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Abstract

Fastuserlevel locking is analternative locking
mechanismto the typically heavy weight ker-
nel approachessuchasfcntl locking andSys-
tem V semaphores.Here,multiple processes
communicate locking state through shared
memoryregionsandatomicoperations.Ker-
nel involvementis only necessarywhenthere
is contentionon a lock, in order to perform
queueingandschedulingfunctions.In this pa-
per we discussthe issuesrelatedto userlevel
locking by following the history of ideasand
thecodeto thecurrentday. We presenttheef-
ficacy of "futexes" throughbenchmarks,both
syntheticand throughadaptationsto existing
databases.We concludeby presentingthepo-
tential future directionsof the "futex" inter-
face.

1 Introduction

Linux™1 has seen significant growth as a
server operatingsystemandhasbeensuccess-
fully deployed in enterpriseenvironmentsfor
Web, file andprint serving. With the deploy-
mentof Version2.4,Linux hasseena tremen-
dous boost in scalability and robustnessthat

1Linux is a trademarkof Linus Torvalds

makesit now feasibleto deploy evenmorede-
mandingenterpriseapplicationssuchas high
end databases,businessintelligencesoftware
andapplicationservers.As a result,wholeen-
terprisebusinesssuitesand middleware such
asSAP™,Websphere™,Oracle,DB2™2, etc.,
arenow availablefor Linux.

For theseenterpriseapplicationsto run effi-
ciently on Linux, or on any other operating
systemfor that matter, the OS must provide
the proper abstractionsand services. Enter-
prise applicationsand applicationssuitesare
increasingly built as multi process/ multi-
threadedapplications. Multi-threadedappli-
cations can take better advantage of SMP
hardware,while multiple processesallows for
higherdegreesof fault tolerance,i.e., a single
processabortdoesnotnecessarilybringtheen-
tire applicationdown. Furthermore,applica-
tions suitesare often a collection of multiple
independentsubsystems.

Despite their functional separation,the pro-
cessesrepresentingthese subsystemsoften
mustcommunicatewith eachotherandshare
stateamongsteachother. Examplesof this
aredatabasesystems,whichtypically maintain
sharedI/O buffers in userspace.The buffers

2All third party trademarksarethepropertyof their
respectiveowners.
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areconcurrentlyaccessedby variousdatabase
enginesandprefetchingprocesses.

Access to such sharedstate must be prop-
erly synchronizedthrougheither exclusive or
shared locks. Exclusive locks allow only
oneparty accessto the protectedentity, while
sharedlocks allow multiple reader– single
writer semantics. Synchronizationimplies a
sharedstate, indicating that a particular re-
sourceisavailableor busy, andameansto wait
for its availability. Thelatteronecaneitherbe
accomplishedthroughbusy-waitingor through
aexplicit / implicit call to thescheduler.

In traditional UNIX™ 3 systems,SystemV
IPC (inter processcommunication)such as
semaphores, msgqueues, sockets and the file
locking mechanism(flock()) arethebasic
mechanismsfor two processesto synchronize.
Thesemechanismsexposean opaquehandle
to a kernel object that naturally provides the
sharedstateandatomicoperationsin the ker-
nel. Servicesmustbe requestedthroughsys-
tem calls (e.g.,semop() ). The drawbackof
thisapproachis thatevery lock accessrequires
asystemcall. Whenlockshave low contention
rates,the systemcall canconstitutea signifi-
cantoverhead.

Onesolutionto this problemis to deploy user
level locking, which avoids someof the over-
headassociatedwith purelykernel-basedlock-
ing mechanisms.It relieson a userlevel lock
locatedin a sharedmemoryregion andmodi-
fied throughatomicoperationsto indicatethe
lock status.Only the contendedcaserequires
kernelintervention.Theexactbehavior andthe
obtainableperformancearedirectlyaffectedby
how andwhenthekernelservicesareinvoked.
The idea describedhere is not new. Some
of the foundationof this paperare described
in [4], [7] and [6]. In [2] the impactof lock-
ing onJVM performanceis discussed.

3UNIX is a trademarkof TheOpenGroup

In thispaperwearedescribingaparticularfast
user level locking mechanismcalled futexes
thatwasdevelopedin thecontext of theLinux
operatingsystem.It consistsof two parts,the
userlibrary anda kernelservicethathasbeen
integrated into the Linux kernel distribution
version2.5.7.

The paperis organizedas followed. In sec-
tion 2 we describethe basic behavioral and
functional requirementsof a user level lock-
ing mechanism.In section3 wedescribesome
of theearlierapproachesthatled to thecurrent
designof futexesand the futexes themselves.
In section4 we provide a performanceassess-
mentonasyntheticandadatabasebenchmark.
In section5 weelaborateoncurrentandfuture
effortsandin 6 weconclude.

2 Requirements

In this sectionwe arestatingsomeof the re-
quirementsof a fastuserlevel locking mecha-
nism that we derived aspart of this work and
thatwerepostedto usasrequirementsby mid-
dlewareproviders.

