
Practice Problems: Search and Sorting

1. Tracing Algorithms

a. Look at the example array below. For each key, indicate the positions in the array (the

indexes, not the values) that a binary search would visit if it was searching for that key.

-20 -12 -9 1 4 16 21 67 75 101
0 1 2 3 4 5 6 7 8 9

Key: 16 Positions visited during binary search: 4, 7, 5

Key: 4 Positions visited during binary search: 4

Key: -25 Positions visited during binary search: 4, 1, 0

Key: 101 Positions visited during binary search: 4, 7, 8, 9

Key: 45 Positions visited during binary search: 4, 7, 6

Key: -9 Positions visited during binary search: 4, 1, 2

b. For each call to the binarySearch method below, write which elements the search
procedure visits.

array x:
0 1 2 3 4 5 6 7 8 9

-19 -12 4 9 21 22 45 51 99 103

int pos = Arrays.binarySearch(x, 21);

4, return 4

int pos = Arrays.binarySearch(x, 51);

4 -> 7, return 7

int pos = Arrays.binarySearch(x, 9);

4 à 1 à 2 à 3, return 3

int pos = Arrays.binarySearch(x, -15);

4 à 1 à 0, return -1 (because it can't find -15)

array y:
0 1 2 3 4 5 6 7 8 9

"abba" "ccr" "elvis" "gomez" "juno" "mogwai" "prince" "rem" "u2" "who"

int pos = Arrays.binarySearch(y, "juno");
4, return 4

int pos = Arrays.binarySearch(y, "prince");
4 à 7 à 5 à 6, return 6

int pos = Arrays.binarySearch(y, "who");
4 à 7 à 8 à 9, return 9

int pos = Arrays.binarySearch(y, "beirut");
4 à 1 à 0, return -1 (can't find "beirut")

2. Writing short methods involving search
a. Write a method that takes an int array X as an argument. It should return the median

value of the array. The median of a set of numbers is defined as the number in the middle
position, when the numbers are arranged from smallest to largest.

b. Write a method that takes an int array X as an argument. It should return true if 0 is in
the array, and false otherwise.

public static int median(int [] X)
{
 Arrays.sort(X); // first, arrange the elements of X in ascending order
 int mid = X.length / 2;
 return X[mid]; // return the number in the middle position

 // technically, if there are an even number of elements in X,
 // the median should be an average between the two middle elements.
 // can you figure out how to modify this method to make that happen?
}

public static boolean containsZero(int [] X)
{
 // need to sort before searching!
 Arrays.sort(X);

 int pos = Arrays.binarySearch(X, 0);
 return (pos >= 0);
}

3. Given the following method BubbleSort, show the result of the first 2
rounds of iterations (after calling bubbleSortIteration):

public static boolean bubbleSortIteration(int [] a) {
boolean ret = false;
for(int i=0; i<a.length-1; i++) {

if(a[i] > a[i+1]) {
swap(a, i, i+1);
ret = true;
}

}
return ret;
}

public static void bubbleSort(int [] arr) {
boolean didSwap = true;
while(didSwap) {

didSwap = bubbleSortIteration(arr);
}
}

Array at the beginning:
0 1 2 3 4 5 6 7 8 9
22 15 -19 31 10 -4 53 67 18 19

After 1 iteration of BubbleSort:
15 -19 22 10 -4 31 53 18 19 67

After 2 iterations of BubbleSort:
-19 15 10 -4 22 31 18 19 53 67

