
CIS	1068:		Quiz	2	(40	pts) Name(print)_____________________ 		

Complete the following programs, in order to print out the result of
1+2+3+4+5+…+10.

 int total = 1;
 int c = 0;
 while(c < 9)
 {
 total = _________total+c+2__________________;
 c = c +1;
 }
 System.out.println(total);

 int total = 1;
 int c = 2;

 while(_____c<11________________)
 {
 total = total + c ;
 c = c +1;
 }
 System.out.println(total);

 int total = 1;
 int c = 1;
 while(c < 10)
 {
 total = _____total+c+1________________ ;
 c = c +1;
 }
 System.out.println(total);

 int total = _____0__________;
 int c = 0;

 while(_____c<10________________)
 {
 c = c +1;
 total = total + c;
 }
 System.out.println(total);

	

CIS1068	Quiz2,	Population.java,	on	“Explanation	of	Issues”	
See	the	assignment	in	the	below.	

The student work (i.e.,
program) is to display
the size of population
every day: day 0, day
1, day 2, …
	
Key	 part	 in	
assignment	 work	
for	 assessment:	But	

student	 is	 asked	 to	obtain	a	 comprehensive	view	of	 the	problem	when	 input	data	
has	the	validation	issue	and	is	crucial	to	the	correct	calculation	result.	
	

	
	
	
	
	
	
	
	
	
	
	

Input,	given	
by	the	user,	in	
orange	 Invalid	input	(-1,	but	

required	to	be	>1)	will	
incur	a	result	without	
any	appropriate	
interpretation!	The	
student	must	not	only	
design,	but	also	
implement	a	program,	
which	can	identify	the	
validation	(or	not),	and	
then	avoid	using	any	
bad	data	in	calculation.	
That	is,	a	valid	data	
must	be	guaranteed	at	
the	end	of	input	
process.	That	requires	
a	loop	“while	(<2)”,	i.e.,	
repeating	input	until	
>=2	to	stop	repeating!		

Correct	
result	10,	
11,	and	
12,	after	
the	input	
10,	10,	
and	2	

*	 Desired	 assessment:	 Note	 that	
before	 the	 programming	 work	 starts,	
the	 student	 should	 have	 a	
comprehensive	 view	 of	 the	 required	
population	 calculation,	 in	 where	 data	
validation	 is	 a	 critical	 part.	 As	 the	
correct	result	is	expected	at	the	end	of	
execution,	 the	 design	 and	
implementation	 of	 the	 process	 to	
guide/correct	the	user’s	input,	which	is	
beyond	 the	 original	 requirement	 for	
the	number	calculation,	is	also	desired,	
especially	when	incorrect	input	occurs.		

Complete	version	for	reference		
	

 1 import java.util.Scanner;
 2 import javax.swing.JOptionPane;
 3 import java.text.DecimalFormat;
 4
 5 public class Population
 6 {
 7 public static void main (String [] args)
 8 {
 9 Scanner KB = new Scanner(System.in);
10 int number, rate, days, counter=0;
11 do{
12 System.out.println("what is the starting number of organisms?");
13 number=KB.nextInt();
14 }while (number<2);
15 do{
16 System.out.println("what is the daily population increase?");
17 rate = KB.nextInt();
18 }while(rate<0);
19 do{
20 System.out.println("how many days will the organism multiply?");
21 days = KB.nextInt();
22 }while(days<1);
23 while (counter <= days){
24 System.out.println("On day "+counter+" there will be " +number +"
organisms in the population");
25 number=number+(number*rate)/100;
26 counter=counter+1;
27 }
28 } }
29 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Sample	of	high	level	work	on	“Explanation	of	Issues”		
	

*	 Interpretation	 of	 target	work	 for	 assessment	 of	 explanation,	 i.e.,	 comprehensive	
view	 of	 problem:	 Before	 the	 design	 and	 implementation	 of	 the	 program	with	 the	
desired	validation	check,	this	student	should	have	had	a	comprehensive	view	of	the	
validation	 issue	 in	 the	 loop	program	of	population	calculation,	 including	the	check	
(valid/not)	and	the	process	to	ensure	the	valid	data	in	calculation	C.	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	
	