Therearevariousbehavioral requirementsthat
needto beconsidered.Most centeraroundthe
fairnessof thelocking schemeandthelock re-
leasepolicy. In a fair locking schemethelock
is grantedin theorderit wasrequested,i.e., it
is handedover to thelongestwaitingtask.This
canhave negative impacton throughputdueto
the increasednumberof context switches.At
thesametime it canleadto thesocalledcon-
voy problem. Since,the locks aregrantedin
the order of requestarrival, they all proceed
at the speedof the slowest process,slowing
down all waiting processes.A commonsolu-
tion to the convoy problemhasbeento mark
the lock availableuponrelease,wake all wait-
ing processesandhave themrecontendfor the
lock. This is referredto asrandom fairness,
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althoughhigherpriority taskswill usuallyhave
an advantageover lower priority ones. How-
ever, this also leadsto the well known thun-
dering herd problem. Despite this, it can
work quitewell onuni-processorsystemsif the
first taskto wakereleasesthelock beforebeing
preemptedor scheduled,allowing the second
herdmemberto obtainthe lock, etc. It works
lessspectacularlyon SMP. To avoid this prob-
lem,oneshouldonly wakeuponewaiting task
uponlock release.Marking the lock available
aspart of releasingit, givesthe releasingtask
the opportunityto reacquirethe lock immedi-
ately again, if so desired,andavoid unneces-
sarycontext switchesandtheconvoy problem.
Somerefer to theseasgreedy, asthe running
taskhasthehighestprobabilityof reacquiring
the lock if the lock is hot. However, this can
lead to starvation. Hence, the basic mecha-
nismsmust enableboth fair locking, random
locking andgreedyor convoy avoidancelock-
ing (short ca-locking). Another requirement
is to enablespin locking, i.e., have an appli-
cationspin for the availablilty of the lock for
someuserspecifiedtime (or until granted)be-
fore giving up and resolving to block in the
kernel for its availability. Hencean applica-
tion hasthe choice to either(a) block waiting
to benotifiedfor thelock to bereleased,or (b)
yield theprocessoruntil the threadis resched-
uled and then the lock is tried to be acquired
again, or (c) spinconsumingCPUcyclesuntil
thelock is released.

With respectto performance,there are basi-
cally two overridinggoals:

• avoid systemcalls if possible,assystem
calls typically consumeseveral hundred
instructions.

• avoid unnecessarycontext switches:con-
text switchesleadto overheadassociated
with TLB invalidationsetc.

Hence,in fast userlevel locking, we first dis-
tinguishbetweentheuncontendedandthecon-
tendedcase.The uncontendedcaseshouldbe
efficient andshouldavoid systemcalls by all
means.In thecontendedcasewearewilling to
performasystemcall to block in thekernel.

Avoiding systemcallsin theuncontendedcase
requiresa sharedstatein userspaceaccessible
to all participatingprocesses/task.This shared
state,referredto astheuserlock, indicatesthe
statusof thelock, i.e.,whetherthelock is held
or not andwhethertherearewaiting tasksor
not. This is in contrastto the SystemV IPC
mechanismswhich merelyexportsa handleto
theuser, andperformsall operationsin theker-
nel.

Theuserlock is locatedin asharedmemoryre-
gionthatwascreateviashmat() ormmap() .
As aresult,it canbelocatedatdifferentvirtual
addressesin different addressspaces. In the
uncontendedcase,the applicationatomically
changesthe lock statusword without enter-
ing into the kernel. Hence,atomicoperations
such as atomic_inc(), atomic_dec,
cmpxchg() , and test_and_set() are
neccessaryin user space. In the contended
case,the applicationneedsto wait for the re-
leaseof the lock or needsto wake up a wait-
ing task in the caseof an unlock operation.
In order to wait in the kernel,a kernel object
is required,thathaswaiting queuesassociated
with it. Thewaitingqueuesprovide thequeue-
ing andscheduling interactions.Of course,the
aforementionedIPC mechanismscanbe used
for this purpose. However, theseobjectsstill
imply aheavy weightobjectthatrequiresapri-
ori allocationandoftendoesnotpreciselypro-
vide the requiredfunctionality. Anotheralter-
nativethatis commonlydeployedarespinlocks
wherethe task spinson the availability of the
userlock until granted.To avoid toomany cpu
cyclesbeingwasted,thetaskyieldstheproces-
soroccasionally.
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It is desirableto have theuserlock behandle-
free. In other words insteadof handling an
oqaquekernel handle, requiring initialization
and crossprocessglobal handles,it is desir-
ableto addresslocksdirectly throughtheir vir-
tual address.As a consequence,kernelobjects
canbe allocateddynamicallyandon demand,
ratherthanapriori.

A lock, though addressedby a virtual ad-
dress,can be identified conceptuallythrough
its global lock identity, whichwedefineby the
memoryobjectbackingthevirtual addressand
the offset within that object. We notatethis
by the tuple [B,O]. Threefundamentalmem-
ory typescan be distinguishedthat represent
B: (a)anonymousmemory, (b) sharedmemory
segment,and(c) memorymappedfiles. While
(b) and(c) canbeusedbetweenmultiple pro-
cesses,(a) can only be usedbetweenthreads
of the sameprocess.Utilizing the virtual ad-
dressof thelock asthekernelhandlealsopro-
videsfor an integratedaccessmechanismthat
ties the virtual addressautomaticallywith its
kernelobject.

Despite the atomic manipulationof the user
level lock word, raceconditionscan still ex-
istsasthesequenceof lock wordmanipulation
and systemcalls is not atomic. This has to
beresolvedproperlywithin thekernelto avoid
deadlockandinproperfunctioning.

Anotherrequirementis thatfastuserlevel lock-
ing should be simple enoughto provide the
basic foundation to efficiently enable more
complicatedsynchronizationconstructs,e.g.
semaphores,rwlocks, blocking locks, or spin
versionsof these,pthreadmutexes,DB latches.
It should also allow for a clean separation
of the blocking requirementstowardsthe ker-
nel, so that the blocking only has to be im-
plementedwith a small set of different con-
structs. This allows for extendingthe useof
the basicprimitives without kernel modifica-

tions. Of interest is the implementationof
mutex, semaphoresandmultiple reader/single
writer locks.

Finally, a solutionneedsto be found that en-
ablestherecovery of “dead” locks. We define
unrecoverablelocksasthosethathavebeenac-
quiredby a processandtheprocessterminates
withoutreleasingthelock. Therearenoconve-
nientmeansfor thekernelor for theotherpro-
cessesto determinewhich locks arecurrently
heldby aparticularprocess,aslock acquisition
canbe achieved throughusermemorymanip-
ulation. Registeringthe process’s “pid” after
lock acquisitionis not enoughasboth opera-
tionsarenot atomic. If theprocessdiesbefore
it canregisterits pid or if it clearedits pid and
beforebeingablethereleasethelock, thelock
is unrecoverable.A protocolbasedsolutionto
this problemis describedin [1]. We have not
addressedthisproblemin ourprototypesyet.

