
On Maximum Elastic Scheduling of Virtual
Machines for Cloud-based Data Center Networks

Jie Wu†, Shuaibing Lu∗†, and Huanyang Zheng†
†Center for Networked Computing, Temple University, USA

∗College of Computer Science and Technology, Jilin University, China

Abstract—Task resource allocation has always been an im-
portant issue in cloud-based data center networks (DCNs).
This paper considers provisioning the maximum admissible load
(MAL) of virtual machines (VMs) in physical machines (PMs)
with underlying tree-structured DCNs using the hose model
for communication. The limitation of static load distribution is
that it assigns tasks to nodes in a once-and-for-all manner, and
thus, requires a priori knowledge of program behavior. To avoid
load redistribution during a run time where the load grows, we
introduce maximum elasticity scheduling, which has the maximum
growth potential subject to the node and link capacities. Given a
tree-based topology, this paper aims to find the schedule with the
maximum elasticity across both nodes and links. We have found
a distributed linear solution based on message passing, and we
discuss several extensions of the model. We conclude the paper
by presenting various simulation results1.

Index Terms—Data center networks (DCNs), cloud, distributed
algorithms, elasticity, hose model, optimization.

I. INTRODUCTION

Task resource allocation has always been an important issue
in cloud-based data center networks (DCNs). Virtual machines
(VMs) scheduling is one popular model that optimizes a
chosen metric subject to the resource limitations of both
physical machines (PMs) and links [1]. This paper enhances
a new QoS metric called maximum elastic scheduling, a task-
assignment scheme that supports maximum uniform growth
in both computation and communication without resorting to
task reassignment. This model was originally proposed in [2],
but its optimal solution is limited to a semi-homogeneous tree
structure. In this paper, we enhance the optimal solution to a
general heterogeneous case.

We model the network as a tree T in a typical DCN.
Each leaf node is a physical machine and each internal node
is a switch. A load at a leaf node is called a computation
load and determines the communication load. We use the
hose model [3] for communication where each node has an
aggregated performance guarantees to the set of all other
nodes. Figure 1 (b) shows a two-level, three-node binary
tree where each PM (leaf node) is represented as a slotted
rectangle (e.g., VM slots or computation loads) and each
internal node (switch) is represented as a circle. Numbers
associated with nodes and links are the available VM slots and
the communication bandwidth, respectively. Each VM has B

1This research was supported in part by NSF and CSC grants CNS 1629746,
CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971, CNS 1439672,
and CSC 20163100.

4 B 7 B

5 6

VM2

VM1

VM5

VM4

VM3

(a) (b)

VM1

VM2 VM5

VM3 VM4

Nl Nr

Ll Lr

N

L

(c)

cut

PM PM

Fig. 1. (a) VM scheduling as a cut, (b) virtual node, and (c) aggregation tree.

Gbps total communication with other VMs. Using the hose
model, the communication load of the left link and the right
link is the same: the lesser of the two leaf nodes’ assigned
VMs multiplied by B. This is analogous to the maximum flow
of a cut as shown in Figure 1 (a). If the left leaf node of
Figure 1 (b) is assigned 2 VMs from one part of the cut and
the right leaf node is assigned 3 VMs from the other part,
the communication load is min{2B, 3B} = 2B based on the
hose model. If the left leaf node is assigned 1 VM and the
right 4 VM, the communication load is min{1B, 4B} = B.
When the left and right node loads are doubled in Figure 1 (b),
the communication load becomes 4B. This load can still be
handled by both the left link and the right link. However, if we
allocate the computation load based on the node capacity, the
corresponding communication load is min{5B, 6B} = 5B,
which exceeds 4B the available bandwidth of the left link.

Using the hose model, we study two provisioning problems:

1) Given a graph T with available node and link capacities,
what is the maximum admissible load (MAL) of T under
the hose model?

2) Given a load that is admissible, what is the optimal
schedule so that the uniform growth rate at all leaf nodes
is maximized under the capacity constraint?