	
	

	
	
	
	
	

	

Computer	
print-outs,	
in	black	

Input,	given	
by	the	user,	
in	orange	

Computer	
result,	after	
user	input	

#	must	be	>1.	-1	is	invalid	so	the	
program	keeps	asking	the	right	
number	(until	10	is	inputted	for	
a	satisfaction).	See	a	do-while	
loop	from	line	11	to	line	14.	
		

Explanation	of	Issues:	
!	The	problem	of	
invalid	data	is	solved	
completely	so	that	the	
assignment	is	
understood	in	a	
comprehensive	manner.		
	

Program:	
Schad_Popul
ation.java	

Line	
number	
in	
program	

Sample	of	minimum	work	expected	on	“Explanation	of	Issues”		
	

*	Interpretation	of	target	work	for	assessment	of	explanation:	Before	the	design	of	
the	program	with	the	desired	validation	check,	this	student	should	have	considered	
the	validation	 issue	 in	 the	 loop	program,	and	C	 include	 the	check	(valid/not)	and	
the	 process	 to	 avoid	 using	 the	 invalid	 data	 in	 calculation.	 However,	 when	 the	
program	encounters	any	invalid	data,	the	execution	stops,	Dlacking	the	guidance	for	
the	 user	 to	 correct/fix	 the	 input	 immediately	 (i.e.,	 the	 number	 entered).	 But	 this	
omission	is	not	serious	to	impact	the	execution.		
	

	
	
	
	
	
	
	
	
	
	
	

Program:	
TAIMUR_Po
pulation.java	

Explanation	of	Issues:	
"Cannot	help	to	fix	the	issue	
right	after	the	error	occurs,	
leaving	the	functionality	of	
population	calculation	not	
accomplished	in	those	cases.	
		

Explanation	of	Issues:	
!	Calculation	is	right	after	
valid	data	is	inputted.	The	
program	can	also	check	the	
data	validation	and	avoid	
using	any	invalid	data	for	the	
calculation.	
		

Sample	of	unsatisfied	work	on	“Explanation	of	Issues”		
	

*	 Interpretation	 of	 target	work	 for	 assessment	 of	 explanation,	 i.e.,	 comprehensive	
view	of	problem:	No	validation	check!	A	very	important	part	in	the	target	problem	is	
ignoredD.	The	calculation	is	incorrect	D	 even	when	valid	data	is	inputted.	That	is,	
the	loop	program	is	not	developed	as	guided.	The	target	population	calculation	lacks	
a	correct	classification	in	this	computer	program.	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	

	

Computer	
print-outs,	
in	black	

Input,	given	
by	the	user,	
in	orange	

Computer	
result,	after	
user	input	

Program:	
Tadiwa_Pop
ulation.java	

Same	code,	
another	
round	of	
execution	
(may	accept	
different	
input)	
	

Explanation	of	
Issues:	
"Population	
calculation	is	
incorrect,	i.e.,	the	
problem	is	not	
clearly	described	
with	the	
program.		
		

Explanation	of	Issues:	
"No	data	validation	check.	
Miss	a	critical	part	here.	
		

	 	 CIS1068	Quiz2,	Calculation.java,	on	“Evidence”	and	“Conclusion”	
See	the	assignment	in	the	below.	

	The student work (i.e.,
program) is to calculate the
result of 1/30 + 2/29 +…+ 30/1

Key in assignment work for assessment: It asks
students to review slide 37 (see the right picture) in
http://www.cis.temple.edu/~zjiang/cis1068c.ppt,
where a similar case was discussed: 1+3+5+…

When both numerator and denominator are of integer
type, the computer’s result will be integer, discarding
the decimal part (i.e., round-off error). The materials
are discussed on slide 38 in
http://www.cis.temple.edu/~zjiang/cis1068a.ppt, on
the difference between “int” and “double” types.

