
Practice Problems: Loop

1. (Source code java files are needed)
a. (Diamond.java) Write a program that reads in an integer N from the keyboard, and

displays a diamond shape on the screen with width 2N and height 2N. For example, if
N=5, it should display the following figure on the screen:

 **
 * *
 * *
 * *
* *
* *
 * *
 * *
 * *
 **

import java.util.Scanner;
public class Diamond {
 public static void main(String [] args) {
 Scanner kb = new Scanner(System.in);
 int N = kb.nextInt();

 // First part:
 // A loop that goes N times, to write the first N lines

 // Counter-controlled loop for each line?
 // Is body another loop?
 // Given the ith line, know how many spaces (‘ ‘)
 // before *, in the middle before the 2nd *?
 // i.e., i from 0 to n-1, we need n-1-i and
 // 2*i here, respectively!
 // Each part of space display needs a loop.

 // Second Part:
 // A loop that goes N times, to write the second N lines
 // This is basically a repeat of the loop above, except for the
 // change of counter control (values).
 }
}

N=5 lines high

N=5 characters wide
high

b. (Prime.java) Write a program that reads in an integer N from the keyboard, and displays
whether N is a prime number or not. A number is "prime" if its only factors are 1 and
itself. A "factor" is a number that divides another number evenly.

Hint: Event control loop, what condition to terminate? … (Need to search for the next
factor, until this factor reaches N! Then what is the expression in loop? How to control
the event/factor change?)

c. (Perfect.java) Write a program that reads in an integer N from the keyboard, and displays

whether N is a "perfect number" or not. A number is "perfect" if it is equal to the sum of
all of its factors (not including itself as a factor, but including 1 as a factor). 6 is the first
perfect number, because its factors are 1, 2, and 3, and 1+2+3 = 6.

Hint: Counter control loop to add any possible factor to the sum (a check is needed to
identify the required factor)!

2. Design Strategy 1 – Read the following recipes for solving complicate loop

problems. This part exercise is to verify your development and improve
your programming skills for the future/next work with similar problems.

a. The Repeat-X Algorithm: Repeat some set of Java commands X times.

Here is the recipe, written as an algorithm:

i := 1
while i <= X repeat:
 execute set of Java commands, which might depend on i and X
 i := i + 1

Suppose the set of Java commands that you had to repeat was just the single command:
System.out.print("*");

and suppose that the number of times to repeat was stored in a variable called numStars. Write
the Java code to implement this algorithm.

Source code?

Source code?

b. The Sum Algorithm: Take some set of Java commands that computes a number. Repeat
these commands X times, and compute the sum of the results from each repetition.

Here is the recipe, written as an algorithm:

j := 1
sum := 0
while j < X repeat:
 currentVal := execute set of Java commands, which might depend on j and X
 sum := sum + currentVal
 j := j + 1

Use this algorithm to compute the sum of the squares of the integers between 1 and 10.

int sum = 0;
for(int j=1; j<=10; j++) {
sum += j * j; }

c. The Accumulate Algorithm: This is a slightly more general version of the Sum
Algorithm. Let f be a function (like sum, product, min, max) that takes a set of numbers
and returns a single value. We'll call f the accumulator function. This algorithm takes a
set of Java commands that computes a number, and repeats this set of commands X times,
and computes f({result1, …, resultX}).

Here is the algorithm:

j := 1
finalResult := f({}) // the accumulator function applied to the empty set
while j < X repeat:
 currentVal := execute set of Java commands, which might depend on j and X
 finalResult := f({finalResult, currentVal})
 //comparison, calculation, etc.
 j := j + 1

Use this algorithm to read in 10 numbers from the keyboard, and find the largest one.

int j = 1;
while(j<=numStars) {
System.out.print("*");
j += 1;
}

OR

for(int j=0; j<numStars; j++) {
System.out.print("*");
}

import java.util.Scanner;
public class MaxOf10 {
public static void main(String [] args) {
Scanner kb = new Scanner(System.in);
double max = kb.nextDouble();

for(int j=0; j<9; j++) {
 double val = kb.nextDouble();
 if(val>max)
 max = val;
}
}
}

3. Design Strategy 2 -- Breaking problems down into manageable parts. Read
the following parts and think over the details in the previous part 2 of our
loop development. Understand the use of design strategy (part 3) with
counter/event controlled loop template.

a. Problem 1a (drawing the diamond) can be solved using only these parts:

• System.out.println() and System.out.print() --- Body
• the Repeat-X algorithm ---- Loop control, either counter or event
• variables and assignment statements --- initialization

See if you can determine how to break the problem down into the following steps.
Specifically,

1 repeat-X loop (counter-controlled)
- print the spaces before the first * on each line (body)
- the number of spaces (X) depends on which line you're on (initialization

and body)

1 repeat-X loop (counter-controlled)
- print the spaces between the *'s on each line (body)
- the number of spaces (X) depends on which line you're on (initialization

and body)

1 repeat-X loop (upper part of shape, counter-controlled)
- print the first N lines, the commands that get repeated are the two

repeat-X loops above (also called nested loop, which is embedded in the
loop for the entire upper part of diamond shape), plus commands to print
the two stars (body)

- determine the initialization by considering the need for sub-parts.

1 repeat-X loop (counter-controlled)
- print the second N lines, the commands that get repeated are the two

repeat-X loops above (nested loop), plus commands to print the two stars
(body)

- determine the initialization by considering the need for sub-parts.

b. The follow problem can be solved with the Repeat-X algorithm:

Find the first prime number larger than 1000.

• the Repeat-X algorithm for its main control (every possible number, +1)
• the Accumulate Algorithm in Prime.java as its sub-part (i.e., testing)
• the initial set – “1000.”

c. The follow problem can be solved with the Repeat-X algorithm:

Find the next perfect number after 6.

• the Repeat-X algorithm for its main control
• the Sum Algorithm in Perfect.java as its sub-part (i.e., testing)
• the check of perfect number (sum == number)
• the initial set – “7.”

4. Practice – Write a simple program to simulate the dice game of “Craps”.

(Craps.java) The program should roll two 6-sided dice and compute the sum. If the sum
is 7, it should keep rolling until the sum is something different than a 7. That value is
called the “point”.

Once the point is established, the program should keep rolling and printing the results,
until either another 7 shows or the point shows again. If a 7 shows, print “You lose!”. If
the point shows, print “You win!”.

•

Source code?