The first problem is analogous to a special utility allocation
problem: a telecomm company lays out cable for each home
in a community. The cable connection is in a tree structure to
minimize the layout cost. Each section of the cable line has a
capacity. Each household has an occupancy limit. What is the
maximum total occupancy limit and the actual assignment at
each house so that cable lines can support the bandwidth of all
possible simultaneous pairwise telephone conversations? The
optimal schedule of the second problem is called the schedule
with the maximum elasticity. The MAL in Figure 1 (b) is
10, with 4 VMs (loads) assigned to the left leaf node and 6
assigned to the right. Both the left link and the right leaf node
reach maximum capacities. Suppose that we now have a load
of 5 to be assigned, which is below the MAL. The schedule

1

2

4 2 5

1

2

Fig. 2. The aggregation tree based on the hose model.

with maximum elasticity assigns 2 loads to the left leaf node
and 3 loads to the right, as shown in Figure 1 (b). Each side
can be doubled without violating the node or link capacities.

We introduce the concept of an aggregation tree, which is
used to calculate the maximum link bandwidth needed for
each link under the hose model (given that the workload
at each leaf node is known a priori). This aggregation tree
gives us a simple iterative solution that abstracts each two-
level, three-node branch (such as the one in Figure 1 (b)) into
one virtual node. The abstraction is a bottom-up aggregation
process that determines the MAL at the root of the tree; the
schedule with the maximum elasticity is decided in a top-
down partition process starting at the root. We later refine
this process since the orientation of the aggregation may not
coincide with the traditional orientation of a full binary tree.
We propose a distributed message-passing-based solution that
uses only three copies of the simple solution to compute
different orientations of a tree with different roots. Both
computation and communication complexity are linear to n
where n is the number of leaf nodes in the tree.

To simplify the discussion, we assume B = 1 for each
VM. Although the schedule with the maximum elasticity in
DCNs can be solved by the classic linear programming (LP),
we strive to find a simple and efficient solution, similar to the
Bellman-Ford solution to the shortest path problem.

II. A SIMPLE SOLUTION

We suppose that the workload of each node is given for a
binary tree (or simply tree). The hose-model-based orientation
of each link is determined as follows: if the link is used
as the cut, the graph can be partitioned into two parts; the
link orientation is the end node that has no more than 50%
of the workload, and the other end node has no less than
50% of the workload. In case of a tie (where each end
node has exactly 50% of the workload), the node with the
smaller ID points towards the one with a larger ID. Note
that under the hose model B = 1, the communication load
is determined through a cut on the link: it is the lesser part
of two computation loads (one from each side of the cut). In
Figure 2, the root is represented as a double cycle (suppose
that the link bandwidth is infinity). The workload from the left
branch (pointing towards the root) is 2 + 4 + 2 = 8, and the
right branch has the same workload.
Theorem 1. The hose-model-based link orientation of a tree
is defined as a directed tree, and each leaf node in this directed
tree has a directed path to a single root.
Proof. If a leaf node has no more than 50% of the total
workload, it points towards its neighbor. In addition, its
workload will be added to its neighbor and then adds the

4 7

v2

5 6

2 5

v3

6 4

v1

10 6

11 6

11 6

(a)

(b) (c)

16

v4 v5 v6 v7

Fig. 3. MAL calculation through virtual node abstraction.

workload to the neighbor. (This also occurs in cases where
the leaf node has exactly 50% of the workload and has a
smaller ID.) If the leaf node has no less than 50% of the
total workload, it points toward itself. This aggregation process
eventually stops at a node (called root) that has more than
50% of the aggregated workload . (In cases where the leaf
node has exactly 50% of the workload, this occurs when the
ID is larger). It is clear that two roots are impossible due to
the majority workload requirement.

The above proof shows a unique aggregation process that
calculates the maximum bandwidth needed at each link for
a given set of workloads. It also serves as the basis of our
iterative calculation process for MAL when the root is given.
The directed tree that is used to represent the orientation
is called an aggregation tree. The simple solution iteratively
abstracts the given tree in a bottom-up manner. As shown in
Figure 1 (c), the basic unit of the abstraction is a two-level,
three-node branch that becomes one virtual node at the higher
level. In this abstraction, one internal node and two virtual
nodes serve as the children of the internal node. At the bottom
level of the tree, a virtual node is a leaf node. At all other
levels, a virtual node is abstracted from the branch rooted at
the same node, as shown in Eq.(1). Suppose Nl (Ll) and Nr

(Lr) have available node space (link bandwidth) for the left
and right virtual nodes, respectively, as shown in Figure 1 (c).

