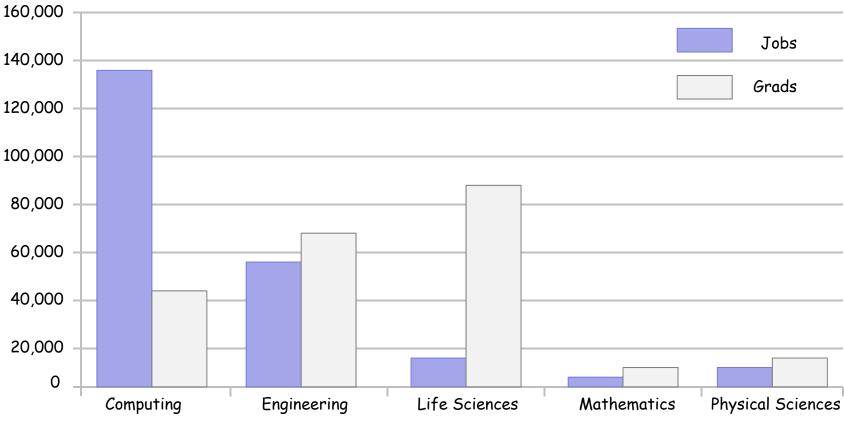
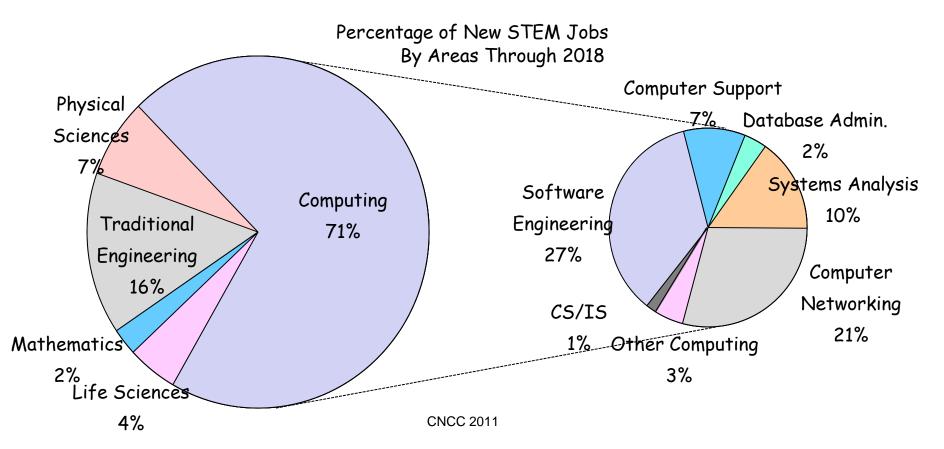

Some Reflections on C&I Education

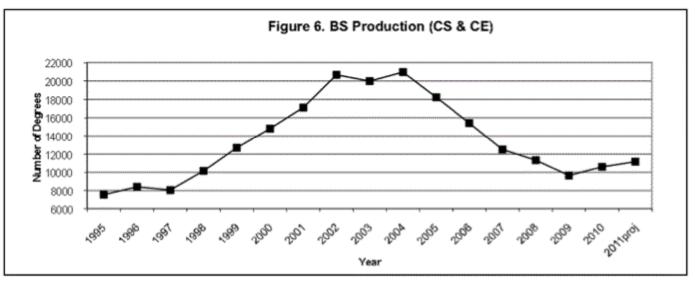
Jie Wu Computer and Information Sciences Temple University

Roadmap


- Current Crisis
 - IT Market Demand
 - CS Enrollment
- Several Initiatives
 - NSF: BPC-A and CE21
 - ACM: CSTA
- C&I Curricula
 - ACM (AIS and IEEE) Curriculum 2013
 - Multi-subject and Cross-disciplinary
- Chinese vs. U.S. Ed. System
 - Final Thoughts


1. Current Crisis

 IT job growth projections out-pace student interest in computing majors by a factor of 5.5


In High School

 Participation in all STEM disciplines (science, technology, engineering, and mathematics) is increasing, except in the field of computer science

In College

- Since 2000, the number of majors in computing is down 70% overall, and the number of women is down 80%
- CS is threatened by one of its own innovations using the internet for offshore job outsourcing

2. Several Initiatives

Broadening
 Participation in
 Computing Alliance
 (BPC-A)

