
Approximation Algorithms for Dependency-Aware
Rule-Caching in Software-Defined Networks

Jie Wu, Yang Chen, and Huanyang Zheng
Department of Computer and Information Sciences, Temple University

Abstract—Software-defined networks (SDNs) can support fine-
grained forwarding policies in the underlying switches. The
new content addressable memory, Ternary Content Addressable
Memory (TCAM), enables fast lookups for matching rules in
message forwarding, represented as binary strings with wild-
cards. However, the cost and power limit the number of matching
rules a TCAM can support. Therefore, rule caching is needed to
place high-weight (high-hit) rules in the TCAM hardware, while
large, but slow, software switches handle cache-miss traffic. We
assume that matching these rules form a forest of trees. A rule
R′ is a descendant of another rule R if R′ is a special case
of R. Dependent rules are evaluated in a particular matching
order: when a rule is included in the cache, all its descendants
in the rule set have to be included as well. Our objective is to
maximize the number of rule hits, while limiting the number of
cached rules. Three greedy rule-caching algorithms are proposed,
including two with approximation ratios of 2 and 24

5
, respectively.

In addition, we propose a dynamic programming solution that
is optimal but slow. The efficiency of the proposed approaches
are evaluated through real data-driven simulations.

Index Terms—Approximation ratio, caching, dependency con-
straint, greedy algorithms, software-defined networks.

I. INTRODUCTION

In software-defined networks (SDNs), the central controller
installs packet-processing rules in switches to manage traffic
[1]. There are two types of switches: hardware-based content
address memory switches, like Ternary Content Addressable
Memory (TCAM) [2], which are fast but small in capacity
[3], and software-based switches that are large in capacity but
are relatively slow. These two types of switches form a classic
cache and main memory pair that stores and processes rules.
In this paper, we study an efficient caching scheme for rules
subject to a unique constraint on rule placement.

Caching IP address is well known in a general setting [4] as
well as in TCAM [5]. The state-of-the-art caching in TCAM
uses descendant matching rules [6]. Rules in SDNs are binary
string matching rules with wildcards, using * to match any
single character. A rule processing order corresponds to a
matching between a message header and the binary string of
a rule [7]. A string, R′, is a descendant of another string, R,
if R′ is a special case of R. R′ and R are dependent from
each other. A rule together with all its descendants form a
branch of a tree. Two rules are independent if they do not
have a common ancestor in a tree. In Table 1, rule R6, as the
root, forms a tree consisting of R2, R3, R4, and R5. Rule R1

1This research was supported in part by NSF grants CNS 1757533, CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971, and
IIP 1439672.

TABLE I: Rules with bi-
nary strings and weights.

Rule Code Weight
R1 0*** 5
R2 1000 7
R3 100* 13
R4 10** 43
R5 1110 20
R6 1*** 12 Fig. 1: A forest of rules.

is independent. Together, the rule set forms a forest of trees
[8, 9]. For any two dependent rules, there is a matching order.
The descendant rule is evaluated first. This order is used to
minimize the number of rules used in the matching process.

The matching order complicates the caching policy because
when a rule is placed in a cache, all its descendants have to
be placed in the cache to ensure correctness. In Table 1, if
R4: 10** is placed in the cache, both its prefixes R2: 1000
and R3: 100* have to be in the cache. This is because if
R2 and R3 were not placed in the cache, messages with the
headers 1000 and 1001 would have matched with R4, rather
than R2 and R3, respectively. It has been shown in [6] that
an optimal caching, in terms of maximizing total weight (hit
ratio), is NP-hard under the general dependency constraints
where rules form a DAG. Several greedy solutions have been
proposed, but without no approximation bounds. In this paper,
we discuss three greedy solutions for rules that form a forest
of trees, including two with a constant bound in terms of total
weight. The first one respects the dependency constraint; the
second one breaks the constraint by inserting a dummy rule
(called deny rule) in the cache ; and the third one combines the
first and second greedy solutions. In addition, we use dynamic
programming (DP) to solve problem optimally (in a setting
without deny rule), but with a high complexity (i.e., heavy-
weight). Our contributions can be summarized as follows,
where n is the rule number and k is the cache size:

1) Our greedy algorithm with the dependency constraint
has a complexity of O(n+ k log n+ k2) and a approx-
imation ration of 2.