* Desired Assessment for “Evidence”: Note that this
assignment implies the need for students to question
on the round-off error when they see integers 1 and 30 in the division 1/30.

* Desired Assessment for “Conclusion”: Note that this assignment implies the need for
a solution in general. This requires the compatibility of any sequence from 1 to n, where
n is not always 30. Such abstraction of a group of tasks is the outcome in assessment for
“conclusion”, which is logically related to the target problem and reflects the student’s
ability to place every piece of evidence (relevant to round-off issue and the loop
development for 1+3+5+…) in the right order and to solve the proposed problem.

	

For-loop	follows	the	
instructor’s	guidance	and	
uses	the	“counter	control”	
to	approach	the	resultant	
program	in	the	right	
direction	

Input,	given	
by	the	user,	
in	orange	

“Double”	type	is	used.	It	is	not	
integer	division	any	more	so	
that	the	above	round-off	
problem	can	be	avoided.	The	
calculation	is	correct!	

An	incorrect	program	that	takes	the	integer	division	without	questioning	the	error:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Revised	for	correction:	an	analysis	on	the	loop	body	(i.e.,	repetition)	is	expected	for	
the	use	of	“casting”.	The	corresponding	synthesis	in	the	resultant	program	––	That	is	
the	expected	part	for	the	assessment!	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

The	result	of	integer	x	divided	by	
integer	(top-x+1),	as	shown	in	the	
program	at	the	left,	will	end	with	0	
when	x	<	(top-x+1),	for	instance	
1/30=0,	2/29=0,	…	14/16=0!	
	

Though	the	integer	division	is	
still	in	use,	the	design	is	
comprehensively	questioned	on	
the	need	for	the	casting:	After	
the	modification	of	(top-x+1)	to	
(top-x+1.0),	as	shown	in	the	
program	at	the	left,	the	
calculation	of	the	denominator	
will	end	with	an	addition	of	an	
integer	and	another	double	
number	(i.e.,	1.0),	which	will	
lead	to	a	“double”	result	that	
has	the	capability	of	carrying	
decimal	part.	Therefore,	the	
accumulative	addition	will	have	
the	correct	answer,	not	49	any	
more!	
	

Complete	version	for	reference		
	

 1 import java.util.Scanner;
 2 import javax.swing.JOptionPane;
 3 import java.text.DecimalFormat;
 4
 5 public class Calculation
 6 {
 7 public static void main (String [] args)
 8 {
 9 Scanner KB = new Scanner(System.in);
10 System.out.println("what is the number?");
11 double b, c, number = KB.nextDouble();
12 int a;
13
14 for (a=1,b=number, c=0; a<=number; b--, a++) {
15 c=c+(a/b);
16 }
17 System.out.println("The final sum is "+c);
18 }
19 }
20
21 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

Sample	of	high	level	work	on	“Evidence”	and	on	“conclusion”	
• Interpretation	 of	 work	 for	 assessment	 of	 evidence:	 This	 student	 questions	

the	“round-off”	problem	in	the	body	of	 the	 loopC.	By	using	a	“double”	type	
denominator,	 say	 variable	 “b”	 on	 line	 11,	 the	 integer	 division	 on	 line	 18	 is	
converted	to	a	double	number	division.	That	is,	the	round-off	problem,	such	
as	½=0,	is	avoided.		

• Interpretation of work for assessment of conclusion: This student obtains an
abstraction of the accumulative calculation so that any similar sequence can be
supportedC, including the one for from 1 to 30. For example, in the figure in the
below, 1/10 + 2/9 + … + 10/1 and 1/20 + 2/19 + … + 20/1. This extensive work
logically reflects the student’s understanding of the target problem. Its success of
execution indicates student’s ability to place everything in the right order C.

