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1 Introduction

8 In this paper we examine the complexity of languages and functions computed by polynomial-time
Turing machines which have access to two oracles. We ask whether the order of the queries is
significant. That is, given oracles E and H, does it matter if we ask the queries to E first or to H
first? For this question to be nontrivial, the complexity of E and H must be significantly different.
Otherwise, the queries to E and H would be trivially interchangeable. We choose our oracles E and
H to be complete languages for different levels of the Polynomial Hierarchy (PH) — for example,
E might be complete for NP and H complete for ΣP

2 . (We use E for the “easier” oracle and H
for the “harder” one.) Our results show that when a polynomial-time machine is allowed parallel
queries to E and H, then the order of the queries does not matter when the machine is recognizing
a language — i.e., the queries to E and H are commutative. In particular, we show that for all
polynomial bounded r(n) and s(n),

9 PHr(n)-tt;Es(n)-tt = PEs(n)-tt;Hr(n)-tt ,

10 where PAa(n)-tt;Bb(n)-tt denotes the class of languages recognized by polynomial-time Turing ma-
chines that ask a(n) parallel queries to A followed by b(n) parallel queries to B. This result improves
upon the previous results of Hemaspaandra, Hemaspaandra and Hempel [HHH98] who showed that
the order of the queries does not matter if the base machine asks just one query to each oracle.
The techniques they use do not generalize to computations that involve more than two queries in
total. Furthermore, our new results extend to machines that ask several rounds of queries to E and
H. For example, we can show that

11 PHa-tt;Eb-tt;Hc-tt;Ed-tt = PHa-tt;Hc-tt;Eb-tt;Ed-tt .

12 In the proofs of these results, it is simple to show that the queries to the easy oracle E can be
delayed — i.e., we can always ask the hard questions first. The difficulty is in showing that the
queries to the hard oracle H can also be delayed.

13 In this paper, we also consider functions computable by polynomial-time Turing machines with
access to two oracles. In contrast to the language classes discussed above, we show that for function
classes the queries to E and H do not commute. First, we show that every function computed by a
machine that queries E first has an equivalent machine that queries H first. That is, for polynomial
bounded r(n) and s(n),

14 PFEs(n)-tt;Hr(n)-tt ⊆ PFHr(n)-tt;Es(n)-tt .

15 However, asking queries to H first is strictly more powerful unless PH collapses, because for
polynomial-time computable r(n) ≤ ε log n (for some ε < 1) and for s(n) ∈ O(log n)

16 PFHr(n)-tt;Es(n)-tt ⊆ PFEs(n)-tt;Hr(n)-tt =⇒ PH ⊆ NPE .

17 The proof of this result extends in a straightforward manner to the case with more than two rounds
of parallel queries. For example, we can show that

18 PFHr(n)-tt;Hs(n)-tt;Ep(n)-tt ⊆ PFHr(n)-tt;Ep(n)-tt;Hs(n)-tt =⇒ PH ⊆ NPE

19 where r(n), s(n) and p(n) are in O(log n) such that r(n) + s(n) ≤ ε log n for some ε < 1.
20 Several other studies have examined the effect of the order of access to multiple oracles. Hemas-

paandra, Hempel and Wechsung [HHW95] were the first to consider this problem. They determined
when the order of queries to complete languages for the Boolean Hierarchy can be reversed. Re-
lated results were obtained by Agrawal, Beigel and Thierauf [ABT96]. Also, McNicholl [McN] has
investigated the order of oracle queries in a recursion theoretic setting.
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2 Preliminaries

21 Definition 1 Let PAa(n)-tt be the class of languages recognized by deterministic polynomial-time
Turing machines which ask at most a(n) parallel (a.k.a. truth-table) queries to the oracle A on inputs
of length n. The polynomial-time machine computes a sequence of a(n) query strings and submits
them to the oracle simultaneously. The oracle answers with an a(n)-bit string which specifies the
membership of each query string in A. The polynomial-time machine makes no additional use of
the oracle. We use PFAa(n)-tt to denote the analogous class of functions.

22 Another oracle access mechanism considered in the bounded query literature allows a Turing
machine to make serial queries to the oracle. That is, subsequent queries to the oracle can depend
on the answers to the previous queries. In this paper, we do not consider the case of serial queries
explicitly. However, serial queries to an oracle can be considered handled as several rounds of
parallel queries where the machine makes only one query per round.

23 For bounded queries to a single oracle, we use the standard notation defined above. For multiple
oracle queries, new notation is needed.

24 Definition 2

25 • Let PAa(n)-tt;Bb(n)-tt denote the class of languages recognized by polynomial-time Turing ma-
chines that ask a(n) parallel queries to the oracle A followed by b(n) parallel queries to the
oracle B on inputs of length n.

26 • Let PAa(n)-tt‖Bb(n)-tt denote the class of languages recognized by polynomial-time Turing
machines that ask a(n) parallel queries to A simultaneous with b(n) parallel queries to B.

27 • Let PFAa(n)-tt;Bb(n)-tt denote the class of functions recognized by polynomial-time Turing
machines that ask a(n) parallel queries to A followed by b(n) parallel queries to B.

28 • Let PFAa(n)-tt‖Bb(n)-tt denote the class of functions recognized by polynomial-time Turing
machines that ask a(n) parallel queries to A simultaneous with b(n) parallel queries to B.

