Practice Problems: Loop

1. (Source code java files are needed)

a. (Diamond.java) Write a program that reads in an integer N from the keyboard, and
displays a diamond shape on the screen with width 2N and height 2N. For example, if
N=5, it should display the following figure on the screen:

* K

* *
* * . .
N N N=5 lines high
* *
* *
* *
* *
* %
—

N=5 characters wide

import java.util.Scanner;

public class Diamond {

public static void main (String
Scanner kb =
int N =

[1 args) |
new Scanner (System.in);
kb.nextInt () ;

// First part:
// A loop that goes N times, to write the first N lines
// Counter-controlled loop for each line?
// Is body another loop?
// Given the ith line, know how many spaces

("M

// before *, in the middle before the 2" *?
// i.e., 1 from 0 to n-1, we need n-1-i and
// 2*i here, respectively!

// Each part of space display needs a loop.

// Second Part:

// A loop that goes N times,

// This is basically a repeat of the loop above,
// change of counter control

to write the second N lines
except for the
(values) .

b. (Prime.java) Write a program that reads in an integer N from the keyboard, and displays
whether N is a prime number or not. A number is "prime" if its only factors are 1 and
itself. A "factor" is a number that divides another number evenly.

Hint: Event control loop, what condition to terminate? ... (Need to search for the next
factor, until this factor reaches N! Then what is the expression in loop? How to control
the event/factor change?)

[Source code?]

c. (Perfect.java) Write a program that reads in an integer N from the keyboard, and displays
whether N is a "perfect number" or not. A number is "perfect” if it is equal to the sum of
all of its factors (not including itself as a factor, but including 1 as a factor). 6 is the first
perfect number, because its factors are 1, 2, and 3, and 1+2+3 = 6.

Hint: Counter control loop to add any possible factor to the sum (a check is needed to
identify the required factor)!

[Source code?]

2. Design Strategy 1 — Read the following recipes for solving complicate loop
problems. This part exercise is to verify your development and improve
your programming skills for the future/next work with similar problems.

a. The Repeat-X Algorithm: Repeat some set of Java commands X times.
Here is the recipe, written as an algorithm:

i :=1

while i <= X repeat:
execute set of Java commands, which might depend on i and X
i :=1+1

Suppose the set of Java commands that you had to repeat was just the single command:
System.out.print ("*");

and suppose that the number of times to repeat was stored in a variable called numstars. Write
the Java code to implement this algorithm.

ine 5 = 1, N\

while (j<=numStars) {
System.out.print ("*");
j o+=1;

}

OR

for (int j=0; j<numStars; j++) {
System.out.print ("*");

\ /
b. The Sum Algorithm: Take some set of Java commands that computes a number. Repeat

these commands X times, and compute the sum of the results from each repetition.
Here is the recipe, written as an algorithm:

J o= 1
sum := 0
while j < X repeat:
currentVal := execute set of Java commands, which might depend on j and X
sum := sum + currentVal
Jo:=3 +1

Use this algorithm to compute the sum of the squares of the integers between 1 and 10.

int sum = 0;
for (int j=1; j<=10; J++) {
sum += j * j; }

c. The Accumulate Algorithm: This is a slightly more general version of the Sum
Algorithm. Let f'be a function (like sum, product, min, max) that takes a set of numbers
and returns a single value. We'll call f'the accumulator function. This algorithm takes a
set of Java commands that computes a number, and repeats this set of commands X times,
and computes f{ {resulty, ..., resultx}).
Here is the algorithm:

J o= 1
finalResult := f({}) // the accumulator function applied to the empty set
while j < X repeat:
currentVal := execute set of Java commands, which might depend on j and X
finalResult := f({finalResult, currentvVal})
//comparison, calculation, etc.

Use this algorithm to read in 10 numbers from the keyboard, and find the largest one.

/iggort java.util.Scanner; ‘\\\
public class MaxOfl0 {

public static void main (String [] args) {
Scanner kb = new Scanner (System.in);
double max = kb.nextDouble ()

for (int j=0; j<9; Jj++) {
double val = kb.nextDouble ()
if (val>max)
max = val;
}
}

L /

3. Design Strategy 2 -- Breaking problems down into manageable parts. Read
the following parts and think over the details in the previous part 2 of our
loop development. Understand the use of design strategy (part 3) with
counter/event controlled loop template.

a. Problem la (drawing the diamond) can be solved using only these parts:
* System.out.println() and System.out.print() --- Body
* the Repeat-X algorithm ---- Loop control, either counter or event
* variables and assignment statements --- initialization

See if you can determine how to break the problem down into the following steps.
Specifically,

1 repeat-X loop (counter-controlled)
print the spaces before the first * on each line (body)

- the number of spaces (X) depends on which line you're on (initialization
and body)

1 repeat-X loop (counter-controlled)
print the spaces between the *'s on each line (body)

- the number of spaces (X) depends on which line you're on (initialization
and body)

1 repeat-X loop (upper part of shape, counter-controlled)
print the first N lines, the commands that get repeated are the two
repeat-X loops above (also called nested loop, which is embedded in the
loop for the entire upper part of diamond shape), plus commands to print
the two stars (body)

- determine the initialization by considering the need for sub-parts.

1 repeat-X loop (counter-controlled)
print the second N lines, the commands that get repeated are the two
repeat-X loops above (nested loop), plus commands to print the two stars
(body)

- determine the initialization by considering the need for sub-parts.

b. The follow problem can be solved with the Repeat-X algorithm:

Find the first prime number larger than 1000.
* the Repeat-X algorithm for its main control (every possible number, +1)
* the Accumulate Algorithm in Prime.java as its sub-part (i.e., testing)
* the initial set — “1000.”

c. The follow problem can be solved with the Repeat-X algorithm:

Find the next perfect number after 6.
* the Repeat-X algorithm for its main control
* the Sum Algorithm in Perfect.java as its sub-part (i.e., testing)
* the check of perfect number (sum == number)
* the initial set — “7.”

4. Practice — Write a simple program to simulate the dice game of “Craps”.

(Craps.java) The program should roll two 6-sided dice and compute the sum. If the sum
is 7, it should keep rolling until the sum is something different than a 7. That value is
called the “point”.

Once the point is established, the program should keep rolling and printing the results,
until either another 7 shows or the point shows again. If a 7 shows, print “You lose!”. If
the point shows, print “You win!”.

[Source code?]