3 Linux Fast User level Locking:
History and Implementations

Having stated the requirements in the previ-
ous section,we now proceedto describethe
basicgeneralimplementationissues. For the
purposeof this discussionwe define a gen-
eral opaquedatatypeulock_t to represent
the userlevel lock. At a minimum it requires
astatusword.

typedef struct ulock_t {
long status;

} ulock_t;

We assumethat a sharedmemoryregion has
been allocated either through shmat() or
throughmmap() and that any userlocks are
allocatedinto this region. Again note,that the
addressesof the samelock neednot be the
sameacrossall participatingaddressspaces.
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The basic semaphorefunctions UP() and
DOWN()canbeimplementedasfollows.

static inline int
usema_down(ulock_t *ulock)
{

if (!__ulock_down(ulock))
return 0;

return sys_ulock_wait(ulock );
}

static inline int
usema_up(ulock_t *ulock)
{

if (!__ulock_up(ulock))
return 0;

return sys_ulock_wakeup(ulo ck);
}

The __ulock_down() and
__ulock_up() provide the atomic in-
crementanddecrementoperationson the lock
statusword. A nonpositivecount(status)indi-
catesthatthelock is not available.In addition,
a negative count could indicate the number
of waiting tasksin the kernel. If a contention
is detected, i.e. (ulock->status <=
0) , the kernel is invoked throughthe sys_*
functions to either wait on the wait queue
associatedwith ulock or releasea blocking
taskfrom saidwaitqueue.

All counting is performedon the lock word
and race conditions resulting from the non-
atomicity of the lock word must be resolved
in the kernel. Due to suchraceconditions,a
lock canreceive a wakeupbeforethe waiting
processhada chanceto enqueueitself into the
kernelwait queue.Wedescribebelow how var-
ious implementationresolved this racecondi-
tion aspartof thekernelservice.

Oneearlydesignsuggestedwastheexplicit al-
locationof akernelobjectandtheexportof the
kernelobjectaddressasthe handle. The ker-
nel objectwascomprisedof a wait queueand
a uniquesecuritysignature.On every wait or

wakeupcall, thesignaturewouldbeverifiedto
ensurethatthehandlepassedindeedwasrefer-
ring to avalid kernelobject.Thedisadvantages
of this approachhave beenmentionedin sec-
tion 2, namelythata handleneedsto bestored
in ulock_t and that explicit allocationand
deallocationof the kernelobjectarerequired.
Furthermore,securityis limi tedto thelengthof
thekey andhypotheticallycouldbeguessed.

Another prototype implementation, known
as ulocks [3], implements general user
semaphoreswith both fair andconvoy avoid-
ance wakeup policy. Mutual exclusive
locks are regarded as a subsetof the user
semaphores. The prototype also provides
multiple reader/singlewriter locks (rwlocks).
The userlock object ulock_t consistsof a
lock word and an integer indicating the re-
quired numberof kernel wait queues. User
semaphoresand exclusive locks are imple-
mentedwith onekernelwait queueandmulti-
ple reader/singlewriter locksareimplemented
with two kernelwait queues.

This implementationseparatesthe lock word
from the kernelwait queuesandotherkernel
objects,i.e., the lock word is never accessed
from the kernel on the time critical wait and
wakeupcodepath. Hencethestateof the lock
andthe numberof waiting tasksin the kernel
is all recordedin the lock word. For exclusive
locks, standardcounting as describedin the
generalulock_t discussion,is implemented.
As with generalsemaphores,apositivenumber
indicatesthe numberof times the semaphore
canbeacquired,“0” andlessindicatesthatthe
lock is busy, while the absoluteof a negative
numberindicatesthe numberof waiting tasks
in thekernel.

The “premature” wakeup call is handled
by implementing the kernel internal wait-
queues using kernel semaphores(struct
semaphore ) which are initialized with a



Ottawa Linux Symposium 2002 484

value 0. A prematurewakeup call, i.e. no
pendingwaiter yet, simply increasesthe ker-
nel semaphore’s count to 1. Oncethe pend-
ing wait arrivesit simplydecrementsthecount
back to 0 and exits the systemcall without
waiting in thekernel.All thewait queues(ker-
nelsemaphores)associatedwith auserlock are
encapsulatedin asinglekernelobject.

In therwlockscase,the lock word is split into
threefields:write locked(1 bit), writeswaiting
(15 bits), readers(16 bits). If write locked,the
readers indicatethe numberof taskswait-
ing to readthe lock, if not write locked, it in-
dicatesthenumbersof tasksthathaveacquired
readaccessto the lock. Writers areblocking
on a first kernelwait queue,while readersare
blockingonasecondkernelwait queueassoci-
atedwith aulock. To wakeupmultiplepending
readrequests,thenumberof taskto bewoken
up is passedthroughthesystemcall interface.

To implement rwlocks and ca-locks, atomic
compareand exchangesupport is required.
Unfortunatelyon older 386 platforms that is
not thecase.

The kernel routinesmust identify the kernel
object that is associatedwith the user lock.
Sincethelock canbeplacedatdifferentvirtual
addressesin differentprocesses,a lookup has
to be performed. In the commonfast lookup,
thevirtual addressof theuserlock andthead-
dressspaceare hashedto a kernel object. If
no hashentryexists,theproperglobal identity
[B, O] of thelock mustbeestablished.For this
we first scanthecalling process’s vma list for
the vma containingthe lock word andits off-
set. The global identity is then looked up in
a secondhashtablethat links global identities
with theirassociatedkernelobject.If nokernel
objectexists for this global identity, oneis al-
located,initializedandaddedto thehashfunc-
tions. Theclose() functionassociatedwith
a sharedregion holdingkernelobjectsis inter-

cepted,so that kernelobjectsaredeletedand
thehashtablesarecleanedup,onceall attached
processeshave detachedfrom the sharedre-
gion.