2) The complexity of the greedy algorithm that breaks
the dependency constraint by introducitng deny rule is
O(kn) using two-level heaps.

3) The combined greedy aglrotihm using the above two
greedy approaches has an approximation ratio of 24/5.

4) The DP solution has complexity of O(k2n).
5) Extensive simulations are conducted together with an

deny rule segment

R ...

branch

R

max branch max segment
(a) Branch in a max branch

deny rule segment

R ...

branch

R

max branch max segment
(b) Segment a max segment

Fig. 2: Topological sorting order for a max branch (a) and a
max segment (b) in non-increasing order from left to right.

optimal solution based on dynamic programming.

The remainder of the paper is organized as follows. Sections
2 and 3 discuss two greedy solutions, one for the basic model
using a branch for caching and the other one for an enhanced
model that cuts a branch with a dummy rule, together with
complexity and performance analysis. Section 4 reviews an
optimal solution based on dynamic programming. Section 5
conducts a simulation study. Section 6 concludes the paper.

II. GREEDY SOLUTION ONE

Given a rule set in a forest of trees (see Fig. 1), a tree branch
consists of a rule and all its descendants. Due to the space limit
of the cache, we can only accommodate a branch of a size
up to k (cache size). A max branch is a branch that meets
the following conditions: (1) the branch size is k, or (2) if its
branch size is less than k, then it is not a branch of another
branch with a size of k or less. In Table 1, when k = 3, the
max branches are [R1], [R2, R3, R4], and [R5]; when k = 5,
the max branches are [R1] and [R2, R3, R4, R5, R6]. Note that
when k = 3, R6 does not belong to any branch, i.e., it cannot
be cached. This represents the fact that not all rules can be
cacheable due to the dependency condition.

Based on the definitions of the branch and the max
branch (see their topological sorting order representations
in Fig. 2(a)), we have the following properties: the set of
max branches includes all eligible branches that can be
placed in the cache. Each rule in a max branch together
with its descendants form a branch. For example, in max
branch [R2, R3, R4, R5, R6], R2 forms branch [R2], R3 forms
[R2, R3], R4 forms [R2, R3, R4], R5 forms [R5], and R6

forms [R2, R3, R4, R5, R6].
Now, we calculate the unit benefit for each branch in a

max branch. Each rule has a unit cost, C, with a weight, W .
Our goal is to find a branch that maximizes the unit benefit,
defined as the ratio of rule weight to rule cost (∆W/∆C).
The challenge lies in the fact that once a candidate branch
is selected and removed for future consideration, unit benefit
values of other branches in the same max branch need to
be updated. Therefore, we need to find an appropriate data
structure to control the complexity.

The solution is to maintain a special branch that corre-
sponds to the maximum unit benefit for each max branch.
Then we build a heap that consists of all these special
branches.

Max branches

Algorithm 1 Greedy Algorithm One

1: Construct max branches with each max branch arranged
in a topological sorting order.

2: Calculate unit benefit values for all branches in the max
branches.

3: Find a special branch, called the max unit benefit branch,
that has the maximum unit benefit in each max branch.

4: Maintain a heap for all max unit benefit branches.
5: repeat
6: Determine the branch that has the maximum unit ben-

efit in the heap.
7: Remove the branch and update the corresponding max

branch, including its new max unit benefit branch.
8: Update the heap accordingly based on the new max

unit benefit branch selected by b).
9: until the cache exceeds its capacity

10: Suppose Steps 5 to 9 stop at round i + 1, i.e., the first i
branches have not exceeded the cache capacity. Then, we
select the larger of the two in terms of weight: the first i
branches or the (i + 1)th branch.

1) Calculate the branch size for each node through a simple
traversal of each tree from lowest to highest in the
topological sorting order.

2) Traverse each tree again from lowest to highest and
identify each branch that is not a descendant of another
branch of size k or less.

3) Extract the branch as a new max branch before contin-
uing the traversal process.

Fig. 1 shows the branch size for each rule shown in Table
1. When k = 3, [R1], [R2, R3, R4], and [R6] are three max
branches identified through the tree traversal process starting
from the root of each tree. It is clear that the complexity for
extracting the max branches is O(n). Now we can present the
greedy algorithm.

Theorem 1: The complexity of Greedy Algorithm One is
O(n + k log n + k2).

