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Abstract—The limited battery capacity of sensor nodes has
become the biggest impediment to wireless sensor network (WSN)
applications. Two recent breakthroughs in the areas of wireless
energy transfer and rechargeable lithium batteries promise the
use of mobile vehicles, with high volume batteries, as mobile
chargers that transfer energy to sensor nodes wirelessly. In this
paper, for the first time, we envision a novel charging paradigm:
collaborative mobile charging, where mobile chargers are allowed
to charge each other. We investigate the problem of scheduling
multiple mobile chargers, which collaboratively recharge sensors,
to maximize the ratio of the amount of payload energy to
overhead energy, such that every sensor will not run out of
energy. We first consider the uniform case where all sensors
consume energy at the same rate, and propose a scheduling
algorithm, PushWait, which is proven to be optimal in this case
and can cover a one-dimensional WSN of infinite length. Then,
in the non-uniform case, which is conjectured to be NP-hard,
we first present two observations from space and time aspects to
remove some impossible scheduling choices, and we propose our
heuristic algorithm, ClusterCharging(β), which clusters sensors
into groups and divides a scheduling cycle into charging rounds.
Its approximation ratio is also presented. Extensive evaluations
confirm the efficiency of our algorithms.

Index Terms—Collaborative mobile charging, wireless energy
transfer, wireless sensor networks.

I. Introduction

Many applications of wireless sensor networks (WSNs) [1],
such as structural health monitoring for the Golden Gate
Bridge [2], agricultural rain-fed farming decisions [3], and
forest fire detection [4], desire a long-lived WSN. However,
sensor nodes are typically supplied by batteries that can only
store a limited amount of energy, which has become the
biggest impediment. Therefore, a lot of efforts, including
energy conservation [5–7], energy harvesting [8, 9], and sensor
reclamation [10], have been devoted to prolonging the lifetime
of WSNs. However, energy conservation cannot compensate
for energy depletion; energy harvesting is neither controllable
nor predictable; sensor reclamation is costly and impractical
when sensors are deployed in the deep ocean, on bridge
surfaces, or in containers of hazardous materials.

We recently observed two particular breakthroughs in the
areas of wireless energy transfer [11, 12] and rechargeable
lithium batteries [13]. Wireless energy transfer is the trans-
mission of electric energy from a power source to a receiver
without any interconnecting conductors. Rechargeable lithium
batteries with high energy density and high charge/discharge
capability are identified in [13]. Armed with these two tech-
nologies, some studies [14–17] employed mobile vehicles of
high volume batteries as mobile chargers to deliver energy to
sensors. However, most of them [14–16] assume that a mobile

charger has a sufficient amount of battery to cover the entire
WSN and to make a round trip back to the base station. This
model will become invalid when there is a remote area where
even a dedicated charger with full battery energy cannot reach
before running out of energy.

In this paper, we introduce a novel charging paradigm: col-
laborative mobile charging, where mobile chargers are allowed
to charge each other. That is to say, multiple mobile chargers
start from the base station with full energy, and after some
time, some of them can intentionally gather at a rendezvous
point to recharge others or to be recharged. We shall see
that this collaborative paradigm not only enlarges the charg-
ing coverage, but also improves the energy efficiency since
chargers in existing methods may return to the base station
with residual energy. The scheduling problem of collaborative
mobile charging in a general WSN is very complicated. As
a first step, to initiate a meaningful study, this paper narrows
the scope of this problem to a manageable extent: we consider
one-dimensional (1-D) WSNs and leave 2-D as future work.
The linear structure of 1-D WSNs can be utilized to reduce
maintenance costs, increase routing efficiency, and improve
network reliability [18]; therefore, these kind of WSNs have
a broad array of applications, ranging from oil/gas/water
pipeline monitoring [19] to driver-alert systems [18] to bridge
and international border protection [20].

This paper focuses on the following problem: given a 1-D
WSN and battery capacity constraints, how can we schedule
multiple mobile chargers, which collaboratively recharge sen-
sors, to maximize the ratio of the amount of payload energy
to overhead energy, such that every sensor will not run out
of energy? To gain a better understanding, we first consider
the uniform case of this problem, where all sensors consume
energy at the same rate, for which we propose an algorithm
called PushWait. We prove the optimality of PushWait in
this case. Then, in the non-uniform case of this problem, we
conjecture that the problem becomes NP-hard and propose a
heuristic algorithm called ClusterCharging(β) with guaranteed
performance. We evaluate the performance of our algorithms
with extensive simulations. The contributions of this paper are
summarized as follows:
(1) To our best knowledge, we are the first to consider the

collaborative mobile charging paradigm. By means of
examples, theoretical analysis and experimental evalua-
tions, this paper demonstrates the advantages of this novel
paradigm in coverage and energy efficiency.

(2) For the uniform case of the scheduling problem, we pro-
pose a scheduling algorithm, PushWait, which is proven
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to be optimal and can cover a 1-D WSN of any length.
A variation of PushWait that uses dedicated chargers to
substitute roundtrip chargers is also presented.