While this implementationprovidesfor all the
requirements,thekernelinfrastructureof mul-
tiple hashtablesandlookupswasdeemedtoo
heavy. In addition, the requirementfor com-
pareand exchangeis also seento be restric-
tive.

3.1 Futexes

With several independentimplementations[8,
9, 10] in existence,the time seemedright in
early 2002to attemptto combinethe bestel-
ementsof eachto producethe minimum use-
ful subsetfor insertion into the experimental
Linux kernelseries.

Therearethreekey pointsof theoriginal futex
implementationwhich wasaddedto the 2.5.7
kernel:

1. We usea uniqueidentifier for eachfutex
(which canbesharedacrossdifferentad-
dressspaces,so may have different vir-
tual addressesin each): this identifier is
the “struct page” pointer and the offset
within that page. We incrementthe ref-
erencecounton the pageso it cannotbe
swappedoutwhile theprocessis sleeping.

2. The structureindicating which futex the
processis sleepingon is placedin a hash
table,andis createduponentry to the fu-
tex syscallson theprocess’s kernelstack.

3. The compression of “ f ast userspace
mutex” into “ futex” gave a simpleunique
identifier to the sectionof codeand the
functionnamesused.
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3.1.1 The 2.5.7 Implementation

The initial implementation which was
judgeda sufficient basis for kernel inclusion
used a single two-argument system call,
“sys_futex(struct futex *, int
op)” . The first argumentwasthe addressof
the futex, and the secondwas the operation,
used to furthur demultiplex the systemcall
and insulate the implementation somewhat
from the problems of system call number
allocation. The latter is especiallyimportant
asthesystemcall is expandasnew operations
are required. The two valid op numbersfor
this implementation were FUTEX_UP and
FUTEX_DOWN.

The algorithm was simple, the file
linux/kernel/futex.c containing 140 code
lines,and233in total.

1. The useraddresswas checked for align-
ment and that it did not overlap a page
boundary.

2. The pageis pinned: this involves look-
ing uptheaddressin theprocess’saddress
spaceto find the appropriate“struct
page * ”, andincrementingits reference
countsoit cannotbeswappedout.

3. The “struct page * ” and offset
within thepageareadded,andthat result
hashedusingthe recentlyintroducedfast
multiplicative hashing routines [11], to
giveahashbucket in thefutex hashtable.

4. The“op” argumentis thenexamined.If it
is FUTEX_DOWNthen:

(a) Theprocessis markedINTERRUPT-
IBLE, meaningit is readyto sleep.

(b) A “struct futex_q ” is chained
to the tail of the hashbucket deter-
mined in step3: the tail is chosen

to give FIFO orderingfor wakeups.
This structurescontains a pointer
to the processand the “struct
page * ” andoffset which identify
thefutex uniquely.

(c) The pageis mappedinto low mem-
ory (if it is ahighmemorypage),and
anatomicdecrementof thefutex ad-
dressis attempted,4 thenunmapped
again. If thisdoesnotdecrementthe
counterto zero,wecheckfor signals
(settingtheerror to EINTR andgo-
ing to the next step),schedule,and
thenrepeatthis step.

(d) Otherwise,we now have the futex,
or have received a signal, so we
markthisprocessRUNNING,unlink
ourselves from the hashtable, and
wake thenext waiter if thereis one,
and return 0 or -EINTR . We have
to wake anotherprocessso that it
decrementsthefutex to -1 to indicate
that it is waiting (in the casewhere
we have the futex), or to avoid the
racewherea signalcamein just as
we werewoken up to get the futex
(in the casewherea signal was re-
ceived).

5. If theopargumentwasFUTEX_UP:

(a) Map thepageinto low memoryif it
is in ahighmemorypage

(b) Set the count of the futex to one
(“available”).

(c) Unmap the pageif it was mapped
from highmemory

4We do not evenattemptto decrementtheaddressif
it is alreadynegative,to avoid potential wraparound.We
dothedecrementevenif thecounteris zero,as“-1” indi-
cateswe aresleepingandhencehasdifferentsemantics
than0.
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(d) Search the hash table for the
first “struct futex_q ” associ-
atedwith thisfutex, andwakeupthat
process.

6. Otherwise,if theop argumentis anything
else,settheerrorto EINVAL.

7. Unpin thepage.

While thereare several subtletiesin this im-
plementation,it gives a secondmajor advan-
tageover SystemV semaphores:thereareno
explicit limits on how many futexes you can
create,nor can one futex user “starve” other
usersof futexes. This is because the futex is
merelya memorylocationlike any otheruntil
the sys_futex syscall is entered,andeach
processcanonly do onesys_futex syscall
atatime,sowearelimited to pinningonepage
perprocessinto memory, atworst.

3.1.2 What about Read-Write Locks?

We consideredan implementationof “FU-
TEX_READ_DOWN” et. al, which would
be similar to the simple mutual exclusion
locks, but beforeadding theseto the kernel,
Paul Mackerrassuggesteda designfor creat-
ing read/writelock in userspaceby usingtwo
futexesanda count: f astuserspaceread/write
locks, or furwocks. This implementationpro-
videsthebenchmarkfor any kernel-basedim-
plementationto beatto justify its inclusionas
a first-classprimitive, which can be doneby
addingnew valid “op” values.A comparision
with theintegratedapproachchosenby ulocks
is providedin Section4.

3.1.3 Problems with the 2.5.7 Implementa-
tion

Once the first implementation entered the
mainstreamexperimentalkernel, it drew the
attentionof a much wider audience. In par-
ticular those concernedwith implementing
POSIX(tm)5 threads, and attention also re-
turnedto thefairnessissue.