Proof: The cost of Step 1 is O(n) for constructing max
branches and maintaining a topological sorting order for each
max branch. Steps 2 and 3 together cost O(n) because one
scan of each max branch is sufficient. Step 4 costs O(n) for
heap construction. For the loop in Steps 5 to 9, the max heap
in Step 6 costs O(log n); one max branch update in Step 7
costs O(k), and the heap update in Step 8 costs log n. As
there are at most k iterations in Step 5, the overall cost for
Step 5 is O(k(log n + k)). Adding all the costs together, we
obtain the result. �

Note that k in general is relatively small compared to n.
If k = O(

√
n) as in many practical cases, the complexity

becomes linear O(n).
Theorem 2: Greedy Algorithm One has an approximation

ratio of 2 compared to the optimal result on the total weight.
Proof: By way of algorithm construction, it is easy to verify

that all combinations of rules as cache units are considered

(a) A fork (b) Three segments

Fig. 3: Converting a fork into multiple segments.

in the branch selection algorithm, subject to the dependency
and cache capacity constraints. The branch selection strictly
follows the unit benefit value of each unit. Also, it is clear
that the total weight of the optimal solution is less than the
total weight of the first i + 1 selected branches. As the final
result is at least half of that weight, which is either the first i
selected branches or the (i+ 1)th branch, whichever is larger,
the approximation ratio is bounded by 2. �

In Table 1, when k = 3, branch [R2, R3, R4] is selected
first with a unit benefit of 21. Then branch [R5] is selected.
When k = 5, branch [R2, R3, R4, R5, R6] is selected with a
unit benefit of 19.

III. GREEDY ALGORITHM TWO AND COMBINED GREEDY

The dependency constraint causes inefficiencies in cache
placement, because when a rule is placed in cache, all its
descendants need to be in the cache as well. This problem is
more prominent when there are many low-weight rules in the
dependents of a high-weight rule. [6] introduced a deny rule
to cut some sub-branches from a branch which results in a
segment as shown in Fig. 2 (b). This is done by introducing a
dummy rule in place for sub-branch R′ with the same binary
string as R′, and an action for forward to software switch
(SS) is used when there is a match for R′. In Table 1, R2 and
R3 are not profitable when they are used together with R4

with a combined unit benefit value of 21. Suppose we remove
R2 and R3 and replace them with a special rule R∗3 : 100∗
with action SS. R4 and deny rule R

′

3 together have a new
unit benefit value of 21.5. Messages with headers that match
both R2 and R3 will match R∗3 in the cache, but will jump
to software switches. In this way, we can use any segment
of a branch without the dependency constraint. In this case,
the extra slots saved in the cache will be used later for other
rules, but one slot used by the deny rule is wasted.

One challenge in the extraction of a segment occurs when
the segment goes across a fork, where a branch spawns out
multiple sub-branches (see an example shown in Fig. 3 (a))
with two sub-branches). The main problem with forks is
the algorithmic complexity in selecting a max unit benefit
segment. For example, to select a segment of length k at a fork
with l sub-branches, there are

(
l+k
k

)
choices instead of one

choice in a branch without a fork. In addition, l deny rules are
used to extract such a segment (see Fig. 3 (a) for an example of
l = 2). In Greedy Algorithm Two, we only consider segments
that do not contain a fork. A max branch is replaced by a
max segment, defined as the longest segment without a fork.
In Table 1, max segments include [R1], [R2, R3, R4], [R5],
and [R6]. Note that the length of a max segment can exceed

Algorithm 2 Greedy Algorithm Two

1: Construct max segments through traversing the tree once.
2: Calculate max s(R) for each rule in the max segments.
3: Maintain a local heap (l-heap) of max s(R) for each max

segment. The max heap of this local heap is the max unit
benefit segment.

4: Maintain a global heap (g-heap) for the max heaps of all
local heaps.

5: repeat
6: Determine the max heap of the global heap.
7: Remove the segment of the global max heap and update

the corresponding max segment, including the new max
heap in its local heap.

8: Update global heap based on the new local max heap.
9: until the cache exceeds its capacity

10: Same as Step 10 of Greedy Algorithm One

k, unlike a max branch. However, a segment for caching is
limited to k − 1 as one slot is used for the deny rule.

