
CIS1068 Practice Problems: Object & methods  
1. Tracing programs 

 
a. What gets printed to the screen when we execute the MysteryClient class on the left? 

 
public class MysteryClient  
{ 
  public static void main( 
                      String [] args) 
  { 
    Mystery m = new Mystery("hello"); 
    m.display(" again"); 
  } 
} 

public class Mystery 
{ 
  public String str = null; 
  public Mystery(String s) 
  {  str = s; } 
 
  public void display(String s) 
  {  System.out.println(str + s); } 
} 

 

 
 
 

b. What gets printed to the screen when we execute the MysteryClient class on the left? 
public class MysteryClient  
{ 
  public static void main( 
                      String [] args) 
  { 
    Mystery m = new Mystery(15, 27); 
    m.display(3); 
 
    Mystery m2 = new Mystery(16, 28); 
    m2.reduce(4); 
    m2.display(4); 
  } 
} 

public class Mystery 
{ 
  public int x = 0; 
  public int y = 0; 
   
  public Mystery(int num1, int num2) 
  {   
    x = num1;  
    y = num2;  
  } 
 
  public void display(int z) 
  { 
    if(x%z == 0 && y%z == 0) { 
      System.out.println("divides");  
    } else { 
      System.out.println("too bad"); 
    } 
  } 
 
  public void reduce(int z) 
  { 
    x = x / z; 
    y = y / z; 
  } 
} 

 
 
 

 
 
 



 
 

 
c. What are the values of the variables in main() at POINT 1? 

 
public class MysteryClient  
{ 
  public static void main( 
                      String [] args) 
  { 
    Mystery m = new Mystery("hello"); 
    // POINT 1 
  } 
} 

public class Mystery 
{ 
  public String str = null; 
  public Mystery(String s) 
  {  str = s; } 
} 

 

 
d. What are the values of the variables in main() at POINT 1?  and at POINT 2?  and 3? 

public class MysteryClient  
{ 
  public static void main( 
                      String [] args) 
  { 
    Mystery m1 = new Mystery(); 
    Mystery m2 = new Mystery(); 
    // POINT 1 
 
    m1.setArr(3, 7); 
    m2.setArr(2, 9); 
    // POINT 2 
 
    int x = m1.getVal(2); 
    int y = m1.getVal(2); 
    int z = m2.getVal(0); 
    // POINT 3 
  } 
} 

public class Mystery 
{ 
  public int [] arr = null; 
     
  public void setArr( 
                  int len, int val) 
  { 
    arr = new int[len]; 
    for(int i=0; i<len; i++) { 
      arr[i] = val; 
    } 
  } 
 
  public int getVal(int pos) { 
    arr[pos]++; 
    return arr[pos]; 
  } 
} 

 
 
 
 

2. Object & instance methods 
 

a. Write a class Account with a constructor that accepts a series of charge accounts as its argument. These 
numbers should be stored in an array records that is initiated in the class as a private attribute. Then, 
write an accessor that accepts an account number as its argument. If this test account number is in the 
array records, true should be returned, otherwise, false.  
 
Your Account class should support the given class AccountApplication as shown in the below. The 
execution of both Account.java and AccountApplication.java should display a message indicating 
whether the number is valid or invalid.  

 



 
 1 package account; 
 2 import java.util.Scanner; 
 3  
 4 public class AccountApplication { 
 5  
 6    public static void main(String[] args) { 
 7  
 8         int[] data = {5658845,4250125,7895122,8777541, 
 9                       8451277,1302850,8080152,4562555, 
10                       5552012,5050552,7825877,1250255, 
11                       1005231,6545231,3852085,7576651, 
12                       7881200,4581002}; 
13  
14         Account a = new Account(data); 
15  
16         Scanner kb = new Scanner (System.in); 
17         System.out.println("Input your account number:");     
18          
19         int acc = kb.nextInt();     
20         System.out.println("The account is valid? " 
21                +a.valid(acc)); 
22     } 
23 } 
24 
 

b. Write a class DirverExam with a constructor that accepts an array of char as the correct answers of the 
local driver’s license exam. The records must be saved in a private attribute key. The class contains a 
method testing to allow this student to input all answers (by nextLine().toUpperCase().charAt(0)) to 
match the key. The class must have another private array answers to save that student’s answers. 
When the student cannot ensure the answer, he/she can key in <enter> directly. See the demo of this 
testing in the below. This DriverExam class also should have the following methods (public): 
• Passed ( ), returns true if the student passed the exam, or false if the student failed. The exam has 

20 multiple questions. A student must correctly answer 15 of the 20 questions to pass the exam. 
• totalCorrect ( ), returns the total number of correctly answered questions. 
• totalIncorrect ( ), returns the total number of incorrectly answered questions. 
• questionsMissed ( ), returns an array of integers that contains the numbers of the questions that the 

student missed or answered incorrectly. Note that in the student score array, any character other 
than ‘A’, ‘B’, ‘C’, or ‘D’ will also be treated as an answer missed.  

This class should support another class DL with the only static main method. That main method can 
test all the above methods. 
 
 
 
 
 
 

 



 1 package dl; 
 2  
 3 import java.util.Arrays; 
 4  
 5 public class DL { 
 6     public static void main(String[] args) { 
 7         char[] key  =    {'B','D','A','A','C', 
 8                           'A','B','A','C','D', 
 9                           'B','C','D','A','D', 
10                           'C','C','B','D','A'}; 
11      
12         DriversExam d = new DriversExam(key); 
13  
14         d.testing(); 
15          
16         System.out.println("Passed the test? "+d.passed()); 
17         System.out.println("Answers correct: "+d.totalCorrect()); 
18         System.out.println("Answers incorrect: "+d.totalIncorrect()); 
19         System.out.println("Answers missed: " 
+Arrays.toString(d.questionsMissed())); 
20     } 
21 } 
22 
 
 5 public class DriversExam { 
 6     … … 
 
15     public void testing(){      
16         Scanner input = new Scanner (System.in); 
17         System.out.println("--- Driver's testing ---\n"); 
18         answers = new char[key.length]; 
19          
20         for(int i=0; i<key.length; i++){ 
21             System.out.print("Question #" + (i+1) + " ANS> "); 
22             String str = input.nextLine().toUpperCase(); 
23              
24             answers[i] = (str.length()>0)? str.charAt(0):' '; 
25         } 
26     } 
27  
28     … … 
      
 

c. Write a class GradeBook with a constructor that accepts five students’ names, grades, and 4 test scores 
and save in the private fields:  

• names, a string array to hold five students’ names 
• grades, an array of 5 characters to hold the five students’ letter grades. 
• testScores, a 2-dimentional array to hold 4 test scores for each of five students.    

The class should have a constructor for the user to enter each student’s name and his or her four test 
scores. The constructor will use an associate method (private double getAvg(int index)) to obtain the 
average test score, and  then convert to a letter grade. This method will use the following Numeric-To-
Letter-Grade Scale: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 0-59 F. The accessor (public String 
toString) will return a string that carries all names, their average scores, and letter grades. 

 
This class should support another class Grade with the only static main method. That main method can  
test all the above accessors. Note that any score less than 0 or greater 100 is not acceptable.  



 
 
1 package grade; 
2 public class Grade { 
3     public static void main(String[] args) { 
4         GradeBook g = new GradeBook(5); 
5         System.out.println(" " + g); 
6     } 
7 } 
8 