	
	
	

	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

Computer	
result,	after	
user	input,	
First	try	10	
for		
1/10+2/9+
…+10/1,	and	
second	try	
20	for		
1/20+2/19+
3/18+…	+	
19/2+20/1	

Program:	
Schad_Calcul
ation.java	

Evidence:	
!	For	each	division	on	line	18,	such	
as	1/30,	the	type	of	denominator	
(variable	b)	is	declared	as	“double”	
type	on	line	11.	The	round-off	
problem	is	thoroughly	solved	and	the	
resultant	process	is	successfully	
synthesized	within	the	loop	program.	

	

Conclusion:	
!		The	program	also	supports	different	
sequence	other	than	the	one	from	1	to	30,	for	
instance,	by	entering	number	10,	1/10+2/9+…	
+	10/1.	This	successful	extension	shows	the	
student	ability	to	obtain	the	related	outcomes	
in	a	more	general	format	(i.e.,	abstraction),	
which	has	been	beyond	the	problem	
formulation	in	the	assignment	sheet.		

	 Sample	work,	minimum	work	on	“Evidence”	but	unsatisfied	on	“conclusion”	
	

• Interpretation	 of	 target	work	 for	 assessment	 of	 evidence:	 This	 student	 did	
not	question	the	“round-off”	problem	in	the	body	of	the	loopD.	By	declaring	
both	numerator	(num)	and	denominator	(denum)	in	the	“int”	type,	an	integer	
division	 is	 conducted	 and	 round-off	 problem,	 such	 as	½=0,	 occurs.	 But	 the	
rest	is	correct.	

• Interpretation of target work for assessment of conclusion: This program only
calculates 1/30 + 2/29 + … + 30/1. But the result is incorrectC. Though the
structure adopted, i.e., for-loop, is appropriate, the entire program (student work)
cannot be tied to anything discussed in class in a meaningful manner.

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	

	

Evidence:	
"The	expected	result	of	
1/30+2/29+…+30/1	is	
93.8446.		This	student’s	
result	is	not	right	because	
the	casting	is	not	used	in	
the	integer	division	in	
program.	In	his	
calculation,	all	the	results	
from	1/30,	2/29,	…	to	
14/16	will	be	set	to	0	by	
the	computer.	
		

Computer	
result,	after	
user	input	

Program:	
Tadiwa_Calc
ulation.java	

Conclusion:	
"The	program	prints	out	82	
every	time.	That	is	a	miss	of	
every	meaningful	thing.		
		

Sample	of	minimum	work	expected	on		“Conclusion”	
	

• Interpretation	 of	 target work for assessment of conclusion: This student can
obtain	 C	 an abstraction of the accumulative calculation so that any similar
sequence can be supported, while the round-off problem is carefully cared and
identified in the program. But that abstraction only works under the cap of 30! For
instance, the result of this program for 1/40+2/39+…+40/1 is incorrect, as shown
in the below (i.e., outcomes are tied to a range of casesC, but not thoroughly a
completenessD).

	
	

	
	

	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	

	
	

	

Computer	
result	for	
1/40+2/39+
…+40/1	is	
incorrect.	

Program:	
EMILY_Calcu
lation.java	

Conclusion:	
!		The	program	supports	the	calculation	1/30	
+	2/29	+	…	+	30/1,	fits	the	desired	conclusion	
specified	in	the	assignment	sheet.	
!		The	result	is	correct	and	round-off	error	
has	been	taken	care	(i.e.,	some	expected	result		
is	clearly	described	in	program).		
"	But	partial	extension	is	provided	for	the	
calculation	of	any	other	sequence.	Support	is	
limited	to	any	sequence	under	the	cap	of	30!	

	
Sample	of	unsatisfied	work	on		“Conclusion”	

	
• Interpretation	of	 target work for assessment of conclusion: This student cannot

obtain D	 an abstraction of the accumulative calculation so that any similar
sequence can be supported. That is, the result of this program is always for
1/30+2/29+…+30/1, as specified in the assignment sheet (i.e., outcome fits the
desired/specified conclusion onlyD). However the round-off problem is carefully
cared and identified in the program C.