• Thereis no straightforwardway to imple-
ment the pthread_cond_timedwait primi-
tive: thisoperationrequiresa timeout,but
usinga timer is difficult asthesemustnot
interferewith their useby any othercode.

• Thepthread_cond_broadcastprimitivere-
quireseveryprocesssleepingto bewoken
up, which doesnot fit well with the2.5.7
implementation,wherea processonly ex-
its thekernelwhenthefutex hasbeensuc-
cessfullyobtainedor asignalis received.

• For N:M threading,suchastheNext Gen-
erationPosixThreadsproject[5] anasyn-
chronousinterface for finding out about
the futex is required,sincea single pro-
cess(containingmultiple threads)might
beinterestedin morethanonefutex.

• Starvation occursin the following situta-
tion: a singleprocesswhich immediately
dropsandthenimmediatelycompetesfor
the lock will regain it beforeany woken
processwill.

With these limitations brought to light, we
searchedfor anotherdesignwhich would be
flexible enough to cater for these diverse
needs. After variousimplemenationattempts
and discussionswe settled on a variation
of atomic_compare_and_swapprimitive, with

5POSIXis a trademarkof the IEEE Inc.
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the atomicity guaranteedby passingthe ex-
pectedvalueinto thekernelfor checking.? To
dothis,two new “op” valuesreplacedtheoper-
ationsabove,andthesystemcall waschanged
to two additional arguments, “int val” and
“struct timespec*reltime”.

FUTEX_WAIT: Similar to the previous FU-
TEX_DOWN, exceptthattheloopingand
manipulation of the counter is left to
userspace.Thisworksasfollows:

1. Settheprocessstateto INTERRUPT-
IBLE, and place “struct futex_q”
into thehashtableasbefore.

2. Mapthepageinto low memory(if in
highmemory).

3. Readthefutex value.

4. Unmapthe page(if mappedat step
2).

5. If the value read at step 3 is not
equalto the“val” argumentprovided
to the systemcall, set the return to
EWOULDBLOCK.

6. Otherwise,sleepfor the time indi-
catedby the “reltime” argument,or
indefinitelyif thatis NULL.

(a) If we timed out, set the return
valueto ETIMEDOUT.

(b) Otherwise,if there is a signal
pending,setthe returnvalueto
EINTR.

7. Try to remove our “struct
futex_q ” from the hashtable: if
we were already removed, return
0 (success)unconditionally, as this
meanswewerewokenup,otherwise
return the error code specified
above.

FUTEX_WAKE: This is similar to theprevi-
ousFUTEX_UP, except that it doesnot

alter the futex value,it simplewakesone
(or more)processes.Thenumberof pro-
cessesto wake is controlled by the “int
val” parameter, and the return value for
the system call is the number of pro-
cessesactuallywoken andremoved from
thehashtable.

FUTEX_AWAIT: This is proposed as an
asynchronousoperationto notify the pro-
cessvia a SIGIO-stylemechanismwhen
thevaluechanges.Theexactmethodhas
not yet beensettled(seefuture work in
Section5).

This new primitive is only slightly slower than
the previous one,6 in that the time between
waking the processand that processattempt-
ing to claim thelock hasincreased(asthelock
claim is donein userspaceon returnfrom the
FUTEX_WAKE syscall), and if the process
hasto attemptthe lock multiple times before
success,eachattemptwill beaccompaniedby
a syscall,ratherthan the syscallclaiming the
lock itself.

On theotherhand,thefollowing canbeimple-
mentedentirelyin theuserspacelibrary:

1. All the POSIX style locks, includ-
ing pthread_cond_broadcast(which re-
quires the “wake all” operation) and
pthread_cond_timedwait (which requires
the timeout argument). One of the au-
thors (Rusty) has implementeda “non-
pthreads” demonstrationlibrary which
doesexactly this.

2. Read-writelocks in a singleword, on ar-
chitectureswhich supportcmpxchg-style
primitives.

6About 1.5% on a low-contentiontdbtorture,3.5%
onahigh-contentiontdbtorture
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3. FIFO wakeup, where fairnessis guaran-
teedto anyonewaiting (see3.1.4).

Finally, it is worthwhile pointing out that
thekernelimplementationrequiresexactly the
samenumberof lines as the previous imple-
mentation:233.

3.1.4 FIFO Queueing

Thenaiveimplementationof “up” doesthefol-
lowing:

1. Atomically setthefutex to 1 (“available”)
andrecordthepreviousvalue.

2. If thepreviousvaluewasnegative, invoke
sys_futex to wakeupawaiter.

Now, thereis thepotentialfor anotherprocess
to claim the futex (without enteringthekernel
atall) betweenthesetwo steps:theprocesswo-
kenatstep2will thenfail, andgobacktosleep.
As long asthis doesnot leadto starvation,this
unfairnessis usually tolerable,given the per-
formanceimprovementsshown in Section4

Thereis one particularcasewherestarvation
is a real problemwhich must be avoided. A
processwhich is holdingthelock for extended
periods and wishes to “give way” if others
are waiting cannotsimple to “futex_up(); fu-
tex_down();”, as it will always win the lock
backbeforeany otherprocesses.

Henceone of us (Hubertus)addedthe con-
ceptof “ futex_up_fair() ”, wherethefu-
tex is set to an extremely negative number
(“passed”), insteadof 1 (“available”). This
looks like a “contended” case to the fast
userspace“futex_down()” path, as it is nega-
tive, but indicatesto any processafter a suc-
cessfulreturnfrom theFUTEX_WAITcall that

the futex hasbeenpasseddirectly, andno fur-
theraction(otherthanresettingthevalueto -1)
is requiredto claim it.

4 Performance Evaluation

In this sectionwe assessthe performanceof
thecurrentimplementation.Westartoutwith a
syntheticbenchmarkandcontinuewith amod-
ified databasebenchmark.