We denote a special set of segments, s(R), to represent
all segments starting with R in a max segment (see Fig. 2
(b)). max s(R) is a segment in s(R) with the maximum unit
benefit: ∆W/(∆C + 1), where ∆C is the chain length and
the extra 1 is the slot used for the deny rule. No deny rule is
needed if R is a leaf rule without any descendants. If R is an
independent single rule (such as R1 in Table 1), the value for
max s(R) is W/C, as no deny rule is needed.

Fig. 4 shows the construction of a global heap (g-heap) from
the max heaps of all local heaps (l-heaps). When we remove
a rule segment, we do not remove the rule that is currently
held by a deny rule. The reason for this is that if that rule is
selected, the deny rule can be removed (by “merging” two rule
chains into one). In Table 1, if R3: 100* is eventually selected,
the deny rule R∗3: 100* (SS) for R4 will be removed.

Theorem 3: The complexity of Greedy Algorithm Two is
O(kn).

Proof: Step 1 costs O(n) for one scan. Step 2 can use the
same scan as Step 1, but for each rule, up to k updates to
its descendants are needed. Therefore, the cost is O(kn). The
cost of building local heaps is bounded by O(n), as there
are at most n units for all heaps. The size of a global heap
is bounded by n in Step 4. Step 6 costs k (the number of
rounds). Step 7 may affect values for up to k max s(R) in all
rounds in Steps 5 to 9. Therefore, the total cost is O(k log n)
for all local heaps’ updates. Step 8 costs O(k log n) for all
global updates. Therefore, the overall cost is O(kn). �

We can combine Greedy Algorithm One and Greedy Al-
gorithm Two to create a Combined Greedy Algorithm as
follows: we use the same criterion based on the maximum unit
benefits of branches and segments for caching. The updates
are conducted on the two separate sets of data structures
used in these two algorithms. The complexity will remain
O(kn). The reason is that for each selection of a branch in
Greedy Algorithm One, one and only one max segment will

be affected. Likewise, each selection of a segment in Greedy
Algorithm Two will affect one branch.

To derive the approximation ratio for the Combined Greedy
Algorithm, we first prove the following bound on unit benefit
loss when a fork is converted into multiple segments (see one
example in Fig. 3 (b)).

Theorem 4: The unit benefit loss in terms of the ratio of unit
benefit of the fork and the unit benefit of the corresponding
multiple segments is 6/5.

Proof: Consider a fork with l branches with weight ∆W
and cost ∆C. The unit benefit of the fork is ∆W/(∆C + l),
where l deny rules are used. The unit benefit of the segments
is ∆W/(∆C + l + 1). Clearly, the fork to segment ratio is
1 + 1/(∆C + l). Since each branch needs at least one unit,
the minimum ∆C is l + 1. The minimum l is 2. Therefore,
the maximum ratio is 6/5.

Theorem 5: The Combined Greedy Algorithm has an
approximation ratio of 24/5 compared to the optimal scheme
in terms of total weight.

Proof: We prove that for a segment with a deny rule, its
total weight ∆W will be at least half the weight of the optimal
scheme when the greedy method is used based on the unit
benefit. We only need to calculate the “waste” introduced by
the slot used for the deny rule. Suppose the weight of the rule
used by the deny rule is more than ∆W , then, the slot for the
deny rule would have been selected in an early round because
this slot plus one deny rule will generate a segment with a unit
benefit of over ∆W/2. That is, there is no waste of “space”
used for the deny rule. If the weight of the rule used by the
deny rule is no more than ∆W , then, the optimal solution
with the weight of the rule used by the deny rule included
has a weight of no more than 2∆W . Combining the results
for Theorem 2 and Theorem 4, we have an approximation
ratio of 2× 2× 6/5 = 24/5. �

In the example shown in Tab. 1, max s(R1), max s(R2),
max s(R3), max s(R4), max s(R5), and max s(R6) are [R1],
[R2, R3, R4], [R3, R4], [R4], [R5], and [R6], respectively.
Clearly max s(R4) has a maximum unit benefit of 21.5 with
deny rule R∗3 : 100 ∗ (SS). max s(R2) and max s(R3)
are updated to [R2, R3] and [R3] after the removal of R4,
respectively. max s(R5) is the next candidate with a maximum
unit benefit of 20. max s(R5) does not have the deny rule
as R5 is the head of a rule chain. The next candidate is
max s(R3) with a unit benefit of 13 because no new deny
rule is used as its immediate predecessor, R4, is already in
the cache. In this case, deny rule R∗3 : 100 ∗ (SS) is replaced
by deny rule R∗2 : 1000. If k = 5, maxS(R6) : [R6] is
selected with a unit benefit of 12. Again, no new deny rule is
needed as its immediate successors, R4 and R5, are already
in the cache. Therefore, for the Combined Greedy Algorithm,
the deny rule is not needed when its immediate predecessor
or all its immediate successors of max s(R) in the rule set
are already in the cache.