(3) For the non-uniform case, which is conjectured to be
NP-hard, we first present two observations from space
and time aspects to remove some impossible schedul-
ing choices. Then, we propose our heuristic algorithm,
ClusterCharging(β), which clusters sensors into groups
and divides a scheduling cycle into charging rounds. Its
approximation ratio is also presented.

II. Problem Description

A. Network Model

We consider a set of sensor nodes that are uniformly dis-
tributed, unit distance apart, along a one-dimensional straight
line to the east of a base station (BS ), as shown in Fig. 1.
There are, in all, N sensor nodes, say s1, s2, ..., sN . Sensor
si consumes ri amount of energy per unit time. All nodes
are assumed to have the same battery capacity, say b. The
recharging cycle of a sensor is defined as the time period that
this sensor of full energy can survive without being charged.
Denote the recharging cycle of si as τi; we have τi = b/ri.

B. Charging Model

A mobile charger (MC) has a maximum battery capacity of
B and consumes c amount of energy per unit distance. The
base station BS serves as data sink as well as the energy
source. Mobile chargers start from the BS with full batteries,
charge sensors, finally come back to the BS , and then get
themselves recharged by the BS . Both the movement of the
mobile chargers and the process of wireless charging share the
same pool of battery energy.

The energy transfer efficiencies of BS -to-MC, MC-to-MC,
and MC-to-sensor are all assumed to be 1, i.e., there is no
energy loss. The corresponding charging time is negligible
compared to the traveling time of mobile chargers.

Typically, the recharging cycle (or the lifetime) of a sensor
is several months; while the time for a charger traveling from
the BS to the farthest sensor in a WSN is usually several
hours, or at most several days. Thus, in this paper, we assume
that any two charging rounds have no intersection, i.e., mobile
chargers can always accomplish a charging round, return to the
BS , and wait for another charging round1.

C. Performance Measure

When scheduling, we must decide the actions (such as,
recharging a sensor or another charger, being charged, waiting,
etc.) of each mobile charger in its time-space trajectory. A
scheduling is said to be feasible if (i) all sensor nodes do not
die, i.e., each sensor node will get charged before running out
of energy, and (ii) all MCs are able to return to the BS to be
serviced (e.g., replacing or recharging its battery).

1We make this assumption for the brevity of presentation. As we shall see
shortly, when the recharging cycle is smaller than the MC round-trip time,
pipeline-like parallel PushWait could still achieve its optimality.

1 2 3 4 NBS r1 r2 r3 r4 rN
Fig. 1: Problem description

We define the scheduling cycle of a scheduling to be the
time interval between two consecutive points of time when
all sensors are fully charged. Although this definition seems
strange at a first glance, we shall see its generality. It can be
applied to the uniform case problem (Section III), where the
scheduling cycle equals the recharging cycle of each sensor,
and it can also be applied to the non-uniform case problem
(Section IV), where the scheduling cycle contains more than
one recharging cycle of a sensor.

In a scheduling cycle, denote the energy eventually obtained
by sensors as payload energy (Epayload), and the energy con-
sumed by MCs′ movements as overhead energy (Eoverhead).
The efficiency ratio of the scheduling can be defined as:

ratio = Epayload/Eoverhead (1)

A feasible scheduling cyclically charges sensor nodes to
make a sensor network long-lived, so this definition charac-
terizes the long-term efficiency of a scheduling well.

D. Scheduling as an Optimization Problem

Problem 1: (Collaborative mobile charging scheduling
problem (CMCS )) Given a 1-D WSN with parameters b and
ri, how can we find a feasible scheduling of chargers, with
parameters c and B, so as to maximize the ratio defined above.

In order to have a better understanding of the CMCS
problem, we first consider a uniform case where all sensors
consume energy at the same rate in Section III; then, we
study the non-uniform case in Section IV with the knowledge
obtained from the uniform case.

III. CMCS with uniform energy consumption rate

In the uniform case, sensors consume energy at the same
rate, which is denoted as r, then all sensors have the same
recharging cycle, i.e., τ = b/r. This uniformity makes the
scheduling become simple: in each recharging cycle, we let
the MCs charge all of the sensors and then wait for the next
recharging cycle. Therefore, in this case, the scheduling cycle
equals the recharging cycle. We then have Epayload = N · b is
fixed, so the objective of maximizing the ratio of Epayload to
Eoverhead is reduced to minimizing Eoverhead.

A. Motivational Examples

We use the following examples to demonstrate the benefits
of collaborative mobile charging and to motivate our algorithm
design. Three different scheduling schemes are shown in
Fig. 2. The former two schemes do not consider collaboration,
while the third does. We denote K as the number of MCs, Li

(1 ≤ i ≤ K) as the farthest point that MCi reaches, and also let
LK+1 = 0 for compatibility. Figs. 2(a), 2(b), and 2(c) illustrate
the time-space view as well as the maximum coverage of
these three scheduling schemes, respectively. The settings are
B = 80J, b = 2J, c = 3J/m, and K = 3.
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Scheme I: Each MC charges each sensor an amount of
b/K energy, and each sensor is charged by all passing MCs.
As shown in Fig. 2(a), 12 sensors can be covered.