4.1 MicroBenchmark: UlockFlex

Ulockflex is a syntheticbenchmarkdesigned
to ensuretheintegrity andmeasuretheperfor-
manceof locking primitives. In a run, Ulock-
flex allocatesa finite set (typically one) of
globalsharedregions(shmator mmap’edfiles)
and a specifiednumberof user locks which
are assignedto the sharedregion in a round
robin fashion. It thenclonesa specifiednum-
ber of taskseither as threadsor as processes
andassigns eachtaskto oneparticularlock in
a round robin fashion. Eachcloned task, in
a tight loop, computestwo randomnumbers
nlht and lht, acquiresits assignedlock, does
somework of lock hold time lht, releasesthe
lock, doessomemorework of non-lockhold
timenlht andrepeatstheloop. Themeanlock
hold time lht(mean) andnon-lockhold times
nlht(mean) areinputparameters.lht andnlht
aredeterminedasrandomnumbersover a uni-
form distribution in the interval [0.5..1.5] of
their respective mean. The tool reportstotal
cummulative throughput(asin numberof iter-
ationsthroughtheloop). It alsoreportstheco-
efficient of varianceof theper taskthrougput.
A highercoefficient indicatesthepotentialfor
starvation. A small coefficient indicatesfair-
nessovertheperiodof execution.A datastruc-
tureassociatedwith eachlock is updatedafter
obtainingthelock andverifiedbeforereleasing
thelock, thusallowing for integrity checks.



Ottawa Linux Symposium 2002 489

In the following we evaluatethe performance
of various user locking primitives that were
built on the basics of the futex and the
ulock implementations.We considerthe ba-
sic two wakeup policies for both futexes
and ulocks, i.e. fair wakeup and regular
wakeup (i.e. convoy avoidance), yielding
the 4 casesfutex_fair, futex, ulocks_fair and
ulocks. For thesecaseswe also considera
spinninglock acquisitionin that the tasktries
to acquire the lock for 3 µsecs before giv-
ing up and blocking in the kernel, yielding
the4 casesof futex_fair(spin,3),futex(spin,3),
ulocks_fair(spin,3) and ulocks(spin,3). For
referencewe also provide the measurements
for a locking mechanismbuild on SystemV
semaphores,i.e., eachlock requestresultsin
a systemcall. This variantis denotedassysv,
resultingin 9 overall locking primitivesbeing
evaluated.

All experimentswere performed on a dual
Pentium-III500MHz, 256MB system.A data
pointwasobtainedby runningulockflex for 10
secondswith a minimumof 10 runsor until a
95%confidenceinterval wasachieved.

In thefirst experimentwe determinethebasic
overheadof the locking mechanims.For this
we run with onetask,onelock andnlht ==
lht == 0. Note that in this caseall userlock-
ing mechanismsnever have to enter into the
kernel.Performanceis reportedas%efficiency
of arunwithoutlock invocations.Thesysvwas
25.1%efficient, while all 8 userlevel locking
casesfell within 84.6%and87.9%. Whenthe
(nlht+ lht) wasincreasedto 10µsecs, theeffi-
ciency of sysvwasstill only 82.2%,while those
of the userlevel locks rangedfrom 98.9%to
99.1%.

Whenexecutingthis setupwith two tasksand
two lockstheefficiency of sysvdropsto 18.3%
from 25.1% indicating a hot lock in the ker-
nel. At thesametime theuserlevel primitives

all remainin thesamerange,asexpected.The
sameeffect canbedescribedasfollows. With
this setupwe would expecttwice the through-
put performanceascomparedto the 1 task,1
lock setup. Indeed,for all userprimitivesthe
scalabilityobserved is between1.99and2.02,
while sysvonly showsascalabilityof 1.51.

In thenext setof experimentswe fixedthe to-
tal loop executiontimenlht + lht to 10µsecs,
however we changedthe individual compo-
nents. Let (nlht, lht) denotea configuration.
Four configurationareobserved: (0,10),(5,5),
(7,3), (9,1). The (0,10) representsthe highly
contendedcase,while (9,1) representsa sig-
nificantly lesscontendedcase.Theexactcon-
tention is determinedby the numberof tasks
accessinga sharedlock. Contentionnum-
bersreportedareall measuredagainstthe fair
locking version of ulocks in a separaterun.
The contentionmeasurementdoesnot intro-
duceany significantoverhead.

Figures 1..5 show the comparisionof the 9
locking primitives for the four configurations
under various task counts (2,3,4,100,1000).
Thepercentageimprovementsfor eachconfig-
urationandtaskcountover thesysvbasenum-
ber for that configurationare reportedin Ta-
ble1 for thefair futexesandulockswithoutand
with spinning(3 µsecs) andin Table2 for the
regularfutexesandulocks.

The overall qualitative assessment of the re-
sults presentedin thesefigures and tablesis
as follows. First comparingthe fair locking
mechanisms,fair ulocks, in general,have an
advantageover fair futexes. Furthermore,fair
futexesperformworsethansysvfor high con-
tentionscenarios.Only in thehigh taskcount
numbersdo fair futexes outperform(substan-
tially) sysv and fair ulocks. Spinning only
showed somedecentimprovementin the low
contentioncases,as expected. For the regu-
lar versions(ca-locks),bothfutexesandulocks
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Figure2: Throughputfor variouslock typesfor
3 tasks,1 lock and4 configurations

alwaysoutperformthesysvversion. Thegen-
eraltendency is for ulocksto achieve theirper-
formanceat the (5,5) configurationwith lit-
tle additionalbenefits.Thoughfutexesin gen-
eral lack theulock performanceat the (5,5)
configuration,they outperformulocks at the
(7.3) andthe(9,1) configurations.In con-
trast to futexes, spinningfor ulocks doesnot
help.