29 Note that PAa(n)-tt‖Bb(n)-tt is trivially contained in both PAa(n)-tt;Bb(n)-tt and PBb(n)-tt;Aa(n)-tt .
In the case that PAa(n)-tt;Bb(n)-tt = PBb(n)-tt;Aa(n)-tt , we say that a(n) queries to A and b(n) queries
to B are commutative for language classes. Commutative queries for function classes is defined
analogously.

30 Classes of languages and functions defined by machines that ask more than two rounds of
parallel queries are defined similarly. For example, PAa-tt;Bb-tt;Cc-tt;Dd-tt is the class of languages
accepted by polynomial-time Turing machines that ask a queries to A, b queries to B, c queries to
C and d queries to D in that order.

31 Definition 3 For k ≥ 1, we define a ΣP
k machine to be an NP machine with an oracle that is

≤P
m -complete for Σ

P
k−1. By convention, Σ

P
0 = P. The ΣP

k level of the Polynomial Hierarchy (PH)
contains exactly the languages recognized by ΣP

k machines.

32 Definition 4 We use ≤P
m , ≤NP

m , ≤P
conj and ≤P

r-tt to denote, respectively, polynomial-time many-
one, nondeterministic polynomial-time many-one, polynomial-time conjunctive and polynomial-
time truth-table reductions. Let A and B be any two languages over some alphabet Σ. Then,
A≤P

mB if there exists a deterministic polynomial-time computable function f such that all x ∈ Σ*,

33 x ∈ A ⇐⇒ f(x) ∈ B.
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34 Also, A≤NP
m B if there exists an NP machine N such that for all x ∈ Σ*, x ∈ A if and only if

some computation path of N(x) outputs a string y ∈ B. We say that A≤P
conj B if there exists a

polynomial-time computable function f such that for all x ∈ Σ*, f(x) = 〈y1, . . . , yr(x)〉 and
35 x ∈ A ⇐⇒ (∀i, 1 ≤ i ≤ r(x))[yi ∈ B].

36 Finally, A≤P
r-ttB if A ∈ PBr-tt . Furthermore, for a language B and a reduction R, we use R(B) to

denote the set of languages that are R-reducible to B. For example, ≤P
m(B) = {A : A≤P

mB}.

37 Notation 5 Let A and B be any two languages:

38 • A(x) is the characteristic function of the set A at x

39 • χA
t (x1, . . . , xt) = A(x1) · · ·A(xt), where juxtaposition means concatenation

40 • #A
t (x1, . . . , xt) = ‖{i : (1 ≤ i ≤ t) ∧ (xi ∈ A)}‖

41 • A≤m = {x ∈ A : |x| ≤ m}.

42 • A=m = {x ∈ A : |x| = m}.

43 • A[m] = {S : S ⊆ A and |S| ≤ m}

44 • A×A = {(x, y) : (x ∈ A) ∧ (y ∈ A)}

45 • A�B = (A×B) ∪ (A×B) = {(x, y) : ((x ∈ A) ∧ (y �∈ B)) ∨ ((x �∈ A) ∧ (y ∈ B))}

46 We also use #A
ω and χA

ω to denote the analogs of #
A
t and χA

t that take vectors of any dimension
as input. Furthermore, let {0, 1}m×t denote the set of vectors �x = 〈x1, . . . , xt〉 with t components
where each xi has length m.

47 Notation 6 Let A be any language. For a fixed dimension t, the language ODDA
t consists of those

vectors �x = 〈x1, . . . , xt〉 such that #A
t (�x) is odd. The language ODD

A
ω =

⋃
t≥1ODD

A
t is defined

for vectors of any dimension. The languages EVENA
t and EVENA

ω are defined analogously. As
usual, ODDA

t (�x), ODD
A
ω (�x), EVEN

A
t (�x) and EVEN

A
ω (�x) in functional form denote the characteristic

functions of the respective languages. Finally, we use ⊕ to denote addition modulo 2.

48 Definition 7 A function g from X to Y is m-enumerable if there is a polynomial-time computable
function f from X to Y [m] such that (∀x)[g(x) ∈ f(x)].

49 Note that if g can be computed by a polynomial-time machine that makes t queries to A then g
is 2t-enumerable. The function χA

t can be computed using t parallel queries to A. In many cases, it
has been shown that t queries to A are necessary. In particular, if A is disjunctively self-reducible
and χA

t is (2t − 1)-enumerable, then A ∈ P using a tree pruning procedure [BKS95].
50 It will be helpful if the reader is familiar with mind-change proofs, which have been used to

show the relationships between serial and parallel queries [Bei91], and with hard/easy arguments,
which have been used to show that a collapse of the Boolean Hierarchy implies a collapse of the
Polynomial Hierarchy [Kad88, BCO93, CK96, HHH99, BF99]. We use the mind-change technique
to show that ODDH

r �ODDE
s is ≤P

1-tt -complete for P
Hr-tt;Es-tt . The Boolean Hierarchy comes into

play because ODDH
r is complete for the rth level of the Boolean Hierarchy over ΣP

k . (Recall that
H is a ΣP

k -complete language.)
51 The Boolean Hierarchy over NP is a generalization of the class DP defined by Papadimitriou

and Yannakakis [PY82]. For constant k, the kth level of the Boolean Hierarchy can be defined
simply as nested differences of NP languages [CGH+88, CGH+89]. In general, we can consider the
Boolean Hierarchy over ΣP

k for k > 1, defined as follows:
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52 Definition 8 For constant t, a language L is in BHk
t if there exists a Σ

P
k language L′

53 x ∈ L ⇐⇒ max({i : 1 ≤ i ≤ t and (x, i) ∈ L′} ∪ {0}) is odd.