Scheme II: Each sensor is charged by only one MC. MCi

(1 ≤ i ≤ K) charges sensors from Li+1 to Li, its residual energy
at Li is just enough for it to return to the BS . Fig. 2(b) shows
the entire process, where 13 sensors can be covered.

Scheme III: Each sensor is charged by only one MC. MCi

(2 ≤ i ≤ K) charges sensors from Li+1 to Li, and it transfers
energy to MCi−1, MCi−2,..., and MC1 until they are at their
full energy capacity at Li, and then it just has enough energy
to return to the BS . Fig. 2(c) illustrates this scheme, where
MC3 charges MC2 and MC1 at A, and MC2 charges MC1 at
B. This time, 17 sensors can be covered.

In summary, given a fixed number of MCs, scheme III can
cover more sensors than Schemes I and II; collaboration makes
scheduling more energy-efficient in the sense that scheduling
with collaboration consumes less Eoverhead than scheduling
without collaboration to deliver the same amount of Epayload.

B. PushWait

Recall the objective of our scheduling is to minimize
Eoverhead, which is consumed by MCs’ movement. The basic
idea of PushWait is to use as less MCs as possible to carry the
residual energy of all MCs through letting some MCs charge
others at some rendezvous points. PushWait is illustrated as:
• MCi charges sensors between Li+1 and Li to their full

batteries. At Li, MCi transfers energy to MCi−1, MCi−2,...,
and MC1 until they are at their full energy capacity. Then
MCi waits at Li, and all of the other i − 1 MCs keep
moving forward.

• After MCi−1, MCi−2,..., and MC1 return to Li, where MCi

waits for them, MCi evenly distributes its residual energy
among i MCs (including MCi). This will make them just
have enough energy to return to Li+1.

In PushWait, each MCi follows the iterative process below:
starts from the BS with full battery, gets fully charged at
locations LK , LK−1,..., and Li+1, charges sensor nodes between
Li+1 and Li, charges MCi−1, MCi−2,..., and MC1 at Li, waits
for these MCs to return, then evenly distributes its residual
energy among these i MCs (including MCi itself) and moves
towards the BS . The reason of naming this scheduling after
“PushWait” is clear: from the point of view of MCi, it pushes
the other MCs to move forward and waits for their return.

Fig. 2(d) depicts the time-space view of applying PushWait
to the aforementioned settings. Three chargers start from the
BS with 80J energy; when they reach L3, both MC1 and MC2
have 80−3 ·L3 = 70J energy, while MC3 has 80−3 ·L3−3 ·b =
64J energy because it recharges s1, s2, and s3; then, MC3
charges both MC1 and MC2 to their full battery. After this,
MC3 waits at L3 with 64 − 10 − 10 = 44J energy; similarly,
after MC2 charges sensors from s4 to s9, and charges MC1
to its full battery at L2, it waits at L2 with 34J energy; when
MC1 returns to L2, as the reader can verify, it will have zero
energy; MC2 then charges MC1 to half of its residual energy,
i.e., 17J, which is just enough for MC1 and MC2 to reach
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(d) PushWait, L1 = 19, L2 = 9, L3 = 3 1
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Fig. 2: Time-space view of four different schemes where B = 80J, b =
2J and c = 3J/m. (J=Joule)

L3; at L3, MC3 then charges MC1 and MC2 with 10J energy,
which is just enough for them return to the BS ; at the BS , only
MC3 has 14J residual energy. We see that PushWait achieves
the best result: 19 sensors can be covered.

C. Rendezvous Points

To make PushWait work, Li (1 ≤ i ≤ K) should be chosen
carefully to guarantee that MC1, MC2,..., and MCi−1 have zero
energy when they return to Li. Let’s take the interval between
Li+1 and Li as an example to illustrate how to determine the
values of these K rendezvous points.

MCi gets fully charged at Li+1 and comes back to Li+1 with
zero energy. The energy consumption of the full battery B
includes the following five parts: (i) energy transferred to the
sensors between Li+1 and Li; (ii) energy consumed by MCi to
travel from Li+1 to Li; (iii) energy transferred to MC1, MC2,
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..., and MCi−1 at Li for the first time. Note that these i − 1
MCs are fully charged at Li+1, thus the energy transferred to
them at Li is exactly the energy consumed by them to travel
from Li+1 to Li; (iv) energy consumed by MCi to travel from
Li to Li+1; and (v) energy transferred to MC1, MC2, ..., and
MCi−1 at Li for the second time, which is exactly the energy
used by them to travel from Li to Li+1.