Figure1 shows theresultsfor 2 taskscompet-
ing for 1 lock underfour contentionscenarios.
The lock contentionfor the 4 configurations
were 100%, 97.8%, 41.7% and 13.1%. The
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Figure4: Throughputfor variouslock typesfor
100tasks,1 lock and4 configurations

lock contentionobserved for Figure 2.. 5 are
all above99.8%.

We now turn our attention to the multiple
reader/singlewriter (rwlock) lock primitives.
To recall, furwocks implement the rwlock
functionality ontop of two regular futexes,
while ulocksimplementthemdirectlyin thein-
terfacethroughatomiccompareandexchange
manipulationof the lock word. Ulockflex al-
lows thespecificationof ashare-level for
rwlocks. This translatesinto theprobabilityof
a taskrequestinga readlock insteadof a write
lock while iteratingthroughthetight loop.
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Figure6 showstheachievedthroughputof fur-
wocks and sharedulocks for 2, 3, 4 and 100
taskscompetingfor a singlelock underdiffer-
ent readshareratios. Thegeneralobservation
is that the furwocks (solid lines) outperform
the ulocks (dashedlines) for their respective
tasknumbers. In generalthe lower the share
level and/or the higher the task numbersthe
betterthe improvementsthat canbe achieved
with furwocks over sharedulocks. Only in
the 100% share-level (only readaccesses)do
sharedulocksoutperformfurwocksby 2̃-3%.

We now analyzethe fairnessof the userlock-
ing. We monitor the global fairnessby com-
puting the coefficient of variancecoeff of the
per task throughput. Note this shouldnot be
comparedwith the fair locking itself. Theco-
eff of sysvis typically below 0.01. Only the
1000taskcaseshowed a coeff of 9.1, indicat-
ing that tasksdid not all properlyget started.
The coeff for fair futexes and fair ulocks for
small task numbers( 2,3,4) is in generalbe-
low 0.01(asexpected).For largetasknumber
(100,1000),thecoeff remainsvery low for fu-
texes,while ulocksexperiencea coeff ashigh
as 1.10. For furwocks, the generalobserva-
tion is that the coeff is lessthan0.16 in both
furwocksandsharedulocks. Only for the100
taskcasedoesthecoeff reach0.45.Overall the
meanof coeff for all scenariosis 0.068for fur-
wocksand0.054for sharedulocks. In general
we canstatethat at theselevel of contention,
globalstarvationis notaproblem.

We now turn our attentionto thedegreeof lo-
cal fairnessfor the ca-locks. We do this by
investigating how many times a task is capa-
ble of reacquiringthe lock beforesomeother
tasklocksit. To doso,weexamineahighcon-
tentioncaseof 100 tasksandthe (9,1) config-
uration. The kernel lock and the fair futexes
showed perfect fairness,99.99% of the task
couldnever reacquireits lock without losingit
to someothertask.Thefair ulocksonly 92.1%
failed to reacquire,3.6%wasableto grabthe
lock twice in a row and0.4%threetimes.The
maximum times a lock was able to be reac-
quiredwas1034times.For futexesthesenum-
bersare79.0%,21.0%andmaximumof 575
and for ulocks they are 82.4%, 17.54%and
maximumof 751. To somedegreeit confirms
that futexes and ulocks have a higher degree
of instantreacquisition,however this analysis
fails to shedmorelight on why futexesareso
muchbetterthanulocks.
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4.2 TDB Torture Results

TheTrivial DataBase(TDB) is a simplehash-
chain-basedon-diskdatabaseusedby SAMBA
and other projectsto storepersistentinternal
data. It has a similar interface to the clas-
sic dbm library, but allows multiple readers
and writers and is less than 2000 lines long.
TDB normally usesfcntl locks: we replaced
thesewith futex locks in a specialpart of the
memory-mappedfile. We also examinedan
implementationusing"spin thenyield" locks,
which try to get the lock 1000 times before
callingyield() to let otherprocessesschedule.

tdbtorture is one of the standardtest pro-
gramswhich comeswith TDB: we simplified
it to eliminate the cleanuptraversalwhich it
normally performs,resulting in a benchmark
which forks 6 processes,eachof which does
200000randomsearch/add/delete/traverseop-
erations.

To examine behavior under high contention,
we createda databasewith only one hash
chain,giving only two locks(thereis onelock
for the free recordschain). For the low con-
tentioncase,weused4096chains(thereis still
somecontention on the allocationlock). For
the no contentioncase,we useda singlepro-
cess,ratherthan6. The resultsshown in Ta-
ble 3 wereobtainedon a 2-processor350MHz
PentiumII.

It is interestingthatthefcntl lockshave differ-
ent scalingpropertiesthanfutexes: they actu-
ally do muchworseunderthe low contention
case,possiblybecausethenumberof locksthe
kernelhasto keeptrackof increases.

Anotherpoint to makehereis thesimplicity of
the transformationfrom fcntl locks to futexes
within TDB: the modificationtook no longer
thanfive minutesto someonefamiliar with the
code.

5 Current and Future Directions

Currently we are evaluatingan asynchronous
wait extensionto thefutex subsystem.There-
quirementfor this arisesfor the necessityto
supportglobalPOSIXmutexesin threadpack-
ages. In particular, we are working with the
NGPT (next generationpthreads)teamto de-
rive specificrequirementsfor building global
POSIX mutexes over futexes. Doing so pro-
videsthebenefitthat in theuncontendedcase,
no kernel interactionsarerequired. However,
NGPTsupportsaM : N threadingmodel,i.e.,
M userlevel threadsareexecutedoverN tasks.
Conceptually, theN tasksprovide virtual pro-
cessorson which the M userthreadsareexe-
cuting.