N = min{Nl, Ll}+min{Nr, Lr} (1)

The minimization operation ensures that the value of each
branch satisfies both node space and link bandwidth require-
ments. This abstraction process continues level-by-level until
G is reduced to a single virtual node. The available node
capacity of this virtual node is the MAL. Figure 3 shows this
process on a three-level full binary tree. The load of the left
virtual node in Figure 3 (a) is determined through the left-
subtree: 10 = min{5, 4} + min{6, 7}. Similarly, the final
load of the virtual node shown in Figure 3 (c) is decided
by abstraction from Figure 3 (b). In this case, the MAL is
16 = min{10, 11}+min{6, 6}.

Once the MAL is determined, we can iteratively determine
the schedule that achieves the maximum elasticity. The process
now becomes top-down as the load is partitioned based on the
proportion of left and right branch loads (i.e., min{N,L}).

2

4 7

v2

5 6

2 5

v3

6 4

v1

5 6

4 min{8, 6}

11 6

6

7

 8

16

(a)

(b) (c)

v4 v5 v6 v7

Fig. 4. Optimal solution through a different orientation of aggregation.
An example for a complete binary tree is shown in Figure 3;
supposing that N is a given load that is no more than the MAL,
we partition the load into two parts. The left and right subtrees
are assigned min{Nl, Ll}/N and min{Nr, Lr}/N portions
of the total load, respectively. This process continues for each
of the subtrees until the given load is eventually assigned to
all leaf nodes. In Figure 3, let 8 be a given load that is less
than the MAL 16. Based on Figure 3 (b), the load ratio of
the left subtree to the right subtree should be 10 : 6. This
means that the left subtree is assigned a load of 5 and the
right subtree is assigned a load of 3. This process continues
at the next level. The final assignment is in Figure 3 (a), and
the load assignment is shown as shaded slots. This schedule
corresponds to the one with the maximum elasticity, which is
100 percent of the current load. The load assignments to v6
and v7 are 1 and 2, respectively. This is not proportional to
their available node spaces.

III. AN OPTIMAL SOLUTION

The simple solution gives us some key ideas about iterative
abstractions. The complexity is O(n), where n is the number
of leaf nodes. In fact, each internal node (out of n−1) needs to
calculate twice, performing one bottom-up aggregation for the
maximum admissible load and one top-down load distribution.
However, the simple solution may not generate the schedule
with the maximum elasticity. Figure 4 shows a slightly revised
version of the example in Figure 3, changing the upper left
link capacity from 11 to 8. In this case, the MAL reduces to
8+6 = 14 based on the simple solution. As shown in Figure 4,
if we use node v2 as the ”root” instead of node v1 (the binary
tree becomes a ternary tree), the new MAL is 16 when using
the same approach.

To obtain the optimal solution, we apply the simple solution
to different orientations of the aggregation tree and select the
best one (i.e., the orientation with the maximum MAL). An
orientation is determined by selecting the root of the tree.
The orientation of each link points towards the selected root
for aggregation, as shown in Figure 4 (v2 is the root). Since
there are n − 1 internal nodes and n leaf nodes that can be
roots, applying the simple solution directly 2n−1 times is not
efficient. Here, we introduce a distributed message-passing-
based solution that applies the simple solution three times to

Optimal solution
(At a leaf node with node capacity N)

• Send its load to the connected internal node.
• /* Upon receiving a virtual load N1 from the only branch

with available link bandwidth L1 */
Calculate its MAL: min{N,∞}+min{N1, L1}
(At the internal node with two branches)

• /* Upon receiving a virtual load Ni from a branch with
available link bandwidth Li, i : 1, 2 */
Send virtual load min{Ni, Li} to the other branch.

• /* Upon receiving virtual load, N1 and N2, from two
branches */
Calculate its MAL: min{N1, L1}+min{N2, L2}.
(At an internal node with three branches)

• /* Upon receiving virtual load, Ni and Nj , from two
branches, with i, j(6= i) : 1, 2, 3 */

• Send min{Ni, Li}+min{Nj , Lj} to the third branch
• /* Upon receiving virtual load, N1, N2, and N3, from all

branches */
Calculate its MAL: min{N1, L1} + min{N2, L2} +
min{N3, L3}.

obtain the optimal solution. The key idea is that a node with
three branches (e.g., the node v2 in Figure 4) has, at most,
three orientations. When a three-branch node receives virtual
load information from two branches, it passes the information
on to the connected node in the remaining branch. When a
two-branch node (only one such node exists in a strict binary
tree; a binary tree is considered strict if all the nodes but the
leaf nodes have two children) receives virtual load information
from one branch, it passes the information on to the connected
node in the remaining branch. The MAL at an internal node
is the summation of the loads from all branches. The MAL
at a leaf node is the summation of its branch and its local
computation load.

