
manifolds. JMLR, 2003.

[14] B. Sch¨	 atsch, and K.-R. M¨olkopf, S. Mika, A. Smola, G. R¨ uller. Kernel PCA pattern
reconstruction via approximate pre-images. In L. Niklasson, M. Bodén, and T. Ziemke,
editors, Proceedings of the 8th International Conference on Artificial Neural Networks,
pages 147–152, 1998.

[15] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, Mas
sachusetts, 2002.

[16] R. Rivest T. Cormen, C. Leiserson and C. Stein.	 Introduction to algorithms. MIT
Press, Cambridge, Massachusetts, 2001.

[17] J. Friedman T. Hastie, R. Tibshirani.	 The elements of statistical learning. Springer,
New York, 2002.

[18] J. Tenenbaum. Mapping a manifold of perceptual observations. In Advances in Neural
Information Processing Systems 10, pages 682–687, 1998.

[19] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for non
linear dimensionality reduction. Science, 290:2319–2323, 2000.

[20] K. Weinberger and L. Saul.	 Learning a kernel matrix for nonlinear dimensionality
reduction. In Proceedings of the International Conference on Machine Learning, pages
839–846, 2004.

[21] K. Weinberger and L. Saul. Unsupervised learning of image manifolds by semidefinite
programing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 988–995, 2004.

[22] C. K. I. Williams. On a connection between kernel PCA and metric multidimensional
scaling. Machine Learning, 46(1-3):11–19, 2002.

[23] P. Vincent Y. Bengio and J.-F. Paiement. Learning eigenfunctions of similarity: Link
ing spectral clustering and kernel pca. Technical Report 1232, Universite de Montreal,
2003.