Therefore, we have the following equations.
2 · c · (L1 − L2) · 1 + b · (L1 − L2) = B

2 · c · (Li−1 − Li) · (i − 1) + b · (Li−1 − Li) = B (2 ≤ i ≤ K)

2 · c · (LK − 0) · K + b · (LK − 0) ≤ B
(2)

The last formula is an inequality, since PushWait cannot
use up the total amount of energy of K MCs precisely. It is
straightforward to see that:L1 = N

Li = N −∑i−1
j=1

B
2·c· j+b (2 ≤ i ≤ K)

(3)

K can be determined by: LK > 0, LK+1 ≤ 0. Then, we have:Epayload = N · b
Eoverhead = 2c ·∑K

i=1 Li

We note in passing that, as MCK may have some residual
energy when it returns to the BS , we can further improve
PushWait through the following trick. Let another MC′ stay
at LK to collect the residual energy that MCK would take back
to the BS . In doing so, after enough scheduling cycles, only
(K−1) MCs are required to start from the BS in the subsequent
scheduling cycle.

Fig. 2(d) shows an example, MC3 has 14J residual energy
when it comes back to the BS ; another MC′ can be used to
collect 14J energy at L3; after five scheduling cycles, MC′

will have 70J energy. As the reader can verify, in the sixth
scheduling cycle, only two MCs are needed.

D. Optimality

Theorem 1: For the uniform case of the CMCS problem,
PushWait achieves the maximum ratio of Epayload to Eoverhead.

Proof: Given a 1-D WSN where sensors consume energy
at the same rate, Epayload is fixed in a recharging cycle. Hence,
it is sufficient to prove that PushWait uses the minimum
Eoverhead, which is proportional to the distance traveled by
all of the MCs. Denote the distance traveled by all of the
MCs in a scheduling scheme as Distance(scheme). Suppose
that PushWait requires K MCs to charge the given WSN. We
prove the theorem by induction on K.

Base cases: K=1 and K=2
K = 1: this case is trivial. Distance(PushWait) = 2 ·L1. Note

that L1 equals the length of the given WSN. Any scheduling
scheme must have at least one MC to reach the farthest sensor
in the WSN and then turn back, thus Distance(anyscheme) ≥
2 · L1 = Distance(PushWait).

K = 2: (by contradiction) suppose that PushWait is not
optimal, and the optimal scheduling scheme is OPT . As one
MC is not enough to cover the entire WSN, there are at
least two MCs in the OPT . One of them, say MC′, must
reach the farthest sensor, thus it travels 2 · L1 distance. Since
OPT is the optimal scheduling scheme, i.e., Distance(OPT ) <
Distance(PushWait) = 2·L1+2·L2. Hence, all of the other MCs
in OPT should not reach L2; otherwise, OPT is not optimal.
However, according to our calculation of L2 in PushWait, a
fully charged MC at L2 only charges the sensors from L2 to
L1 and returns to L2 with zero energy, then we know MC′ in
OPT can by no means reach L1. A contradiction! Therefore,
no such OPT exists. PushWait is optimal.

I.H.: PushWait is optimal when K = n.
K = n + 1: (by contradiction) suppose that PushWait is not

optimal, and there are n+ 1 rendezvous points Ln+1, Ln, ...,L1
in PushWait. The optimal scheduling scheme is OPT .

We can divide the WSN into two parts, the BS -to-Ln+1 part,
and the Ln+1-to-L1 part. Suppose that a virtual base station BS ′

is located at Ln+1. PushWait needs precisely n · B energy to
cover the sensors between Ln+1 and L1. By I.H., OPT will
require more than n · B energy to cover the same part. Denote
this energy as Q > n · B.

Therefore, the task of PushWait is to cover the sensors from
BS to Ln+1 and to deliver n · B energy to Ln+1. According to
PushWait, n + 1 MCs that start from the BS can accomplish
this task. Correspondingly, the task of OPT is to cover the
sensors from BS to Ln+1 and to deliver Q energy to Ln+1. We
know that OPT requires at least n + 1 MCs to reach Ln+1
(otherwise, the total residual energy of less than n+ 1 MCs at
Ln+1 is definitely less than n · B).

Considering Q > n · B, PushWait is optimal.

Remarks: This theorem still holds in some some general
settings, for example, the distance between adjacent sensors is
non-uniform, the sensor battery capacity is non-uniform, the
recharging cycle is smaller than MC round-trip time, and so
on. The corresponding proofs follow a similar routine as the
above proof and are left to the reader.

E. Coverage

Theorem 2: Given infinite MCs, the maximum numbers of
sensors that can be covered by scheme I, II, III, and PushWait
are < B/2c, < B/2c, < B/c, and infinite, respectively.

Proof: Scheme I: Each MC needs to contribute b/K
amount of energy to each sensor. When K approaches infinity,
the share b/K approaches 0. However, every MC still needs
to return to the BS , thus the maximum number of sensors that
can be covered by this scheme is less than B/2c.

Scheme II: When i increases, MCi needs to travel a longer
distance to reach the sensors that it should cover. Also, every
MC needs to return to the BS , so the maximum number of
sensors that can be covered by this scheme is less than B/2c.

Scheme III: When an MC begins to turn back, it can no
longer get energy from others. Thus, the maximum number of
sensors that can be covered is less than B/c.
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Fig. 3: PushWait with dedicated mobile chargers. MC3 transfers 54
J energy to MC2 at A; MC3 transfers 26 J energy to MC2 at B; MC2
transfers 34 J energy to MC1 at C; MC3 transfers 34 J energy to
MC2 at D; MC3 transfers 46 J energy to MC2 at E; MC2 transfers
46 J energy to MC1 at F.