In the optimal solution, the root corresponds to a three-
branch aggregation. To verify that each link can handle the
computation load, we consider a cut to one of the three adja-
cent links, say on the branch with index 1. Based on the hose
model, the computational load on branch 1 is the cut value:
min{min{N1, L1},min{N2, L2}+min{N3, L3}} (this is no
more than L1). In Figure 4 (b), the communication load at the
middle branch is bounded by min{min{6, 7},min{5, 4} +
min{6, 6}}} = 6, which is no more than its available
communication bandwidth.

A root selection example for a two-level, three-node tree
is illustrated in Figure 1 (c). The MAL at the center node is
min{Nl, Ll}+min{Nr, Lr}. The MAL at the left leaf node
is min{Nl,∞} +min{min{Nr, Lr}, Ll}. The MAL at the
right leaf node is min{Nr,∞}+min{min{Nl, Ll}, Lr}. The
internal load of a leaf node can be considered a branch with
infinite bandwidth. When Nl, Nr, Ll, and Lr are 8, 4, 5, and
4, the MAL at the left leaf node, center node, and right leaf
node are 12, 9, and 8, respectively. In this case, the left leaf

3

TABLE I
STEP-BY-STEP CALCULATION OF MALS FOR THE EXAMPLE OF FIGURE 4

v1 v2 v3 v4 v5 v6 v7

Step 1 - - - send 5 to v2 send 6 to v2 send 6 to v3 send 4 to v3
Step 2 send min{5, 4}+ send min{6, 2}+

- min{6, 7}=10 to v1 min{4, 5}=6 to v1 - - - -
Step 3 send min{6, 6}

=6 to v2 - - - - - -
send min{10, 8}
=8 to v3

Step 4 send min{6, 8}+ send min{8, 6}+
min{6, 7}=12 to v4 min{4, 5}=10 to v6 - - - -
send min{6, 8}+ send min{8, 6}+
min{5, 4} =10 to v5 min{6, 2}=8 to v7

MAL min{10, 8}+ min{5, 4}+min{6, 7} min{6, 2}+min{4, 5} min{12, 4}+ min{10, 7}+ min{10, 2}+ min{8, 5}+
min{6, 6}=14 +min{8, 6}=16 +min{8, 6}=12 min{5,∞}=9 min{6,∞}=13 min{6,∞}=8 min{4,∞}=9

node is the root and has a maximum MAL of 12. When the
load is 6, a load, 6 × 8/12 = 4 is assigned to the left leaf
node. The remaining load, 6 × 4/12 = 2, is assigned to the
right leaf node. The maximum growth rate is 100 percent.

In the optimal solution, each leaf node initiates calculation
by sending its available load to the connected internal node.
Table I shows a step-by-step calculation of the MAL for each
node in Figure 4. The final MAL is the maximum MAL among
the MALs calculated at all internal nodes. Once the MAL is
determined with the selected root node, the schedule with the
maximum elasticity is the same as the schedule in the simple
solution. That is, the schedule is based on the proportion of
the virtual load at each branch. In the example in Figure 4, we
suppose that 8 is the given load. The load distribution is based
on the branch capacities (i.e., min{Ni, Li} for i ∈ {1, 2, 3}) of
three branches, as shown in Figure 4 (b). The left, middle, and
right branches are assigned 8× 4/16 = 2, 8× 6/16 = 3, and
8× 6/16 = 3, respectively. The right branch further partitions
its assigned load to nodes v6 and v7 using the same method.
Eventually, v4, v5, v6, and v7 are assigned loads of 2, 3, 1, and
2, respectively. Each of these loads can grow at a maximum
rate of (16− 8)/8× 100 = 100 percentage.

IV. PROPERTIES

This section studies several properties of the optimal solu-
tion and the simple solution.