Fig. 4: Constructing the global heap (g-heap) from the max
heaps of local heaps (l-heaps).

IV. DYNAMIC PROGRAMMING SOLUTION

This section introduces an dynamic programming (DP)
solution to maximize the number of rule hits. Since rule
dependencies form a forest rather than a tree, a dummy root
with a weight of zero is introduced. We start with sorting
all rules in a depth-first order. For example, in Fig. 1, such
an order can be {R0, R1, R6, R5, R4, R3, R2} with dummy
root R0. Let T [R,m] be the subtree induced by rule R, its
first m children (in terms of the depth-first order), and all
descendants of these m children. For example, in Fig. 1,
T [R6, 0] only includes R6, T [R6, 1] includes R5 and R6, and
T [R6, 2] includes R2, R3, R4, R5, and R6. Let d(R) be the
number of children of R.

Let O[R, d,m] denote the optimal cache-hits in the sense
that we cache m rules out of T [R, d]. These m rules follow
only the dependencies within T [R, d] and will ignore the other
dependencies. By definition, O[R0, d(R0), k] is our objective.
Let Wi denote the cache-hit of Ri. The initialization is:

O[Ri, 0,m] =

{
Wi if m ≥ 1 and i 6= 0
0 otherwise (1)

The optimal recurrence pattern is:

O[Ri, d,m] = max
{
O[Ri, d− 1,m],

max
0≤m′≤m

[
O[Rid, d(Rid),m′] + O[Ri, d−1,m−m′]

]}
(2)

In Eq. 2, Rid is the d-th child of Ri. Note that O[Ri, d,m]
either ignores its descendants under the d-th child or uses these
descendants. For the latter case, we additionally require that
the composition of O[Rid, d(Rid),m′] and O[Ri, d−1,m−m′]
follow the dependencies within T [Ri, d]. Ri is cached if and
only if all the rules in T [Ri, d] are cached.

The time complexity of the dynamic programming solution
is O(k2n). This is because Eq. 2 takes O(k) to calculate,
and we need to compute Eq. 2 for each rule Ri and each
m (0 ≤ m ≤ k). Consequently, the DP solution has a
larger time complexity than the greedy solution one, but has a
better performance than the greedy solution one. However, the
dynamic programming solution may not be able to incorporate
deny rules. This is because deny rules lead to an exponential
number of combinations, as in Eq. 2.

2000 4000 6000 8000 10000 12000
Number of forwarding rules

0

100

200

300
Ex

ec
ut

io
n

tim
e/

se
c

Branch
Segment
Combined
DP
Cover
Dependent

(a) Algorithm execution time.

63 125 250 500 1000 2000
TCAM cache size (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(b) Cache hit traffic and TCAM size.

6.25 12.5 25 50 100 200
Number of packets/100k (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(c) Cache hit traffic and the number of packets.

Fig. 5: CAIDA packet trace.

V. IMPLEMENTATION

A. Real Traffic Traces and Settings

Simulations are conducted based on the publicly available
CAIDA packet trace of 2016 from the Equinix datacenter in
Chicago [10] and the real-world Cisco router configuration on
a Stanford backbone router [11].

CAIDA: The packet traces have a total of 20 million
packets sent over 30 minutes on high-speed Internet backbone
links. Since CAIDA does not publish the policy used to pro-
cess these packets, we build a policy by extracting forwarding
rules based on the destination IP addresses of the packets in
the trace. We obtain around 12,000 IP destination-based rules.

Stanford Backbone: The policy has around 180K Open-
Flow rules. We follow the processing method in [6] and
generate a packet trace that matches the routing policy by
assigning a traffic volume to each rule drawn from a Zipf
distribution [12]. The resulting packet trace had around 30
million packets randomly shuffled over 30 minutes.