PushWait: According to Equ. (3), we have:

Li − Li+1 =
B

2 · c · i + b
,∀i ≥ 1 (4)

Then the distance covered by K MCs is:
K∑

i=1

B
2 · c · i + b

>

K∑
i=i0

B
2 · c · i + b

(let 2 · c · i0 ≥ b)

>

K∑
i=i0

B
4 · c · i =

B
4 · c

K∑
i=i0

1
i

(harmonic series)

which approaches infinity as K approaches infinity.

F. A Variation of PushWait: Dedicated Chargers

In PushWait, all of the MCs start from the BS and return
to the BS in a scheduling cycle. It looks complex in terms of
oprations. In fact, a clean and simple variation of PushWait is
to have MCi travel between Li+1 and Li without going back to
the BS , which is illustrated in Fig. 3. The parameters are the
same as in Fig. 2. MC3 starts from the BS , charges sensors
s1, s2, and s3, arrives at L3, where it can transfer 54 J energy
to MC2 (point A). As MC2 is not fully charged, it waits at
point A for the next arrival of MC3, and so on. It is easy to
see that PushWait with dedicated mobile chargers achieves the
same energy efficiency ratio, i.e., Epayload/Eoverhead.

The drawback of this variation is that it finishes the charg-
ing of the entire network with a longer time compared to
PushWait, as MCi needs to wait for MCi+1 to deliver energy
to it. For example, MC2 needs to wait from A to B and then
from D to E, MC1 needs to wait from C to F.

The advantages of this variation are twofold. Firstly, this
variation simplifies the scheduling by just letting a dedicated
MC be responsible for an area of sensors. Secondly, when
there are many types of MCs with different capacities, it is
easy to apply PushWait to this situation by just expanding
each dedicated area.

IV. CMCS with non-uniform energy consumption rates

In this section, we employ the results from the last section
to develop a scheduling algorithm for the non-uniform case of
the CMCS problem. We first give two examples to help readers
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Fig. 4: Time-space view of two scheduling schemes. In the figure,
τ1 = 4, τ2 = 2, τ3 = 5, τ4 = 3. The black point “•” indicates the time
when the corresponding sensor is recharged.

understand the problem and see the need to design a heuristic
scheduling algorithm to cope with the NP-hardness of this
problem. Then, we present two observations that can remove
some impossible scheduling choices, after which we present
our heuristic, ClusterCharging(β), and its approximation ratio.

A. Examples of Scheduling Schemes

Denote τi = b/ri as the recharging cycle of sensor si. To
avoid the messy details and focus on the main problem, we
assume that τi is an integer (in fact, τi is typically large enough
for us to let τi = ⌊τi⌋). Fig. 4 shows two feasible scheduling
schemes. At time t0, four sensors are full of energy; as τ1 = 4,
s1 should be recharged no later than time t0 + 4, otherwise
it will die; similar statements hold for other sensors. Recall
our definition of scheduling cycle in Section II-C; in these
examples, the consecutive time points when all sensors get
fully charged are t0 and t0+6. Therefore, the scheduling cycle
of both of Scheme IV and V is 6, and there are 6 rounds of
charging in a scheduling cycle in both of them.

We notice from these examples that the number of possible
scheduling solutions could be extremely large, because any
charging round in a solution has exponential choices of a set of
sensors to recharge. To find the optimal scheduling for a given
WSN, we must determine both the length of the scheduling
cycle and the set of sensors to be recharged in each round.
With all that said, we conjecture that the non-uniform case of
the CMCS problem is NP-hard. In the following subsections,
we will present a heuristic with an approximation ratio after
introducing two observations.

B. Observation from Space Aspect

In Fig. 4(a), τ1 = 4 > τ2 = 2, whenever we recharge s2, we
can recharge s1 incidentally. Considering that the objective is
to maximize the ratio of payload energy to overhead energy,
we see that there is no need to recharge s1 individually, i.e.,
the recharging at point A in Fig. 4(a) is not cost-efficient. In
doing so, we can take τ1 as 2. For the same reason, we can
take τ3 as 3, and recharge s3 at time t0 + 3 (as point C shows)
instead of t0 + 5 (as point B shows). This observation enables
us to only consider the following setting in the rest of this
paper: τ1 ≤ τ2 ≤ · · · ≤ τN .
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Fig. 5: Time-space view of ClusterCharing(β) where τi = i. The number near a black point is the amount of energy that the corresponding
sensor should be charged in that charging round.

C. Observation from Time Aspect

The following theorem indicates that we only need to start
a charging round when there is at least one sensor node that
will die if we do not. For example, in Fig. 4(b), we only plan
possible rounds at t = t0 + i, where i is an integer; we do not
need to start the round at t0 + 2.5 because, at that time, there
is no sensor node that will die if it is not charged.