Theorem 2. The optimal solution determines the MAL for a
given binary tree under the hose model.
Proof. Based on the optimal solution and Theorem 1, we only
need to show that the MAL determined at each node v is the
MAL with v as the root in the corresponding orientation tree.
We prove by induction from the bottom level to the top level.
Consider each two-level, three-node tree at the bottom two lev-
els of the tree. We first show that min{Nl, Ll}+min{Nr, Lr}
is the maximum virtual load. We prove this by contradiction.
Suppose we can add a small δ to this virtual load; at least
a portion of δ is added to one branch, say the left branch
in this example, without loss of generality. This portion plus
min{Nl, Ll} overloads either the virtual node (leaf node in
this case) or the left link. Suppose the theorem holds for up to

the level k−1, for k > 2. At the level k, we again consider two
levels; level k with internal nodes and level k− 1 with virtual
nodes. The argument for the base case still applies to each
two-level, three-node tree, and thus, this theorem is proved
through induction.

Theorem 3. For a given admissible load, the hierarchical
load distribution from the root to the leaf nodes, based on the
virtual load proportions of each branch, generates a schedule
with maximum elasticity.
Proof. Similar to Theorem 2, we prove by induction. The
key difference is that for each two-level, three-node subtree,
the load distribution based on the load proportion of the left
and right branches is optimal. The fact that the proportions
are determined by the maximum load of both the left and
right branches proves this. Any deviation from this proportion
reduces the growth rate of either the left or the right branch.
As a result, the elasticity is reduced in either case.

Theorem 4. The optimal solution uses 2 log n+1 steps, where
n is the number of leaf nodes for a given full-binary tree. The
computation complexity is 5(n − 1), and the communication
complexity is 4(n− 1).
Proof. In the optimal solution, all information propagation is
loop-free starting from a leaf node and ending at an internal
node or a leaf node. The longest distance is the diameter of
the tree. Since each node, internal or leaf, needs to determine
its MAL, one extra step is needed. In a full binary tree, the
diameter is 2 log n where n is the number of leaf nodes.
Therefore, the optimal solution uses 2 log n + 1 steps. Since
n is the number of leaf nodes in the tree, the number of
internal nodes is n − 1. Each internal node computes only
when it passes virtual load information to another node. Since
there are n− 2 links connecting internal nodes and each link
is bi-directional, there are 2(n − 2) computation steps for
virtual load calculation. Each leaf node receives virtual load
information from an internal node after computation a total of
n times. In addition, each node calculates its MAL once (2n−1
in total). Therefore, the total computation cost is 5(n−1). Each
leaf node communicates once for a total of n. Each link that
connects two internal nodes communicates twice (once in each

4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Capacity Ratio (%)

P
ro

ba
bi

lit
y

V
al

ue

 k=4
 k=5
 k=6

Fig. 5. The probability that the maximal MAL exists at the root.

direction) to pass along virtual load information for a total of
2(n − 2). Each leaf node receives virtual load information
once from an internal node for a total of n. Therefore, the
total communication cost is 4(n− 1).

When we consider elasticity, the bottleneck must be either
in the link or the node in terms of capability of growth.
Next, we consider two special situations under which the
simple solution is optimal. Let us first introduce two special
structures. A given tree infrastructure is a computational-
bottleneck if for any two-level, three-node subtree (shown in
Figure 1 (b)), Nl = min{Nl, Ll} and Nr = min{Nr, Lr}.
The intuition behind the computational-bottleneck structure is
that elasticity bottlenecks appear at the leaf nodes. A given
tree is called a fat-tree [4] if for any two-level, three-node
subtree, L ≥ Ll + Lr. This fat-tree structure is frequently
used in DCNs because upper links usually carry more traffic
and a higher bandwidth must be used.
Theorem 5. Given a binary tree that has a computational-
bottleneck or is a fat-tree, the simple solution is optimal.
Proof. When the tree is a computational-bottleneck structure,
we can see that tree orientation does not change the maximum
elasticity of the tree, so the simple solution works. In fact, link
bandwidth does not play any role in the calculation. When
the tree is a fat-tree, the bottleneck links are always at the
lowest levels. Again, the tree orientation does not change the
maximum elasticity.