Whena userlevel thread,executingon oneof
theseN tasks,needsto block on a futex, it
shouldnot block thetask,asthis taskprovides
the virtual processing. Insteadonly the user
thread should be descheduledby the thread
managerof the NGPT system. Nevertheless,
awaitobj mustbeattachedto thewaitqueue
in the kernel, indicating that a user threadis
waiting on a particularfutex andthat the task
groupneedsa notificationwrt to the continu-
ation on that futex. Oncethe threadmanager
receives the notification it can reschedulethe
previouslyblockeduserthread.

For this we provide an additional operator
AFUTEX_WAITto the sys_futex system
call. Its task is to appenda waitobj to the
futex’s kernelwaitqueueandcontinue. Com-
pared to the synchronous calls describedin
Section3, this waitobj cannot beallocated
on thestackandmustbeallocatedanddeallo-
cateddynamically. Dynamicallocationshave
thedisadvantagethat the waitobjs mustbe
freedevenduringanirregularprogramexit. It
furtherposesadenialof serviceattackthreatin
that a maliciousapplicationscan continously
call sys_futex(AFUTEX_WAIT) . We are
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contemplatingvarioussolutionsto this prob-
lem.

The generalsolutionsseemto convert to the
usageof a /dev/futex device to controlresource
consumption. The first solution is to allo-
cate a file descriptor fd from the /dev/futex
“device” for each outstandingasynchronous
waitobj . Conveniently these descriptors
shouldbe“pooled” to avoid theconstantopen-
ing and closing of the device. The private
dataof thefile wouldsimplybethewaitobj .
Uponcompletiona SIGIO is sentto theappli-
cation. Theadvantageof this approachis that
thedenialof serviceattackis naturallylimited
to thefile limits imposedonaprocess.Further-
more, on programdeath,all waitobjs still
enqueuedcanbe easily dequeued.The disad-
vantageis that this approachcansignificantly
pollute the “fd’ space. Anothersolutionpro-
posedhasbeento openonly onefd, but allow
multiplewaitobj allocationsfor this fd. This
approachremovesthe fd spacepollution issue
but requiresanadditional tuningparameterfor
how many outstandingwaitobjs shouldbe
allowedperfd. It alsorequiresproperresource
managementof the waitobjs in the kernel.
At this point no definite decisionshas been
reachedonwhichdirectionto proceed.

The questionof priorities in futexeshasbeen
raised: the current implementationis strictly
FIFO order. The useof nice level is almost
certainlytoo restrictive, sosomeotherpriority
methodwould berequired.Expandingthesys-
temcall to adda priority argumentis possible,
if thereweredemonstratedapplicationadvan-
tage.

6 Conclusion

In thispaperwedescribedafastuserlevel lock-
ing mechanism,called futexes, that were in-
tegratedinto the Linux 2.5 developmentker-

nel. We outlinedthe variousrequirementsfor
suchapackage,describedpreviousvariousso-
lutions and the currentfutex package. In the
performancesectionwe showed, that futexes
can provide significant performanceadvan-
tagesover standardSystemV IPC semaphores
in all casesstudies.
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Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) -15.5 -0.7 -20.5 -22.9
(5,5) 7.9 4.6 52.4 47.7
(7,3) 15.5 18.7 50.2 66.4
(9,1) 33.2 33.1 40.1 46.5

3 tasks
(0,10) -13.7 -15.2 -19.1 -15.9
(5,5) -5.7 8.9 -10.1 3.8
(7,3) -33.0 11.0 -28.2 -9.2
(9,1) -33.7 7.5 -21.7 -0.7

4 tasks
(0,10) -15.8 -20.0 -20.4 -17.5
(5,5) 0.6 13.3 -5.3 13.5
(7,3) -38.6 8.0 -42.5 7.3
(9,1) -43.6 7.7 -30.6 6.4

100tasks
(0,10) 172.3 190.8 151.4 189.5
(5,5) 367.6 393.9 386.4 397.6
(7,3) 464.0 300.5 449.0 305.5
(9,1) 495.7 180.3 449.1 190.0

1000tasks
(0,10) 1900.4 2343.9 1787.2 2317.9
(5,5) 3363.7 3752.5 3403.7 3792.1
(7,3) 3972.5 3295.2 3891.1 3357.3
(9,1) 4393.7 1971.5 4127.7 1985.3

Table1: Percentageimprovementof Fair lock-
ing (spinningandnon-spinning) over thebase
sysvthroughput
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Conf no-spin spin
futex ulock futex ulock

2 tasks
(0,10) 8.8 7.6 9.3 7.8
(5,5) 17.7 127.8 86.0 108.2
(7,3) 33.2 60.1 68.5 55.7
(9,1) 40.8 30.9 44.9 29.3

3 tasks
(0,10) 43.2 9.0 38.5 9.3
(5,5) 49.1 116.0 89.9 76.5
(7,3) 35.0 38.0 58.0 28.1
(9,1) 39.5 12.8 43.3 12.3

4 tasks
(0,10) 61.2 38.8 59.7 33.7
(5,5) 66.6 130.5 116.3 90.5
(7,3) 34.7 29.9 49.1 20.3
(9,1) 36.1 10.5 39.6 6.2

100tasks
(0,10) 456.8 397.1 426.9 399.7
(5,5) 852.3 1030.2 973.4 844.5
(7,3) 1040.4 1003.9 1175.2 919.5
(9,1) 1223.7 967.7 1260.4 936.5

1000tasks
(0,10) 4591.7 4047.9 3333.1 4055.2
(5,5) 6989.5 9570.0 8583.8 8095.9
(7,3) 9149.7 9427.1 10781.5 8714.6
(9,1) 11569.6 9437.7 11869.9 9223.3

Table 2: Percentageimprovementof regular
(ca) locking (spinningandnon-spinning)over
thebasesysvthroughput

Locktype ContentionLevel
High Low None

FCNTL 1003.69 1482.08 76.4
SPIN 751.18 431.42 67.6
FUTEX 593.00 111.45 41.5

Table3: Completiontimes(secs)of tdbtorture
runswith differentcontentionratesanddiffer-
entlock implementations