Theorem 3: Given a base station BS and a sensor node s,
with a battery capacity of b, that are d distance apart, then it
is better to deliver b amount of energy to s using PushWait
one time than twice (the total energy s gets is still b).

Proof: Note that d is not restricted to being small, thus
one MC may not be enough. Suppose that k MCs are needed
to deliver b amount of energy to s using PushWait one time;
according to Equ. (4), k should satisfy:

B
2kc
+

B
2(k − 1)c

+ · · · + B − b
2c
=

B
2c

i=k∑
i=1

1
i
− b

2c
= d

Equivalently:
k∑

i=1

1
i
=

2cd + b
B

(5)

Similarly, if we use PushWait twice, suppose that k1 MCs
are needed to deliver ϵ amount of energy to s for the first time,
and k2 MCs are needed to deliver b − ϵ amount of energy to
s for the second time, then k1 and k2 should satisfy:

B
2k1c

+
B

2(k1 − 1)c
+ · · · + B − ϵ

2c
=

B
2c

i=k1∑
i=1

1
i
− ϵ

2c
= d

B
2k2c

+
B

2(k2 − 1)c
+ · · · + B − (b − ϵ)

2c
=

B
2c

i=k2∑
i=1

1
i
− b − ϵ

2c
= d

Equivalently:

k1∑
i=1

1
i
=

2cd + ϵ
B
,

k2∑
i=1

1
i
=

2cd + b − ϵ
B

(6)

Then it is sufficient to prove that k1 + k2 < k cannot be true,
subject to Eqs. (5) and (6). The harmonic series [21] can be
represented as:

k∑
i=1

1
i
≈ lnk +

1
2k
+ γ (7)

where γ is the Euler-Mascheroni constant. As we know, if
k1+k2 is fixed,

∑k1
i=1 1/i+

∑k2
i=1 1/i achieves its maximum when

k1 = k2. Therefore, we let k1 = k2 = k/2 to see what condition
k should satisfy to ensure Eqs. (5) and (6). By combining
Eqs. (5), (6), and (7), we have:

k =
B

2ln2 · B − b
<

B
2 · B − B

= 1 (8)

which is impossible. Alas, we prove that k1+k2 > k, indicating
that using PushWait one time is more cost-efficient.

It is worth mentioning that the above proof is based on the
following assumption: the total amount of energy of k MCs,
k1 MCs, or k2 MCs is completely used up. The worst case is
when the energy of k MCs is completely used up while there
are two MCs among k1 and k2 MCs whose energy is nearly
unused. Then, the two times of PushWait costs the total energy
of k1 − 1 + k2 − 1 = k1 + k2 − 2 MCs. As k1 + k2 ≥ k + 1, the
only bad situation is k1 + k2 = k + 1, which is rare compared
to all possible cases.

D. ClusterCharging(β)

1) Basic idea: The basic idea of ClusterCharging(β) is
to cluster sensors into groups such that the ratio of the
maximum recharging cycle to the minimum recharging cycle
in each group is less than the clustering threshold β. In
each charging round, our heuristic selects the groups that
satisfy the following condition as the charging targets, and
employs PushWait2 to recharge the sensors in these groups.
The condition for a group to be selected is that there is at least
one sensor in this group that is going to die if our heuristic
does not recharge it.

Take Fig. 5 for example. In Fig. 5(a), β = 1, thus each sensor
itself forms a group; each group (or sensor) gets recharged
only before running out of energy.

In Fig. 5(b), β = 2. Since τ1 = 1 and τ2 = 2, τ2/τ1 ≥ 2 = β,
then s1 itself forms a group. Also τ3/τ2 < β and τ4/τ2 ≥ β,
thus sensors s2 and s3 form a group, and so forth. In summary,
when β = 2, there are three groups, (s1), (s2,s3), and (s4,s5,s6).
At time t0 + 1, only the first group is recharged; at time t0 + 2,

2Note that, in each round of this scenario, different sensors may need to
be charged a different amount of energy. For example, at time t0 + 4 in
Fig. 5(b), the six sensors need b, b, 2b/3, b, 4b/5, and 4b/6 amount of energy,
respectively. PushWait still achieves the optimality in each round according
to the remarks in Section III-D.
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as s2 is going to die if it is not recharged, the second group
together with the first group are recharged; at time t0 + 3, all
groups are selected as the charging targets.

Similarly, when β = 3 in Fig. 5(c), there are three groups,
(s1, s2), (s3,s4,s5), and (s6). When β = ∞ in Fig. 5(d), there
is only one group that contains all sensors.