V. SIMULATION COMPARISONS

Basic setting: The DCN is modeled as a strict binary tree
with levels k = 4, 5, and 6. The amount of nodes (i.e., physical
machines) ranges from 5 to 30. The node space (i.e., physical
machine capacity) is heterogeneous and ranges from 0 to 100
units. The unit of the resource is slotted, which can be easily
interpreted to a real configuration. Each slot can hold one VM,
and the bandwidth demand between per-pair of VMs is 1 Gbps.
The link bandwidth is uniformly random. The ratio between
the average node space and link bandwidth ranges from 0 to
1. For example, if the node space is 20 slots with 0.5 link
ratio, the bandwidth capacity is 10 Gbps. In addition to the
proposed scheduling algorithm, three baseline algorithms are
used. (i). Equally Distributed Placement (EDP): the VMs are
evenly assigned into the nodes in the tree. (ii). Proportion with
Physical Machine Capacities (PPMC): the VMs are assigned
into the nodes with proportional of the space. (iii). Proportion
with Physical Link Capacities (PPLC): the VMs are assigned
into the nodes with proportional of the bandwidth.

Analysis of the maximal MALs: Since the scales and capac-
ities of the trees are different, the localities of the maximal
MALs may also be different. As shown in Figure 5, we
analyze the probability that the maximal MAL exists on the
root. We find that the probability decreases as the size of the
tree increases. This means that with the scaling of tree size,
bandwidth becomes the main limitation of communication
between PMs. The center point gradually shifts downward
from the root with the bandwidth limitation. Figure 6 presents
the comparison of the performances of the simple and optimal
solutions by calculating the mean value of different DCNs
(k = 4, 5, and 6) under various capacity ratios ranging from 0
to 1. We have the following observations: (i). When the ratio
between the physical machines’ capacities and the physical
links’ capacities is low, meaning the physical links are not the
bottleneck of the available resource, the values of the maximal
MAL may be approximately equal in both the simple and
optimal solutions, as shown in the three figures of Figure 6.
(ii). When the size of the tree is scaling, the upper links may be
the bottleneck for communication between physical machines.
The locality of the maximal MAL may be shifted downward
from the root, and the gap between the simple and optimal
solutions increases with the scale of the tree. The admissible
load of the optimal solution is 50% more than that of the
simple solution, as shown in Figure 5 and Figure 6 (c).

Analysis of elasticity with placement under the maximal
MAL: We place VMs based on Proportion with Physical Com-
binational Capacities (PPCC). Each virtual request iteratively
places using the proportion of the bottleneck resource, which
may be either physical machine capacities or physical link
capacities. The value of the resource demand for each request
ranges from [0, 200]. For each group, we do the placement
based on the available resource and calculate the elasticities.
We average the results of the placement 10 times for virtual
requests with different algorithms. We have the following
observations: (i). As shown in Figures 7 (a), (b), and (c),
the elasticity grows with the scaling of the tree size. (ii).
The elasticity depends on the capacity ratio. As the blue line
shows in Figure 7, the combinational elasticities under the
strategies are decreasing with the increasing ratio. We can
have that when the ratio of the average node space to the
average link bandwidth is lower, the bandwidth is not the
bottleneck. (iii). The elasticity also depends on the placement
strategy. As shown in the green lines in Figure 7, when the
ratio becomes larger, the performance of the PPMC decreases.
In contrast, the performance of the PPLC improves with an
increase in the capacity ratio, which means the accuracy of
the PPLC depends on the constraint of physical links. Our
strategy has the best performance in elasticity compared to
the baseline algorithms; it improves the resultant elasticity by
16.2%, 17.2%, and 11.9% under k = 4, 5, and 6, respectively.

VI. RELATED WORK

Virtualization technology ensures application isolation and
at the same time, allows for utilization of the physical machine.
Much work has been done in VM placement in cloud-based

5

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Capacity Ration (%)

M
ea

n
of

 A
dm

is
si

bl
e

Lo
ad

Optimal
Simple

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Capacity Ration (%)

M
ea

n
of

 A
dm

is
si

bl
e

Lo
ad

Optimal
Simple

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Capacity Ration (%)

M
ea

n
of

 A
dm

is
si

bl
e

Lo
ad

Optimal
Simple

Fig. 6. Caparison of the elasticities of the simple and optimal solutions (a): k = 4, (b): k = 5, and (c): k = 6.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Capacity Ration (%)

C
om

bi
na

tio
na

l E
la

st
ic

ity
 (

%
)

EDP
PPMC
PPLC
PPCC

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Capacity Ration (%)

C
om

bi
na

tio
na

l E
la

st
ic

ity
 (

%
)

EDP
PPMC
PPLC
PPCC

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Capacity Ration (%)

C
om

bi
na

tio
na

l E
la

st
ic

ity
 (

%
)

EDP
PPMC
PPLC
PPCC

Fig. 7. Comparison of the elasticities between the simple and optimal solutions (a): k = 4, (b): k = 5, and (c): k = 6.