	
	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	

	
	
	

Computer	
result,	no	
change,	
always	for	
1/30+2/29+
…+30/1.	

Program:	
CARRIE_Calc
ulation.java	

Conclusion:	
!		The	program	supports	the	calculation	1/30	
+	2/29	+	…	+	30/1,	fits	the	desired	conclusion	
specified	in	the	assignment	sheet.	
!		The	result	is	correct	and	round-off	error	
has	been	taken	care	(i.e.,	some	expected	result		
is	clearly	described	in	program).		
"	But	no	extensive	work	is	provided	for	the	
calculation	of	any	other	sequence.		

	 	 CIS1068	Quiz2,	Comparison.java,	on	“Assumptions”	
	
See	the	assignment	in	the	below.	

	The student work (i.e.,
program) is to displays the
largest and smallest entered.

Key	 part	 in	 assignment	 work	 for	 assessment:	 The	 sequence	 consists	 of	 any	
integer	number,	except	for	-99!	That	is,	-99	cannot	be	in	the	final	display.		
	
*	Desired	Assessment:	Note	 that,	any	of	 these	 two	 in	display,	 largest	or	smallest,	
must	be	 from	 the	entered	numbers	 (in	 input	 range)!	Moreover,	 it	 is	 assumed	 that	
the	data	input	process	will	stop	at	“-99”!	Students’	ability	to	catch	these	assumptions	
is	assessed	here	via	the	execution	of	their	programs.	

	

Largest	(or	smallest)	of	
input	{1,	-1}	is	1	(or	-1).	

Largest	(or	smallest)	of	
input	{-1}	is	-1.	

Largest	(or	smallest)	of	
input	{1}	is	1.	

Correct	code:	

	
	
	
	
	
	
	
	
	
	
	
	
	

The	value	of	“small”	or	“big”	in	
program	must	be	initialized	to	
the	first	input	value,	a	number	
that	is	definitely	within	the	
input	sequence.	We	cannot	
use	any	other	number	such	as	
0	or	-1,	which	might	be	out	of	
the	input	sequence.		

The	design	of	program	must	
consider	the	possible	case	that	
the	input	process	needs	to	
stop	immediately	at	the	
beginning,	without	any	valid	
data	at	all.	

Sample	of	high	level	work	on	“Assumptions”	
	

*	Interpretation	of	the	target	work	for	assessment	of	assumptions:	For	selecting	the	
largest	 and	 smallest	 value	 correctly	 (i.e.,	 position	 stated	 in	 the	 assessment),	 this	
student	precisely	analyze	and	catch	all	assumptions	C.	The	program	is	successfully	
implemented	with	such	a	constraint.		
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Program:	
Schad_Comp
arison.java	

Same	code	runs	in	multiple	
times.	First	round	of	execution	
accepts	input	1	and	-1	and	
prints	out	correct	answer	
(largest=1/smallest=-1),	
second	accepts	1	only	and	
prints	out	correct	answer	(1	
for	both	largest	and	smallest),	
and	third	accepts	-1	only	and	
prints	out	the	correct	answer	
(-1	for	both	largest	and	
smallest).		
	

Computer	
result,	
after	user	
input	

Assumptions:	
!	All	situations	of	input	are	
considered,	including	the	
identifier	“-99”.	The	
largest/smallest	is	found	
correctly.	This	is	based	on	a	
precise	catching	of	the	
assumption	in	the	initialization	
of	variable	“big”	and	“small”,	
i.e.,	assigning	the	first	inputted	
value	on	lines	13	and	14!	
		