2) Scheduling Cycle: β = 1. ClusterCharing(1) lazily
charges each sensor just before it runs out of energy. The
scheduling cycle is the least common multiple of τ1,...,τN .
Denote it as lcm. Then, the Epayload in a scheduling cycle is:

Epayload =
lcm
τ1

b +
lcm
τ2

b + · · · + lcm
τN

b =
N∑

i=1

(ri · lcm)

β = 2, 3, ..., n. Suppose that there are x groups; since the
ratio of the maximum recharging cycle to the minimum
recharging cycle in each group is less than β, we have
τ1 · βx ≤ τN , then we know x = ⌊logβ(τN/τ1)⌋. Thus, the
scheduling cycle of ClusterCharging(β) is:

β
⌊logβ(

τN
τ1

)⌋ · τ1

For example, the scheduling cycles in Figs. 5(b) and 5(c) are 4
and 6, respectively. Correspondingly, we can calculate Epayload

and Eoverhead in a scheduling cycle using PushWait.
β = ∞. ClusterCharging(∞) charges all sensors to their full

battery capacity every τ1 time, i.e., the minimum recharging
cycle among all sensor nodes. Obviously, the scheduling cycle
is τ1. Then, the Epayload in a scheduling cycle is:

Epayload =
τ1

τ1
b +
τ1

τ2
b + · · · + τ1

τN
b =

N∑
i=1

ri

r1
b

Different values of β lead to different performances. In our
simulations, we will show that when the parameters of the
problem instance change, the optimal β also changes.

3) Approximation Ratio of ClusterCharging(β): Denote by
ratio(S ) the ratio of Epayload to Eoverhead in a scheduling
scheme S . Denote by OPT the optimal scheduling scheme
for the non-uniform case of the CMCS problem.

Theorem 4:
ratio(ClusterCharging(β))

ratio(OPT )
>

2c
kminBτN − b

where,
kmin = argmin(

∑k
i=1

1
i ≥

2cτN+b
BτN

)k

Proof: The main line of this proof is to construct a scheme
S 1 so that ratio(S 1) < ratio(ClusterCharing(β)), and to
construct another scheme S 2 so that ratio(OPT ) < ratio(S 2).
We then have ratio(ClusterCharing(β))/ratio(OPT ) >
ratio(S 1)/ratio(S 2).

Constructing S 1. Consider the following charging round: we
use MCs to charge only one sensor, which is at the farthest
point of the WSN and only needs the least possible energy
amount, i.e., b/τN . In this round, Epayload = b/τN and Eoverhead

can be obtained as follows. The number of MCs used in this
round is: kmin = argmink(

∑k
i=1 1/i ≥ (2cτN + b)/BτN) (similar

to Equ. (5)). Therefore, Eoverhead = kmin · B − b/τN . As this
round is the worst round we can imagine, we have ratio(S 1) >
Epayload/Eoverhead = b/(kminBτN − b).

Constructing S 2. Suppose that an MC has an infinite
amount of energy, then we only need one MC in each round.
Obviously, ratio(OPT ) < ratio(S 2). Remember that whenever
a sensor needs to be recharged, this MC must travel at least
one unit distance to recharge it and then travel at least another
one unit distance to come back to its original point. Therefore,
ratio(S 2) < b/2c.

The theorem follows immediately.

V. Performance Evaluation

In this section, we primarily focus on evaluating
ClusterCharging(β) in different settings with respect to vari-
ous parameters, and will not evaluate PushWait since PushWait
provides the optimal solution for the uniform case of the
CMCS problem. We first introduce the evaluation settings,
then present the results.

A. Evaluation Setup

In order to see the impact of the recharging cycles, τ1, τ2,...,
and τN , on the performance of ClusterCharging(β), we use
two different settings to generate these cycles.

Random-Setting: The recharging cycles are randomly gen-
erated from a bounded range, i.e., [lbound, ubound] = [2, 8].
We then sort them to guarantee that τ1 ≤ τ2 ≤ · · · ≤ τN .
For evaluations based on this setting, we ran experiments 100
times and averaged the results.

Power-Setting: The recharging cycles are generated based
on a power function, i.e., τi = base⌊(i+1)/2⌋ = 2⌊(i+1)/base⌋.

These two settings reflect two extremes of the mathemati-
cal variances of recharging cycles: Random-Setting generates
cycles with a small variance, while Power-Setting generates
cycles with a relatively large variance. Therefore, we can
observe the impacts of the non-uniform recharging cycles on
our proposed heuristic more clearly.

In each setting, we try to evaluate the effects of the number
of sensors, N, the energy cost per unit distance, c, the battery
capacity of a sensor node, b, and the battery capacity of
a mobile charger, B, separately. We are also interested in
the impacts of the bounded range and the power function
in each setting. Hence, we ran experiments with the ubound
varying from 4 to 12 while keeping lbound = 2, and we ran
experiments with base varying from 2 to 6.

The optimal solution to the non-uniform case of the CMCS
problem requires exhaustive searching, which is infeasible
even when the number of sensors is a little large. Considering
that the approximation ratio of ClusterCharging(β) is given,
we do not implement the optimal solution for comparison.

B. Evaluation Results

1) Random-Setting: Fig. 6 shows the results of different se-
tups for the Random-Setting. In general, ClusterCharging(∞)
(red line with circle markers) achieves almost the same
performance as ClusterCharging(2) (green line with cross
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Fig. 6: Impact of various parameters in Random-Setting

markers), and they outperform ClusterCharging(1) (blue line
with square markers). In detail, when the other parameters
are fixed, the performance metric, i.e., the ratio of Epayload

to Eoverhead, goes down as the number of sensors increases
(Fig. 6(a)), goes down as the energy cost per unit distance
increases (Fig. 6(b)), goes up as the battery capacity of a sensor
node increases (Fig. 6(c)), and goes up as the battery capacity
of the MC increases (Fig. 6(d)).