54 Also, L ∈ BHk
t implies that L ∈ coBHk

t .

55 The connection between the Boolean Hierarchy and bounded query computations has been used
to prove many results in bounded query complexity. For example, to prove that PSAT(t − 1)-tt =
PSATt-tt =⇒ PH collapses, the standard proof is to show that PSAT(t − 1)-tt = PSATt-tt =⇒ BH1

t =
coBH1

t and then cite the fact that a collapse of the Boolean Hierarchy implies a collapse of PH. This
proof also extends to PSATt(n)-tt where t(n) ∈ o(n) is an increasing function [Wag88]. However,
dealing with non-constant levels of the Boolean Hierarchy introduces many subtleties and notational
complications (q.v. [Wag88, Wag90, Cha97]). In this paper, we do work with machines which
use a non-constant number of queries, but we can avoid some of the notational difficulties by
working directly with the complete languages for the Boolean Hierarchy rather than the hierarchy
itself. Recall that if H is ≤P

m -complete for ΣP
k , then the language ODD

H
t is ≤P

m -complete for
BHk

t . However, when we use the hard/easy arguments, it is more convenient to use the “Boolean
Languages” defined below rather than ODDH

t .

56 Definition 9 For a language A, we define BLAt recursively:

BLA
1 = A

BLA
2t = {〈x1, . . . , x2t〉 : 〈x1, . . . , x2t−1〉 ∈ BLA2t−1 and x2t �∈ A}

BLA2t+1 = {〈x1, . . . , x2t+1〉 : 〈x1, . . . , x2t〉 ∈ BLA2t or x2t+1 ∈ A}
coBLA

t = {〈x1, . . . , xt〉 : 〈x1, . . . , xt〉 �∈ BLAt }

BLA
ω =

∞⋃
t≥1

BLAt

coBLA
ω =

∞⋃
t≥1

coBLA
t

57 We will work with either ODDA
t or BLAt , whichever one is more convenient for the situation at

hand. We ask the reader to confirm the following relationships between ODDA
t and BL

A
t . Consider a

sequence 〈x1, . . . , xt〉. Let z be the largest index such that xz ∈ A. Then, the sequence 〈x1, . . . , xt〉 ∈
BLAt if and only if z is odd. Also, for a nested sequence 〈x1, . . . , xt〉, where xi+1 ∈ A =⇒ xi ∈ A,
we have that 〈x1, . . . , xt〉 ∈ ODDA

t if and only if 〈x1, . . . , xt〉 ∈ BLAt . Thus, if ≤P
m(A) is closed

under disjunctive reductions, ODDA
t and BLAt are ≤P

m -equivalent. Since the languages H and E
are ≤P

m -complete for ΣP
k and ΣP

j , which are closed under disjunctive reductions, ODD
H
t ≡P

mBL
H
t

and ODDE
t ≡P

mBL
E
t .

58 If A is a complete language for some level of PH, then for constant t, PA(t − 1)-tt = PAt-tt

implies that BLAt ≤P
m coBL

A
t which in turn implies that PH collapses using the hard/easy argument

[Kad88]. To generalize this beyond constants, say to the log n level, we might define BLAlogn and
coBLA

logn as follows:

59 BLAlogn = {�x : �x = 〈x1, . . . , xt〉 and t = log |�x|} ∩ BLAω

60 coBLA
logn = {�x : �x = 〈x1, . . . , xt〉 and t = log |�x|} ∩ coBLA

ω .
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61 Now, given �x = 〈x1, . . . , xt〉 where t = log |�x|, let α be any string in A with length |�x|. Then, the
following mapping

62 〈x1, . . . , xt〉 �−→ 〈α, x1, . . . , xt〉

63 is a ≤P
m -reduction from BLA

logn to coBLA
logn, because |〈α, x1, . . . , xt〉| = 2|�x| and 〈α, x1, . . . , xt〉

has t + 1 = log(2|�x|) components. If we wanted to show that PA(logn− 1)-tt = PAlogn-tt =⇒ PH
collapses, we cannot use the following chain of reasoning:

64 PA(logn− 1)-tt = PSATlogn-tt =⇒ BLAlogn≤P
m coBL

A
logn =⇒ PH collapses

65 which is what you might expect to be the generalization of the constant case. The problem here is
that the reduction can output a vector with more components than its input. Thus, for hard/easy
arguments, we should restrict ourselves to dimension-preserving reductions — functions whose
input and output are vectors with the same number of components.

66 Then we can prove that PA(logn− 1)-tt = PAlogn-tt implies PH collapses as follows. First we
show that PA(logn− 1)-tt = PAlogn-tt implies the existence of a dimension-preserving polynomial-
time function f such that for all �x = 〈x1, . . . , xt〉 where t = log |�x|, f(�x) = �y = 〈y1, . . . , yt〉 and

67 �x ∈ BLA
ω ⇐⇒ �y ∈ coBLA

ω .

68 The existence of such a “reduction” collapses PH using a straightforward generalization of the
hard/easy argument used for the constant case. Note that the dimension of �y and its length are
not directly related since the dimension must be t and the length of each yi might vary over a wide
range. Thus, �y might not be an element of coBLA

logn. It is for this reason that we will, for the rest
of the paper, use the notation like BLAω and coBLA

ω rather than BLAlogn or coBL
A
logn.