BPC-A addresses
 issues across K-16

Computing Education for the 21st Century (CE21)

ŃSF

- Effective teaching and learning in computing
- NSF-initiated CS 10K project: 10,000 high school teachers to teach AP exam in CS by 2013
- Cyberlearning: Transforming Education (CTE)

CNCC 2011

ACM: CSTA

- Computer Science Teachers Association (CSTA)
 - Evolved from ACM's K-12 task force
 - Working on revising the model curriculum
 - Computing education for students ages 5-18 (K-12)
- Learn from the successful stories of
 - National Science Teachers Association (NSTA)
 - National Council for Teachers of Mathematics (NCTM)

Challenge 1

Changing the perception of CS as a service discipline

Branding CS discipline

Attaching more participants in CS STEM

3. C&I Curricula

Diversification of C&I education

Past foundation

mathematical logic

mathematical engineering (M. Snir)

Current foundation mathematics, statistics, cognitive sciences,

social sciences, physical sciences, etc.

- More multidisciplinary and cross-disciplinary applications
 - Double major, CS-major X-minor, and X-major CS-minor

ACM (AIS and IEEE) Curricula

- Curriculum 65
 - Prelim. recommendation
- Curriculum 68
 - Algorithmic thinking
- Curriculum 78
 - Programming skills
- Curriculum 91
 - Multiple core
- Curriculum 01
 - Multiple tracks
- Curriculum 13 (cs2013.org)
 - Outward looking

- Curriculum 05
 - Computer Engineering
 - Computer Science
 - Information Systems
 - Information Technology
 - Software Engineering
- Multiple Introductory Seq.
 - Imperative-first
 - Object-first
 - Functional-first
 - Algorithm-first
 - Hardware-first

Computing Education Matters

- ACM Symposium on Computer Science Education (SIGCSE 2011)
 - Special session: the CS 10K project
 - Panel: Successful K-12 outreach strategies
 - Technical paper: Tutoring for retention

- Panel: Top issues in providing successful undergraduate research experiences
- Town meeting: expanding the women-in-computing community
- Panel: Curriculum 2013 reported from ACM/IEEE joint task force
- ACM Journal of Educational Resources in Computing
- ACM Transactions on Computer Education

Distance and Online Education

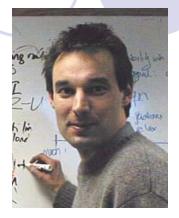
- Substitution
 (disruptive) process?
 - Problematic remote assessment
- Facilitate better interaction
 - Student-student
 - Student-faculty
- Offer self-service education
 - Student-pull (on-line)
 - Lecturer-push (in-classroom)

- Recent online educational innovations
- o iTunes U
- MIT's OpenCourseWare
- Chinese college courses online: www.icourses.edu.cn

Distributed Ed: Stanford "Intro to AI"

- S. Thrun (Stanford) and P. Norvig (Google)
- Free and online worldwide from Oct. 10 to Dec. 18, 2011
- Delivering lectures on youtube
- Earning class certificate once passed

Multi-subject: MIT "Computer Sys. Eng."


- Intro & complexity
- Tech trends
- Naming
- Enforcing modularity
- Operating systems
- Concurrency
- Threads
- Performance
- Networks
- Layers
- Routing
- End-to-end

- Sharing networks
- Distributed naming
- Fault tolerance
- Atomicity
- Recovery
- Isolation

- Multi-site atomicity
- Consistency and replication
- Security
- Message authentication
- User authentication
- Certification

F. Kaashoek (lecturer)

D. Katabi (recitation)

Diversity Carnegie Mellon

- CMU (School of Computer Science): Department, Institute, and Center
- Computer Science Dept.
- Human-Computer Interaction Institute
- Institute for Software Research
- Language Technologies Institute
- Lane Center for Computational Biology
- Machine Learning Department
- Robotics Institute

CMU Ph.D. Programs

- Computation, Organizations and Society
- Computational Biology
- Computer Science
- Human-Computer Interaction
- Language and Information Technologies
- Machine Learning
- Machine Learning and Public Policy
- Machine Learning and Statistics
- Robotics
- Software Engineering

The Bigger Picture

- CS role in four scientific paradigms
 The primary scientific paradigm
 - Experimentation: The use of apparatus, artifacts, and observation to test theories and construct models