In Fig. 6(e), when the ubound increases, the ratio increases.
This is because a larger range incurs a larger variance of the
recharging cycles, which leads to a longer scheduling cycle,
and only a few sensors need to be charged in each round. This
sparsity causes a performance reduction in each round.

Fig. 6(f) shows the partial derivative of the ratio with
respect to each parameter in this setting. For example, when N
increases by 1, the ratio of ClusterCharging(∞) decreases by
0.00684. We notice that the impact of c is the greatest; B and
ubound have the least impacts on the ratio. This is reasonable,
as the change of c influences every moving segment between
any pair of adjacent sensor nodes.

2) Power-Setting: Fig. 7 shows the results of different
setups for the Power-Setting. In general, ClusterCharging(1)
(blue line with square markers) achieves almost the same
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Fig. 7: Impact of various parameters in Power-Setting

performance as ClusterCharging(3) (green line with cross
markers), while ClusterCharging(∞) (red line with circle
markers) has the worst performance. Most of the observations
from Random-Setting still hold in Figs. 7(a) to 7(d).

In Fig. 7(e), when the base increases, the ratio decreases.
The main reason is that a larger base makes the length of
the consecutive recharging cycles of the same value become
longer, which further leads to a smaller variance. For example,
if base = 2, the generated sequence is {1, 2, 2, 4, 4, 8, ...}; if
base = 4, the sequence is {1, 1, 1, 4, 4, 4, 4, 16, ...}. Fig. 7(f)
illustrates the partial derivative of the ratio with respect to
each parameter in this setting. Like the partial derivatives in
Power-Setting, c has the greatest impact on the ratio; B have
the least impact.

In summary, our simulations show that the proposed al-
gorithms perform well in a variety of settings. Specifically,
when the variance of the recharging cycles becomes larg-
er, ClusterCharging(β) performs worse; ClusterCharging(1)
and ClusterCharging(∞) are sensible to the variance of the
recharging cycles, while ClusterCharging(β) with other value
of β is robust in both settings.
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VI. RelatedWork

Energy conservation, harvesting and node reclamation.
Energy conservation was proposed to slow down the energy
consumption rate. Bhattacharya et al. [5] proposed to cache
mutable data at some locations to control data retrieval rate.
Dunkels et al. [6] incorporated cross-layer information-sharing
in the their proposed adaptive communication architecture.
Wang et al. [7] proposed to use resource rich mobile nodes
as sinks or relays to prolong the lifetime of WSNs. However,
conservation cannot compensate for energy depletion in the
end. Energy harvesting [8, 9] tries to harvest energy (such as
solar, wind, and vibration) directly from the environment to
replenish sensors, but it is neither controllable nor predictable,
which hinders WSNs from providing the desired level of
performance. Sensor reclamation [10] periodically replaces
sensors of no or low energy with fully charged ones; however,
it requires either human intervention or advanced robotic
mechanisms, which can be costly in various situations.

Wireless energy transfer. The wireless power consor-
tium [22] defines the inter-operability standards of wireless
energy transfer based on magnetic induction. Kurs et al. [11]
demonstrated it to be efficient and non-radiative in Science.
Peng et al. [14] proposed the use of a mobile charger with
sufficient energy to charge the entire network and formulated
it as a TSP-like (Traveling salesman problem [23]) problem.
Li et al. [15] took both mobile charger scheduling and touring
into consideration with the assumption that the movement of
a mobile charger costs zero energy. Tong et al. [17] found
that: when the number of sensor nodes being charged simulta-
neously increases, the average power received at each sensor
remains approximately the same. Using this observation, the
authors tried to determine the optimal node deployment and
routing strategies to improve energy efficiency. Shi et al. [16]
also assumed that the mobile charger has unbounded energy
and investigated the problem of periodically charging sensors
to maximize the free time of the mobile charger over a cycle.
In contrast to these works, we investigate the problem with
a more realistic condition: a mobile charger may not have
enough energy to cover the entire network.

VII. Conclusions and FutureWork

This paper introduces a novel charging paradigm, i.e.,
collaborative mobile charging. We investigate the collaborative
mobile charging scheduling problem in 1-D WSNs. We first
consider the uniform case and propose an algorithm, PushWait,
which is proven to be optimal in this case and can cover a 1-
D WSN of any length. A variation of PushWait that uses
dedicated chargers to substitute roundtrip chargers is also pre-
sented. We then develop a heuristic, ClusterCharging(β), with
guaranteed performance for the non-uniform case. Extensive
simulations validate the advantages of our algorithms.

Our future work will focus on two parts. One part involves
investigating the impact of wireless transfer efficiency, which
is assumed to be one in this paper. The other part involves
extending our algorithms to 2-D networks.
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