3 Language classes

69 In this section we consider classes of languages recognized by polynomial-time Turing machines
which have access to a ΣP

k oracle and a ΣP
j oracle. The results in this section show that for

language classes, the order of the queries does not matter — in fact, the queries can be made in
parallel. In Theorem 10, we show that when the easier questions are asked first, the queries can be
made in parallel. This relationship even holds for function classes. This is the simple direction of
our results; the difficult direction handles the case where the harder questions are asked first.

70 Theorem 10 For k > j, let H and E be ≤P
m -complete for ΣP

k and Σ
P
j respectively. Then, for all

polynomial bounded r(n) and s(n),

71 PFEs(n)-tt;Hr(n)-tt ⊆ PFHr(n)-tt‖Es(n)-tt ⊆ PFHr(n)-tt;Es(n)-tt .

72 Proof: The second containment is obvious. To prove the first containment, we modify the tech-
niques used by Hemaspaandra et al. [HHH98]. Let M be a polynomial-time bounded Turing
machine that asks s(n) parallel queries to the oracle E followed by r(n) parallel queries to the
oracle H. Let e1, . . . , es(n) be the queries that M asks the oracle E on a particular input x. Note
that the queries e1, . . . , es(n) can be generated in polynomial time. Since k > j, a ΣP

k machine can
generate the set of queries e1, . . . , es(n), determine the answers to these queries and then generate
the second set of queries h1, . . . , hr(n) that M(x) would ask to the oracle H. Thus, M ′ does not
have to query E before asking H about the answers to h1, . . . , hr(n). The machine M ′ can simply
ask the oracle H the following question h′i:
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73 “Let hi be the ith query that M(x) asks H. Is hi ∈ H?”

74 The oracle H can answer such queries because H is complete for ΣP
k . Clearly, h

′
i ∈ H if and only if

hi ∈ H. In parallel with the queries to H, M ′(x) also asks the oracle E for answers to e1, . . . , es(n),
the same questions that M(x) asked originally. Thus,M ′(x) has answers to all of the oracle queries
that M(x) asked and M ′(x) can complete the simulation of M(x) step by step. ✷

75 Note that we do not really need H to be complete for ΣP
k . The conditions that E≤P

mH, E≤P
mH

and ≤NP
m (H) = ≤P

conj(H) = ≤P
m(H) are sufficient to prove Theorem 10. For constant r(n) and s(n),

we only need the conditions

76 E≤P
mH, E≤P

mH, H ×H ≤P
mH and H ×H ≤P

mH.

77 For example, the theorem holds when E is ≤P
m -complete for Σ

P
j and H is ≤P

m -complete for
PSPACE. Also, by restricting Theorem 10 to characteristic functions, we obtain the following
corollary for language classes.

78 Corollary 11 For k > j, let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively. Then, for all

polynomial bounded r(n) and s(n),

79 PEs(n)-tt;Hr(n)-tt ⊆ PHr(n)-tt‖Es(n)-tt ⊆ PHr(n)-tt;Es(n)-tt .

80 Theorem 10 and Corollary 11 show that we can always postpone the easy questions (the queries
to E). In the next theorem, we show somewhat surprisingly that, when recognizing languages,
we can also postpone the hard questions. In fact, in either case, all the questions can be asked
in parallel, as we show in Theorem 13. First, we prove a technical lemma using the mind-change
technique. For those familiar with this technique, the basic structure of this proof is the same as
the proof which shows that every language in PHr-tt can be ≤P

1-tt -reduced to ODD
H
r [Bei91], except

in this case the polynomial-time machine is also allowed to make parallel queries to E.
81 We illustrate the mind-change technique with a simple example that every PA3-tt language

≤P
1-tt -reduces to ODD

A
3 where A is an NP-complete language. Figure 1 is a truth table for the

accepting and rejecting behavior of a polynomial-time machine M that asks 3 parallel queries to
A. If a 1 appears in column xi in a row of the truth table, then we say that xi is a positive query in
that row. In Figure 1, the positive queries in Row 6 are x1 and x2. For a mind-change proof, we will
only consider the rows of the truth-table that are consistent with A in the sense that the positive
queries in that row are strings in A. In Figure 1, the consistent rows are Rows 0, 1, 4 and 5. Two
consistent rows form a mind change if one row accepts, the other rejects and the positive queries
of one row is a subset of the positive queries in the other row. In our example, Rows 1 and 5 form
a mind change, but Rows 1 and 4 do not. Next we consider sequences of rows where each pair
of successive rows forms a mind change. In particular, we are interested in such sequences that
make the most number of mind changes. The first row of such a sequence must have the same
accept/reject behavior as Row 0. The last row must have the same accept/reject behavior as the
row which has the correct answers. If this were not the case, then adding Row 0 or the row with
the correct answers to the sequence would increase the number of mind changes. In Figure 1, there
are two sequences that make 2 mind changes: 〈0, 1, 4〉 and 〈0, 1, 5〉. Let b be a bit that is 0 if and
only if the machine M accepts in Row 0. Since the accept/reject behavior of the machine in Row 0
can be computed in polynomial time without using any queries to A, the bit b is polynomial time
computable. Furthermore, whether the maximum number of mind changes is even or odd tells us
whether the machine accepted or rejected in the row with the correct answer. In our example, the

6



84

x1 x2 x3 MA(w)
0* 0 0 0 accept
1* 0 0 1 reject
2 0 1 0 accept
3 0 1 1 accept
4* 1 0 0 accept
5* 1 0 1 accept
6 1 1 0 reject
7 1 1 1 accept

85 Figure 1: Truth table for a machine M on input w asking 3 parallel queries, x1, x2, and x3, to an oracle A.
In this example, x1 ∈ A, x2 �∈ A, and x3 ∈ A. The asterisked rows in the truth table are consistent with A
and are possible participants in a sequence of mind changes.