The FOURTH PARADIGM DATA-INTENSIVE SCIENTIFIC DISCOVERY

ED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLL

- Computation (1980s): A specialization of experimentation with tools focused around numerical techniques afforded by computers
- Data-driven (2010s): data and the computational systems needed to manipulate, visualize, and manage large amounts of scientific data

Challenge 2

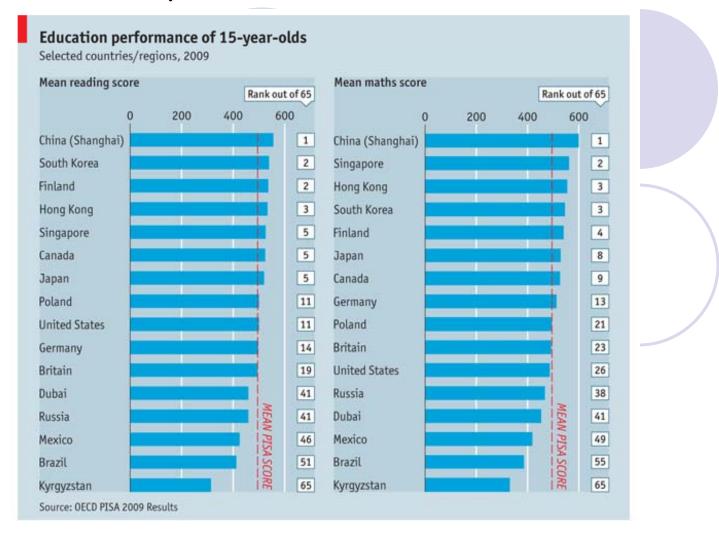
Expanding C&I curricula while maintaining its core

Utilizing IT technology for effective teaching and learning

Educating CS students in ways of thinking and problem solving, which characterize CS

Why Picasso & Matisse are Great

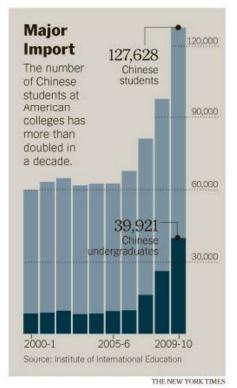
- Know how to make appropriate abstraction
 very important in CS!
- Many CS students use excessive amounts of math to explain simple things!


4. Chinese vs. U.S. Ed. System

- ACM International Collegiate Programming Contest (ICPC)
 - Shanghai Jiaotong
 University (3 time winners, tied 1st overall)
 - Zhejiang University (2011 winner)

- D. A. Patterson (CACM, 2005): Reflections on a Programming Olympiad
 - Putin met the 2004 winner team
 - U.S. president met football champions

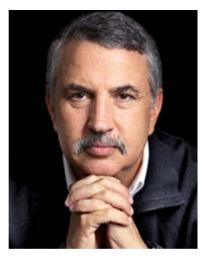
Shanghai Kids First class city, first class education


Amy Chua's "Tiger Moms"

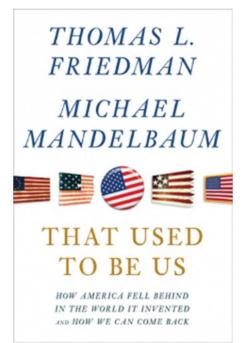
- Time Magazine, Jan. 2011
 - Is tough parenting really an answer?
- NY Times, Jan. 15, 2011
 - Chinese children typically start their formal education at age two
 - The Chinese tend to favour the U.S. education system for trying to make learning exciting and not just a chore
- NY Times, Nov. 3, 2011
 - The China Conundrum
 - It is difficult to identify good Chinese students from applications

The New York Times

October 31, 2011


Elite to Mass to Universal

- Almost all schools follow similar curricula
- Almost every child in China learns one classical musical instrument
 - ... but, there are only 2 or 3 thousand die-hard classical music fans in Beijing!



Conflicting Views on Education in U.S.

