Stable Matching Beyond Bipartite Graphs

Jie Wu

Dept. of Computer and Info. Sciences
Temple University

Road Map

Introduction
Stable Marriage Problem (SMP)
Gale-Shapley (GS) algorithm
Stable binary matching with multiple genders
Stable K-ary matching with multiple genders
Extensions
Conclusion

Introduction

Restroom Rules

North Carolina
Donald Trump
Target's policy

Sex vs.gender

Stable matching with
multiple genders
Binary matching
K-ary matching

GENDER IDENTITY

People should use public restrooms according to:

The biological sex on their birth certificate 43\%

The gender with which they identify 41\%
Don't know 16\%

SOURCE: Reuters/Ipsos poll conducted
April 12-18 of 2,039 people. Credibility interval
Frank Pompa, USA TODAY
USATODAY

We asked what our followers thought of a Christian group boycotting Target for its transgender policy, saying it encourages predators. Comments from Twitter are edited for clarity and grammar:

Stable Marriage Problem (SMP)

Perfect matching

men

- Stable matching: does not exist
m of the first pair prefers w' over w, and w^{\prime} of the second pair prefers m over m^{\prime}

Gale-Shapley (GS) Algorithm

- Each person has his/her preference list.
- GS algorithm

1. Each unengaged man proposes to the woman he prefers most.
2. Each woman replies "maybe" to her suiter she most prefers, and replies "no" to all others. (She is then provisionally "engaged".)
3. If all men are engaged, stop; otherwise, each unengaged man proposes to the most-preferred woman he has not yet proposed.
4. Go to step 2.
5. Complexity: n^{2} (n : number of elements in a gender)

Some Well-known Extensions

Stable roommate problem Single gender

College admission problem Multiple matchings

Hospital/residents problem
With couples

Multiple Genders: k-nary matching

M : men
W: women
U: undecided

Blocking family: if each member prefers each member of that family to its current family

Example 1: current matching is $\left\{(m, w, u),\left(m^{\prime}, w^{\prime}, u^{\prime}\right)\right\}$
(m^{\prime}, w, u) is a blocking family if m^{\prime} prefers w and u and both w and u prefers m^{\prime}

Stable Binary Matching with Multi-Genders

Theorem 1: There exists preference lists under which there exists no stable binary matching with $k(\neq 2)$ genders.

Note

Result holds even if self-matching is allowed, as in U.
Stable roommate solution can be used to find one if it exists.

$$
\begin{array}{ll}
\left\{(m, w),\left(m^{\prime}, u\right),\left(w^{\prime}, u^{\prime}\right)\right\} & \left\{(m, w),\left(m^{\prime}, u^{\prime}\right),\left(w^{\prime}, u\right)\right\} \\
\left\{\left(m, w^{\prime}\right),\left(m^{\prime}, u\right),\left(w, u^{\prime}\right)\right\} & \left\{\left(m, w^{\prime}\right),\left(m^{\prime}, u^{\prime}\right),(w, u)\right\} \\
\left\{(m, u),\left(m^{\prime}, w\right),\left(w^{\prime}, u^{\prime}\right)\right\} & \left\{(m, u),\left(m^{\prime}, w^{\prime}\right),\left(w, u^{\prime}\right)\right\} \\
\left\{\left(m, u^{\prime}\right),\left(m^{\prime}, w\right),\left(w^{\prime}, u\right)\right\} & \left\{\left(m, u^{\prime}\right),\left(m^{\prime}, u\right),\left(u^{\prime}, w\right)\right\}
\end{array}
$$

Stable k-ary Matching with Multi-Genders

K-ary matching: $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ (k : the number of genders)

Iterative Binding: Iteratively apply GS to pair wisely and bind all disjoint sets through a spanning tree.

```
Algorithm 1 Iterative Binding GS Algorithm
    /* \(I\) is a gender set with \(|I|=k * / ;\)
    1: \(T\) (binding tree) and \(P\) (matching pairs) are empty;
    2: while \(T\) is not a spanning tree on \(I\) do
    3: \(\quad\) Find \(i, j \in I:(i, j)\) does not cause a cycle in \(T\);
    4: \(\quad V(T)=V(T) \cup\{i, j\} ; E(T)=E(T) \cup\{(i, j)\}\);
    5: \(\quad P=P \cup \operatorname{GS}(i, j)\);
    6: Derive \(E\), equivalence classes from equivalence relation
    \((-,-)\) "in the same matching tuple" on \(P\);
    7: return \(E\) (matching \(k\)-tuples)
```


Stable k-ary Matching

Theorem 2: The iterative GS constructs a stable kary matching.

Theorem 3: The k-1 rounds of the binding process is tight.

Note
k^{k-1} binding trees

Extension: Parallel Implementation

Theorem 4: Using EREW PRAM, the iterative GS takes at most Δn^{2} iteration, where Δ is the maximum node degree.

Note
When $\Delta=2$, two rounds are needed (even-odd matching)

Under CREW PRAM, binding can be done simultaneously. (CREW PRAM can be emulated under EREW PRAM through $\log \Delta$ rounds of data replication.)

Extension of Unstable Condition

In a blocking family, the lead member of components from the same family decides the subgroup preference.
(In Example 1, w and u form a subgroup. If W has a higher priority than U, w decides for u.)

Bitonic sequence: it monotonically increases and then monotonically decreases, e.g., (1, 3, 4, 2) and (4, 3, 2, 1).

Bitonic tree: if any two nodes in the tree is connected through a path that is a bionic sequence.

Priority-Based Iterative GS

Number of priority tree: (k-1)!


```
Algorithm 2 Priority-Based Iterative Binding GS Algorithm
    \({ }^{*} I\) is a gender set with \(|I|=k\) and \(i_{\text {max }}\) is the highest
    priority gender */;
    \(V(T)=\left\{i_{\max }\right\}, E(T)=P=\{ \}\), and \(I=I-\left\{i_{\max }\right\} ;\)
    while \(I\) is not empty do
        Select an \(i\) in \(V(T)\) and \(j\) in \(I\) with the highest priority;
        \(V(T)=V(T) \cup\{j\} ; E(T)=E(T) \cup\{(i, j)\} ;\)
        \(I=I-\{j\} ;\)
        \(P=P \cup \operatorname{GS}(i, j) ;\)
```

 Derive \(E\), equivalence classes from equivalence relation
 \((-,-)\) "in the same matching tuple" on \(P\);
 return \(E\) (matching \(k\)-tuples);

Conclusions

Stable matching with k genders
binary matching (negative result)
k-ary matching (positive result): iterative GS

Two extensions
Parallel implementation of iterative GS
Extension of unstable condition

Future work
Other possible weakened blocking family

Special Thanks

The WeChat group of the classmates from Shanghai Guling No. 1 Elementary School

Inspired by the discussion on matching making in the group discussion