86

maximum number of mind changes is 2 and is even. Thus, the machine must accept because it
accepted in Row 0. Finally, since A is NP-complete, we can compute in polynomial time three
strings y1, y2, y3 such that M(w) makes at least i mind changes if and only if yi ∈ A. Then,

82 M(w) accepts ⇐⇒ b⊕ODDA
3 (y1, y2, y3) = 1.

83 Therefore, L(M) is ≤P
1-tt -reducible to ODD

A
3 .

87 Lemma 12 For k > j, let H and E be ≤P
m -complete for ΣP

k and Σ
P
j respectively. Then, for each

L ∈ PHr(n)-tt;Es(n)-tt there exists a polynomial-time computable function h such that for all w,
|w| = n, h(w) = 〈b, �y, �x〉 where b ∈ {0, 1}, �y = 〈y1, . . . , ys(n)〉, �x = 〈x1, . . . , xr(n)〉 and

88 w ∈ L ⇐⇒ b⊕ODDE
ω (�y)⊕ODDH

ω (�x) = 1.

89 Furthermore, �x and �y are nested sequences.1

91 Proof: We will use two mind-change proofs — one for the queries to H and one for the queries to
E. We start with the mind-change proof for H.

92 Fix a language L ∈ PHr(n)-tt;Es(n)-tt and let M be a polynomial-time Turing machine that
computes the characteristic function of L using r(n) parallel queries to H followed by s(n) parallel
queries to E on inputs of length n. Let QH(w) be the set of queries to H made by M on input
w, and let ZH(w) = QH(w) ∩H. Given a set Z ⊆ QH(w), let the value of fH(Z,w) be 1 if M(w)
outputs 1 when its queries to H were answered according to Z. Otherwise, fH(Z,w) = 0. In terms
of the simple example above, each set Z is the set of positive queries for a row in the truth table
and the set ZH(w) is the set of positive queries in the row with the correct answers. Note that
fH(Z,w) can be computed in polynomial time using s(n) parallel queries to E. Let gH(m,w) be
true if and only if M can make m mind changes on input w with respect to the queries to H —
i.e., gH(m,w) is true when

93 (∃Z0, . . . , Zm)[Z0 = ∅ ∧ (∀1 ≤ i ≤ m)[(Zi−1 � Zi ⊆ ZH(w)) ∧ (fH(Zi−1, w) �= fH(Zi, w))]].

94 Since a ΣP
k machine has an oracle that can answer E queries, a ΣP

k machine can determine whether
gH(m,w) is true by guessing an increasing sequence Z0, . . . , Zm, checking that Zi ⊆ ZH(w), and

90 1Note that in the notation 〈x1, . . . , xr(n)〉, n is not a formal parameter but is the length of w. More importantly,
n is not the length of 〈x1, . . . , xr(n)〉.
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confirming that fH(Zi−1, w) �= fH(Zi, w) for 1 ≤ i ≤ m. Note that gH(0, w) is trivially true and
that the maximum number of mind changes is bounded by r(n) since |ZH(w)| ≤ r(n). Since H is
ΣP
k -complete, we can construct �x = 〈x1, . . . , xr(n)〉 such that

95 xi ∈ H ⇐⇒ gH(i, w) is true.

96 If gH(i + 1, w) is true, then gH(i, w) must also be true. Thus, xi+1 ∈ H =⇒ xi ∈ H. Therefore,
the sequence �x is a nested sequence. Now consider the maximum number of mind changes made
by M(w),

97 µ = max{m : gH(m,w) ∧ (0 ≤ m ≤ r(n)) }

98 and a sequence of sets Z0, . . . , Zµ, where ∅ = Z0 � Z1 � · · · � Zµ ⊆ ZH(w), which achieves the
maximum number of mind changes. It must be the case that f(Zµ, w) = f(ZH(w), w). Otherwise,
adding ZH(w) to the end of the sequence would result in µ + 1 mind changes. Furthermore,
f(Zµ, w) = f(Z0, w) if and only if µ is even. Since M(w) = fH(ZH(w), w) and Z0 = ∅, it follows
that M(w) = fH(∅, w) if and only if µ is even. Therefore,

99 w ∈ L ⇐⇒ fH(∅, w) ⊕ODDH
ω (�x) = 1. (1)

100 Next, we use another mind-change proof to reduce fH(∅, w) to b ⊕ ODDE
ω (�y) where b is a

polynomial-time computable bit. Let M ′(w) be a Turing machine which computes fH(∅, w) using
s(n) parallel queries to E. We will also use the mind-change technique to compute M ′(w). Let
QE(w) be the set of queries asked by M ′(w). Let ZE(w) = QE(w) ∩ E. We define fE(Z,w) and
gE(m,w) analogously. That is, for Z ⊆ QE(w), fE(Z,w) = 1 if M ′(w) outputs 1 when its queries
to E are answered according to Z and gE(m,w) is true when

101 (∃Z0, . . . , Zm)[Z0 = ∅ ∧ (∀1 ≤ i ≤ m)[(Zi−1 � Zi ⊆ ZE(w)) ∧ (fE(Zi−1, w) �= fE(Zi, w))]].