	 Sample	of	minimum	work	expected	on	“Assumptions”		
	
*	Interpretation	of	target	work	for	assessment	of	assumptions:	The	assumption	that	
these	 two	 values	 in	 display	 (the	 largest	 and	 the	 smallest)	 come	 from	 the	 entered	
numbers	 is	 followedC.	 	The	program	accepts	the	assumption	C	 that	uses	“-99”	as	
the	 identifier	 to	 stop	 the	 execution.	 	However,	 this	 program	D	 adopts	 a	 different	
problem	 description	 without	 a	 thorough	 analysisD,	 leaving	 unnecessary	
information	in	display	when	no	valid	number	is	inputted	(see	the	below	display	at	
the	stop	after	“-99”	is	entered	before	any	other	valid	number).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Program:	
CHRIS_Comp
arison.java	

Assumptions:	
!	The	smallest	and	largest	
values	are	selected	from	the	
input	range.		
	

Assumptions:	
"	The	program	did	not	handle	
the	case	correctly	when	the	
input	does	not	have	any	valid	
data	at	all.	It	is	due	to	the	
student’s	superficial	
understanding	on	the	system	
support	
“Double.POSITIVE_INFINITY”	
and	
“Double.NEGATIVE_INFINITY”,	
and	their	incorrect	use.	
	

	
Sample	of	unsatisfied	work	on	“Assumptions”	

	
*	Interpretation	of	target	work	for	assessment	of	assumptions:	The	assumption	that	
these	 two	 values	 in	 display	 (the	 largest	 and	 the	 smallest)	 come	 from	 the	 entered	
numbers	 is	 followedC.	 	 However,	 this	 program	D	 did	 not	 follow	 (or	 ignore)	 the	
assumption	in	assignment	that	needs	the	identifier	“-99”	to	stop	the	input	process.	
This	 student	D	 adds	 a	 new	 and	 own	 assumption	 that	 the	 entire	 input	 process	 is	
controlled	by	a	counter’s	value.	Overall,	the	assumption	is	identified	and	applied,	but	
not	in	an	exactly	accurate	manner.	
	
	

	
	
	
	
	
	
	
	
	
	

Program:	
TAIMUR_Co
mparison.jav
a	

Assumptions:	
!	The	smallest	and	largest	
values	are	selected	from	the	
input	range.		
	

Assumptions:	
"	The	input	process	cannot	
end	by	entering	“-99”.	The	
program	asks	extra	
information	i.e.,	the	total	
number	of	the	entered	
numbers.	That	is	a	new	and	
own	assumption	of	the	loop	
control	(when	to	stop).	
	

	
Sample	of	unsatisfied	work	on	“Assumptions”	

	
*	Interpretation	of	target	work	for	assessment	of	assumptions:	The	assumption	that	
these	 two	 values	 in	 display	 (the	 largest	 and	 the	 smallest)	 must	 come	 from	 the	
entered	numbers	is	NOT	followedD.	Moreover,	in	the	program,	the	student	adds	his	
own	 assumption	 Dthat	 there	 must	 be	 one	 negative	 and	 one	 positive	 both	 (2)	
numbers	 existing	 in	 the	 entered	 numbers.	 Overall,	 no	 assumption	 required	 is	
identified	and	applied,	but	incorrect	assumption	is	added.	

	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	

Computer	
result,	
after	user	
input	

Program:	
Tadiwa_Com
parison.java	

Assumptions:	
"Incorrect	assumption	“min=0”	
(on	line	8,	for	smallest),	and	
“input=0”	(on	line	9,	for	largest)	
is	set	by	this	student	now.	If	no	
input	<	0,	0	will	be	always	there	
until	the	end,	missing	the	count	
of	the	real	smallest	number.	Vice	
versa,	If	no	input	>	0,	0	will	be	
the	value	left	for	the	largest	
number	record,	missing	the	
count	of	the	real	largest	number.			
	

Assumptions:	
!Same	code	runs	in	multiple	times.	
First	round	of	execution	accepts	input	
1	and	-1,	second	accepts	1	only,	and	
third	accepts	-1	only.	-99	is	the	
identifier	to	end	the	process.	
	

Assumptions:	
"Assumption	of	the	display	
numbers	from	the	entered	
numbers	is	not	followed.	
	