DCNs [1] with constraints that include power and performance
[5], reliability [6], and traffic minimization [7]. [8] discusses
some other practical factors in VM scheduling. Predictability
is an important goal in designing efficient DCNs [9]. [10]
uses empirical estimates of bandwidth in the placement design.
Elasticity is considered one of the central attributes when esti-
mation cannot be easily obtained [11, 12]. In cloud computing,
elasticity is defined as the degree to which a system can adapt
to workload changes by provisioning and de-provisioning
resources in an autonomic manner [13]. In [2], the authors
consider elasticity-aware VM placement in tree-based DCNs,
taking both computation load and communication bandwidth
into consideration. However, our proposed approach is the only
one to achieve optimality when the tree is semi-homogeneous,
i.e., the bandwidth of the links at the same level are the same,
but ones at different levels are different. The scheme proposed
in this paper extends the optimality to general tree structures.

VII. CONCLUSION

This paper proposes maximum elasticity scheduling that
supports maximum future growth without resorting to task re-
scheduling. It is based on an iterative abstraction that includes
both maximum computation elasticity and maximum commu-
nication elasticity. Our insight into maximum communication
elasticity stems from a special type of the hose model which
determines the communication load based on the underlying
computation load. Given a tree-structured DCN, we offer
a distributed, optimal solution that computes the maximum
admissible load and performs the maximum elastic scheduling
of any admissible load. Experiments demonstrate the efficiency
and effectiveness of our approach. The optimal solution can
be easily extended to any k-nary tree structure. In our future
work, we will explore the elasticity in multiple path routing,
such as MPLS [14].

REFERENCES
[1] Z. Á. Mann, “Allocation of virtual machines in cloud data centersa sur-

vey of problem models and optimization algorithms,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, 2015.

[2] K. Li, J. Wu, and A. Blaisse, “Elasticity-aware virtual machine place-
ment for cloud datacenters,” in IEEE 2nd International Conference on
Cloud Networking (CloudNet), 2013.

[3] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management in
virtual private networks,” in ACM SIGCOMM Computer Communication
Review, vol. 29, no. 4, 1999.

[4] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. 100, no. 10,
1985.

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Springer Cluster Computing, vol. 12,
no. 1, 2009.

[6] S. Yang, P. Wieder, R. Yahyapour, S. Trajanovski, and X. Fu, “Reliable
virtual machine placement and routing in clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 10, 2017.

[7] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM, 2010.

[8] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of the
art, and future directions,” Proceedings of the IEEE, vol. 102, no. 1,
2014.

[9] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4, 2011.

[10] R. Wang, J. A. Wickboldt, R. P. Esteves, L. Shi, B. Jennings, and L. Z.
Granville, “Using empirical estimates of effective bandwidth in network-
aware placement of virtual machines in datacenters,” IEEE Transactions
on Network and Service Management, vol. 13, no. 2, 2016.

[11] D. Plummer, Lummer, D. Smith, T. Bittman, D. Cear-Ley,
D. Cappuccio, D. Scott, R. Kumar, and B. Robertson, “Study:
Five refining attributes of public and private cloud computing,”
http://www.gartner.com/DisplayDocument, Tech. Rep., 2009.

[12] S. Lu, Z. Fang, and J. Wu, “Elastic scaling of virtual clusters in cloud
data center networks,” in IEEE IPCCC, 2017.

[13] N. R. Herbst, S. Kounev, and R. H. Reussner, “Elasticity in cloud
computing: What it is, and what it is not.” in ICAC, vol. 13, no. 10.
USENIX, 2013.

[14] B. S. Davie and Y. Rekhter, MPLS: technology and applications.
Morgan Kaufmann Publishers, 2000.

6