102 In this case, fE(Z,w) can be computed in polynomial time without using any oracle queries because
we only have to simulate the original machine M on input w assuming all of the queries to H are
answered NO and all of the queries to E are answered according to Z.

103 Let the maximum number of mind changes made by M ′(w) be denoted by

104 µ′ = max{m : gE(m,w) ∧ (0 ≤ m ≤ s(n)) }.

105 As before, given any sequence of sets Z0, . . . , Zµ′ , where ∅ = Z0 � Z1 � · · · � Zµ′ ⊆ ZE(w),
which achieves the maximum number of mind changes, fE(Zµ′ , w) must be equal to fE(ZE(w), w)
(otherwise, the maximality of µ′ is violated). Then, as before, M ′(w) = fE(∅, w) if and only if
µ′ is even. Since E is ΣP

j -complete, we can construct a nested sequence �y = 〈y1, . . . , ys(n)〉 such
that yi ∈ E ⇐⇒ gE(i, w) is true. Furthermore, let the bit b = fE(∅, w) which is polynomial-time
computable. Then,

106 fH(∅, w) = b⊕ODDE
ω (�y). (2)

107 Combining (1) and (2) produces the desired result. ✷

108 Given the values 〈b, �y, �x〉 output by the function h of Lemma 12, a PHr(n)-tt‖Es(n)-tt machine can
compute ODDH

ω (�x) and ODD
E
ω (�y) by asking the r(n) queries to H and s(n) queries to E in parallel

directly. Thus, PHr(n)-tt;Es(n)-tt ⊆ PHr(n)-tt‖Es(n)-tt . Since PHr(n)-tt‖Es(n)-tt is trivially contained in
PEs(n)-tt;Hr(n)-tt and in PHr(n)-tt;Es(n)-tt , the next theorem follows.
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109 Theorem 13 For k > j, let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively. Then, for all

polynomial-time computable and polynomial bounded r(n) and s(n),

110 PEs(n)-tt;Hr(n)-tt = PHr(n)-tt‖Es(n)-tt = PHr(n)-tt;Es(n)-tt .

111 In the proof of Theorem 13, we could have computed the value of fH(∅, w) in Lemma 12 directly
using s(n) parallel queries to E instead of resorting to mind changes. (We will need the stronger
conditions of Lemma 12 later.) Hence, we have the following extensions:

112 Theorem 14

113 1. Let H and E be languages such that E≤P
mH, E≤P

mH and ≤NP
m (H) = ≤P

conj(H) = ≤P
m(H).

Then, for all polynomial-time computable and polynomial bounded r(n) and s(n),

114 PEs(n)-tt;Hr(n)-tt = PHr(n)-tt‖Es(n)-tt = PHr(n)-tt;Es(n)-tt .

115 2. Let H and E be languages such that E≤P
mH, E≤P

mH, H×H ≤P
mH and H×H ≤P

mH. Then,
for all constants r ≥ 0 and s ≥ 0,

116 PEs-tt;Hr-tt = PHr-tt‖Es-tt = PHr-tt;Es-tt .

117 Corollary 11 showed that for language classes, asking the easy questions first is equivalent to
asking the hard questions first. In fact, this observation generalizes to several rounds of parallel
queries to the oracles H and E. Again, there is an equivalent machine that asks all the queries to
H before the queries to E. Thus, for example, for polynomially bounded a(n), b(n), c(n) and d(n)

118 PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt ⊆ PHa(n)-tt;Hc(n)-tt;Eb(n)-tt;Ed(n)-tt .

119 We can use a result of Beigel [Bei91, Theorem 4.9] to combine consecutive rounds of parallel queries
to the same oracle into a single round. Thus,

120 PHa(n)-tt;Hc(n)-tt;Eb(n)-tt;Ed(n)-tt ⊆ PHr(n)-tt;Es(n)-tt ,

121 where r(n) = (a(n) + 1)(c(n) + 1) − 1 and s(n) = (b(n) + 1)(d(n) + 1) − 1. Furthermore, by
Theorem 13,

122 PHr(n)-tt;Es(n)-tt = PEs(n)-tt;Hr(n)-tt = PHr(n)-tt‖Es(n)-tt .

123 In the next theorem, we show that PHr(n)-tt;Es(n)-tt ⊆ PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt . Therefore,
the following five classes are all equal:

PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt = PHa(n)-tt;Hc(n)-tt;Eb(n)-tt;Ed(n)-tt

= PHr(n)-tt;Es(n)-tt = PEs(n)-tt;Hr(n)-tt = PHr(n)-tt‖Es(n)-tt .