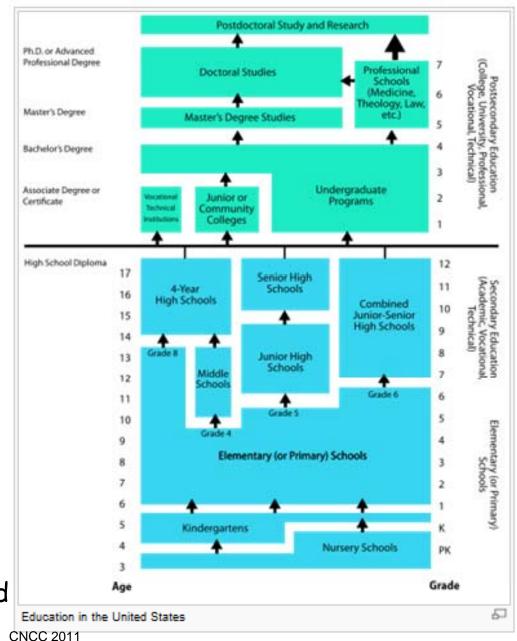
- Thomas L. Friedman: Five Pillars of Prosperities
 - Public education, modernization infrastructure, open immigration policy, basic R&D, and regulation of private economic activity

(Three-time Pulitzer winner)

Conflicting Views on Education in U.S.

- The debate on "the need of higher education"
 - Bill Gates, Steve Jobs, and Michael Dell never completed their college study

Things Students Learn at College


50% of the learning material for a student's career future is outside the classroom
45% show no significant gains in critical thinking, analytical reasoning, and written communications during the first 2 years

BUT

- Learn how you learn
- Learn how to think
- Learn self-discipline
- Learn how to communicate effectively

U.S. Ed. System

- National priority
 - Public safety, transportation, energy, education, health, advanced manufacturing
- Admission criteria
 - Standardized test, GPA/HPA, extracurricular activities, etc.
- Different types
 - Vocational technical institutions, community colleges, universities, and professional schools

Chinese System vs. U.S. System

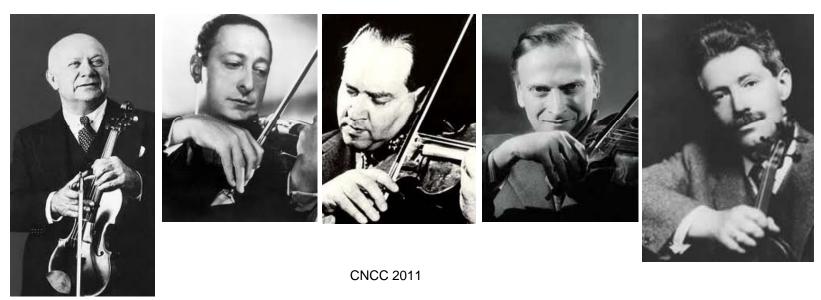
- Chinese system
 - Highly structured, disciplined learning
- U.S. system
 - Critical thinking and student-centered learning

China and the U.S. should learn from one another and adopt what the other does best!

Merits of U.S. Ed. System

• U.S. system

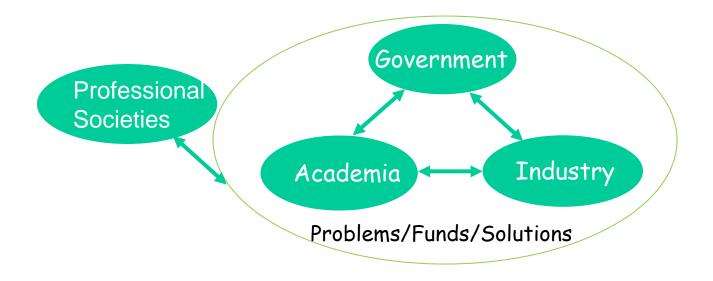
- Flexibility of educational system
- Importance of extra-curricular activities
 - Club activities
 - Sports
 - Volunteering
- Five pillars of learning
 - Learning to know
 - Learning to do
 - Learning to live together
 - Learning to be
 - Learning to transform oneself and society



Education for Building Character!

- Learning the lesson from the classical music world
- Musicianship with character
- Violinists
 - Past generation: Heifetz, Oistrakh, Menuhin, Kreisler, Elman...
 - Current generation: Perlman, Mutter, Vengerov, Bell, Chang...

Challenge 3


Developing general education to produce well-rounded citizens

Fulfilling individual potential AND

Contributing to social transformation

Final Thoughts

 Education ecosystem: government, industry, academia, and professional societies

Charles Darwin (Origin of Species)

"It's not the strongest of the species that survives, not the most intelligent, but the one most responsive to change."