B. Comparison Algorithms and Metrics

Two baseline algorithms, Dependent (set) and Cover (set),
in [6] and our four proposed algorithms are included. The
Greedy Algorithm One, Two, and the Combined Algorithm
are denoted as Branch, Segment, and Combined, respec-
tively. The difference between Dependent and Branch is that
Branch includes how to split dependent rules and ensure the
complexity bound. The Cover algorithm in [6] relaxes the
rule dependency constraints by creating a small number of
deny rules that cover many low-weight rules, but it does not
guarantee the performance.

Three comparison metrics are employed: (i) Execution time.
It measures the time of running the algorithms to decide which
rules are preferred to be cached in the TCAM hardware.
The time unit is seconds. (ii) Cache-hit traffic ratio on the
variability of the TCAM size. We observe the cache-hit traffic
ratio over the total traffic when the TCAM size changes
from 125 to 2,000 entries. (iii) Cache-hit traffic ratio on the
variability of the number of packets. We verify the efficiency
of our three algorithms by applying the real trace set. We
randomly select packets to test the metrics. Additionally,
to further improve the performance without increasing the
complexity, we use the following simple enhancement: when
the cache is not full, our algorithms will continue filling the

cache using the remaining rules based on the topological order
until either the cache is full or the rule set is exhausted.

Since the rule coding has been studied in [8], it is out of our
scope. As rules are inserted/deleted dynamically based on the
changes in policy/traffic demands, rule caching should adapt
quickly (i.e., not offline), if not immediately, in most of current
systems. A long adaption time is intolerable, for example,
15 minutes update time of 180K rules to mitigate a DDos
attack [6]. There is a trade-off between caching efficiency and
program execution time.

C. Performance with the CAIDA traffic trace

Fig. 5 shows results with the CAIDA traffic trace. We find
that there are many shallow dependencies in the dependency
graph. The depth of the dependency chains varies from 1 to 5.
Many leaves’ depths are 2 or 3. These shallow dependencies
incur the advantages of our greedy algorithms not so obvious.
Fig. 5(a) shows the execution time of the six algorithms with
the variability of rules. The dynamic programming method DP,
the red line, takes the longest time. The other five take much
less time than DP, because they are greedy algorithms that
make locally optimal choices without the need to search all
possibilities. All of them take at most 30% of Algorithm DP’s
execution time. Because of the elaborate heap implementation,
Algorithm Branch is faster than Algorithm Dependent by at
most 21%, and Algorithm Segment takes only 84% time on
average compared to Algorithm Cover. As Algorithm Com-
bined selects the better choice between Branch and Segment,
it costs a little more time but the performance improves a lot.

Fig. 5(b) lists the cache-hit traffic ratio over the total traffic
on the variability of TCAM size. An advanced Pronto-Pica8
3290 switch has an ASIC that can hold 2,000 OpenFlow rules.
We use the logarithm as the x-axis to show the difference more
clearly. Algorithm DP does the best among all six algorithms
because it sacrifices more time and memory to pursue the
optimal solution. Our four algorithms achieve at least a 79.8%
hit ratio with 2,000 rules, which is just 1.1% of the total rule
table. Algorithm Branch achieves around 77.8% , Algorithm
Segment is around 84.2% and Algorithm Combined is around
86.6% against the optimal algorithm DP’s hit ratio.

Fig. 5(c) shows the results of the cache-hit traffic ratio on
the variability of the number of packets. We aim at testing
our algorithms’ universality. The performance of all four

5630 11250 22500 45000 90000 180000
Number of forwarding rules (log scale)

0

1000

2000

3000

4000
Ex

ec
ut

io
n

tim
e/

se
c

Branch
Segment
Combined
DP
Cover
Dependent

(a) Algorithm execution time.

63 125 250 500 1000 2000
TCAM cache size (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(b) Cache hit traffic and TCAM size.

9.375 18.75 37.5 75 150 300
Number of packets/100k (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(c) Cache hit traffic and the number of packets.

Fig. 6: Stanford backbone router.

algorithms keeps steadily. Algorithm DP still does the best
among all six algorithms. It achieves a cache-hit rate around
90.0% when the packet number varies from 0.6 to 20 million.