124 Theorem 15 Let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively, where k > j. Further-

more, let r(n) = (a(n)+ 1)(c(n) + 1)− 1 and s(n) = (b(n)+ 1)(d(n) + 1)− 1 where a(n), b(n), c(n)
and d(n) are polynomial bounded. Then,

125 PHr(n)-tt;Es(n)-tt ⊆ PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt .
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126 Proof: Let L be any language in PHr(n)-tt;Es(n)-tt and let h be the function given by Lemma 12.
For a fixed string w, |w| = n, let h(w) = 〈b, �y, �x〉. Using Lemma 12, it suffices to show that
for �x = 〈x1, . . . , xr(n)〉 and �y = 〈y1, . . . , ys(n)〉, ODDH

ω (�x) and ODD
E
ω (�y) can be computed by a

PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt machine. We show how ODDH
ω (�x) can be computed in two rounds

of parallel queries to H.2 Since H is ΣP
k -complete, we can construct qi such that qi ∈ H if and only

if #H
ω (�x) ≥ i(c(n)+1). The first round of queries is 〈q1, . . . , qa(n)〉. Let z be the index of the largest

qi ∈ H. If none of the qi are in H, let z = 0. Then, after the first round, we know that

128 z(c(n) + 1) ≤ #H
ω (�x) < (z + 1)(c(n) + 1).

129 Thus, we have restricted #H
ω (�x) to c(n) + 1 values. In the second round of queries to H, we

construct c(n) queries p1, . . . , pc(n) such that pi ∈ H if and only if #H
ω (�x) ≥ z(c(n) + 1) + i. The

answers to this second round of queries will determine the exact value of #H
ω (�x) which is sufficient

to determine ODDH
ω (�x). The value of ODD

E
ω (�y) can be determined using an analogous procedure.

Thus, PHr(n)-tt;Es(n)-tt ⊆ PHa(n)-tt;Eb(n)-tt;Hc(n)-tt;Ed(n)-tt . ✷

4 Hierarchy Theorems for Language Classes

130 In the previous section, we showed that the complexity of the language classes defined by machines
with access to the oracles H and E is characterized by the number of queries and not by the order
of the queries. In this section, we will show that the PHr(n)-tt‖Es(n)-tt classes form a nice linear
hierarchy where additional queries to E are nested inside the additional queries to H:

131 PHr(n)-tt ⊆ PHr(n)-tt‖E1-tt ⊆ PHr(n)-tt‖E2-tt ⊆ · · · ⊆ PH(r(n) + 1)-tt .

132 Theorem 16 For k > j, let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively. Then, for all

polynomial bounded r(n) and s(n), PHr(n)-tt‖Es(n)-tt ⊆ PH(r(n) + 1)-tt .

133 Proof: Corollary 11 and Theorem 13 show that under this lemma’s hypotheses:

134 PEs(n)-tt;Hr(n)-tt = PHr(n)-tt;Es(n)-tt = PHr(n)-tt‖Es(n)-tt .

135 Let L be a language in PHr(n)-tt;Es(n)-tt . For a fixed input string w, let h(w) = 〈b, �y, �x〉 be as
described in Lemma 12 such that

136 L(w) = b⊕ODDE
ω (�y)⊕ODDH

ω (�x).

137 Since �x has r(n) components, ODDH
ω (�x) can be determined using r(n) parallel queries to H.

Furthermore, since H is ΣP
k complete and E ∈ ΣP

j , ODD
E
ω (�y) can be determined using a single

query to H. Thus, PHr(n)-tt‖Es(n)-tt ⊆ PH(r(n) + 1)-tt . ✷

138 Finally, we prove in the following theorem that even when two oracles are used, each additional
query adds additional computational power unless PH collapses. The proof of the theorem uses
a hard/easy argument over the exclusive-or operator [BCO93]. We give this proof separately in
Lemma 18.

127 2Note that we are not computing the function ODDHω in two rounds of parallel queries to H . We are computing
ODDHω (�x) where �x is a bound variable (not a formal parameter) and has a predefined dimension r(n).
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139 Theorem 17 For k > j, let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively. Then, for all

0 < ε < 1 and for all r(n) and s(n) in O(nε),

140 PHr(n)-tt‖Es(n)-tt = PHr(n)-tt‖E(s(n) + 1)-tt =⇒ PH collapses.

141 Proof: First, we define a language L as follows. For a fixed length n, let r = r(n), s = s(n),
s′ = s(n) + 1, m = n/(r + s′). Let the set V = {0, 1}m×s′ , the vectors with s′ components where
each component has length m, and let U = {0, 1}m×r . Without loss of generality we assume that
for each pair (�v, �u) ∈ V ×U , the length of (�v, �u) is exactly n. The strings of length n in L are pairs
(�v, �u) ∈ V × U such that (�v, �u) ∈ BLEω �BLHω .

142 Since �v has s′ = s(n)+1 components and �u has r = r(n) components, the language L can be rec-
ognized by a PHr-tt‖Es′-tt machine. By hypothesis, PHr-tt‖Es′-tt ⊆ PHr-tt‖Es-tt , so L ∈ PHr-tt‖Es-tt .
Now, let h be the function specified in Lemma 12 such that for each (�v, �u) ∈ V ×U , h(�v, �u) = 〈b, �y, �x〉
and

143 (�v, �u) ∈ BLEω �BLHω ⇐⇒ b⊕ODDE
ω (�y)⊕ODDH

ω (�x) = 1.

144 We construct a new polynomial-time computable function f from h as follows. On input (�v, �u),
f first computes h(�v, �u) = 〈b, �y, �x〉. Let yin and yout be two fixed strings such that yin ∈ E and
yout �∈ E. If b = 0, then f outputs (�y ′, �x) where �y ′ = 〈yin , �y 〉. Otherwise, b = 1 and f outputs
(�y ′, �x) where �y ′ = 〈�y, yout 〉. Then,

145 (�v, �u) ∈ BLEω �BLHω ⇐⇒ EVENE
ω (�y

′)⊕ODDH
ω (�x) = 1.