D. Performance with the Stanford backbone router

The performance with the Stanford backbone router is
shown in Fig. 6. The forwarding actions have fewer choices.
Thus, the depth of the dependency chains varies from 1 to 8
and there are fewer shallow dependencies. The performances
of our algorithms are better. Fig. 6(a) is the execution time
result depending on the forwarding rules that vary from 563
to 18,000. It has more rules than CAIDA. The growth in
number makes Algorithm DP try more possibilities while
searching for the optimal one. Then, the complexity increases
and it needs more time as shown in the red line. Reversely,
compared to Fig. 5(a), our three greedy algorithms’ times are
only 82%, 79% and 83%, respectively. This illustrates that
these algorithms have better performances in the deeper chain.

The cache-hit ratio on the variability of TCAM size is
shown in Fig. 6(b). The basic increasing tendency is analogous
to Fig. 5(b). With more entries, the cache-hit probability of
the hardware switch becomes larger. All six lines stabilize
earlier than CAIDA. This is relative to the deeper dependency
chain and the less shallow dependencies in this data set. It
also illustrates that deeper dependencies need less forwarding
entries because applying a deeper dependency rule gains more
benefits. Additionally, the optimal solution’s performance is
undoubtedly the best and the ratio reaches 92.3% when the
TCAM entry number is 2,000. Our three greedy algorithms
achieve better ratios than the CAIDA one with the same
TCAM size.

Fig. 6(c) shows the performance on the variability of the
number of packets. It is similar to the CAIDA one in that
the more packets there are, the higher the cache-hit ratio
is. All our four algorithms’ performances are better than in
the CAIDA data set. For 30 million packets, Algorithm DP’s
cache-hit ratio reaches 90.2%, Algorithm Combined reaches
89.4%, Algorithm Segment reaches 83.7% and Algorithm
Branch reaches 81.9%. Thus, Algorithm DP achieves the
best performance in the rule placement at the cost of a
longer execution time and more memory space. Algorithm
Branch takes the least execution time and achieves the same
performance as Algorithm Dependent, the same situation

of Algorithm Segment against Algorithm Cover. Algorithm
Combined is the best deal because of the trade-off between
its complexity and its performance.

VI. CONCLUSION

This paper studies the efficient rule cache problem in SDNs
with dependencies of rules form a forest of trees. We propose
three greedy effective algorithms. The first one with approx-
imation 2 respects the dependency constraint. The second
one inserts deny rules that relax the dependency constraint.
The third one combines the first and second to have an
approximation of 24

5 . We also apply dynamic programming to
generate an optimal solution without deny rules, but slow (i.e.,
heavy-weight), solution. We evaluate our algorithms through
real data-driven simulations.

REFERENCES

[1] R. MacDavid, R. Birkner, O. Rottenstreich, A. Gupta, N. Feam-
ster, and J. Rexford, “Concise encoding of flow attributes in sdn
switches,” ser. SOSR, 2017.

[2] B. Salisbury, “Tcams and openflow: What every sdn practitioner
must know,” See http://tinyurl. com/kjy99uw, 2012.

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past:
Scalable ethernet for data centers,” in CoNEXT, 2012.

[4] L. Peng, W. Lu, and L. Duan, “Power efficient ip lookup with
supernode caching,” in GLOBECOM, 2007.

[5] Z. Huang, G. Liu, and J. Peir, “Greedy prefix cache for ip
routing lookups,” in I-SPAN, 2009.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,
“Cacheflow: Dependency-aware rule-caching for software-
defined networks,” in Symp. on SDN Research, 2016.

[7] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial
order theory for fast tcam updates,” IEEE/ACM Trans. Netw.,
vol. 26, no. 1, pp. 217–230, Feb. 2018.

[8] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and
C. Guo, “Explicit path control in commodity data centers: De-
sign and applications,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 2768–2781, 2016.

[9] H. Lim, C. Yim, and E. E. Swartzlander Jr, “Priority tries for
ip address lookup,” IEEE Transactions on Computers, vol. 59,
no. 6, pp. 784–794, 2010.

[10] “The caida anonymized internet traces 2016 dataset,”
http://www.caida.org/data/passive/passive 2016 dataset.xml.

[11] “Stanford backbone router forwarding configuration.”
http://tinyurl.com/oaezlha.

[12] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging zipf’s law for traffic offloading,” SIGCOMM Com-
put. Commun. Rev., vol. 42, no. 1, pp. 16–22, 2012.