146 Since �x and �y ′ are nested sequences, we have also established that

147 (�v, �u) ∈ BLEω �BLHω ⇐⇒ f(�v, �u) = (�y ′, �x) ∈ coBLE
ω �BLHω .

148 Thus, f is a dimension-preserving reduction from BLEω �BLHω to coBLE
ω �BLHω in the sense that

the vectors output by f have the same number of components as the input vectors. This is enough
for us to collapse PH using the hard/easy argument, as we show in the following lemma. ✷

149 Lemma 18 For k > j, let H and E be ≤P
m -complete for Σ

P
k and ΣP

j respectively. Let f be a
polynomial-time computable dimension-preserving function. Suppose that there exists polynomial-
time computable polynomial-bounded functions r̃(m) and s̃(m) such that for all lengths m, for all
�v = 〈v1, . . . , vs̃(m)〉 ∈ {0, 1}m×s̃(m) and �u = 〈u1, . . . , ur̃(m)〉 ∈ {0, 1}m×r̃(m),

150 (�v, �u) ∈ BLEω �BLHω ⇐⇒ f(�v, �u) ∈ coBLE
ω �BLHω .

151 Then, H ∈ ΣP
k /poly and PH ⊆ ΣP

k+2.

152 Proof: At the end of this proof, we will show that for each length m, we either have a ΣP
k machine

that recognizes H =m or a ΣP
j machine that recognizes E

=m. The sizes and running times of these
machines will be bounded by a single polynomial in m. Without loss of generality we assume that
all strings in E and H with length less than m can be padded to length exactly m.

153 In the second case, where we have a ΣP
j machine for E, we use a standard oracle replacement

argument to show that ΣP
k+1 = (ΣP

k+1−j)
E ⊆ ΣP

k . Since H ∈ ΣP
k+1, we also get a Σ

P
k machine for

H. However, this ΣP
k machine would recognize H for strings of shorter length, because the length

of the oracle queries to E can be stretched by a polynomial factor. Nevertheless, we can choose
m ≥ n to be long enough, but still bounded by a polynomial in n, so that in either case (whether

11



we have a ΣP
k machine for H

=n or a ΣP
j machine for E

=n) we have a ΣP
k machine that recognizes

H
=n.

154 For now, let us fix a length m. To simplify our notation, let r = r̃(m) and s = s̃(m). Let
V = {0, 1}m×s and U = {0, 1}m×r . That is, the sets V and U consist of all the vectors with s
and r components respectively where each component has length m. For a pair (�v, �u) ∈ V × U , if
n = |(�v, �u)|, then s = s̃(m) = s(n) and r = r̃(m) = r(n) for the functions s(n) and r(n) defined in
Theorem 17.

155 Recall that f is a dimension-preserving function means that the outputs of f have the same
dimensions as the inputs. Thus, for all (�v, �u) ∈ V ×U , f(�v, �u) = (�y, �x) where �y and �x have s and r
components respectively such that

156 (�v, �u) ∈ BLEω �BLHω ⇐⇒ (�y, �x) ∈ coBLE
ω �BLHω .

157 We now give the formal definition of a hard sequence, which is central to the hard/easy argu-
ment. In this definition, for a sequence �z = 〈z1, . . . , zt〉, we use �z R to denote the reversal of the
sequence 〈zt, . . . , z1〉. We say that �z is a hard sequence for length m if �z is the empty sequence or
if all of the following conditions hold.

158 Hard Sequence

159 1. 1 ≤ t ≤ r + s− 1.

160 2. 〈z1, . . . , zt−1〉 is a hard sequence for length m.

161 3. For 1 ≤ i ≤ t, |zi| = m.

162 4. For 1 ≤ i ≤ min(r, t), zi ∈ H.

163 5. If t > r, then for r + 1 ≤ i ≤ t, zi ∈ E.

164 6. If t ≤ r, let 6 = r − t. For all �v ∈ V and for all 〈u1, . . . , u�〉 ∈ {0, 1}m×�, let

165 f(�v, 〈u1, . . . , u�, �z R〉) = (�y, 〈x1, . . . , xr〉).

166 Then,(�v, �y) ∈ BLEω � coBLE
ω =⇒ x�+1 ∈ H.

167 7. If t > r, let 6 = r + s− t. For all 〈v1, . . . , v�〉 ∈ {0, 1}m×�, let

168 f(〈v1, . . . , v�, zt, . . . , zr+1〉, 〈zr, . . . , z1〉) = (〈y1, . . . , ys〉, �x).

169 Then, y�+1 ∈ E.

170 Given a hard sequence �z = 〈z1, . . . , zt〉, we refer to t as the order of the hard sequence. Further-
more, we say that a hard sequence �z is a maximal hard sequence if for all w ∈ {0, 1}m, 〈z1, . . . , zt, w〉
is not a hard sequence. Since the empty sequence is a hard sequence by definition, a maximal hard
sequence exists for every length m. Also, any tuple with more than r + s − 1 components cannot
be a hard sequence. Thus, every hard sequence with order r + s− 1 is a maximal hard sequence.

171 We now argue that a maximal hard sequence will allow us to either recognize H
=m with a

ΣP
k machine or E

=m with a ΣP
j machine (depending on the order of the maximal hard sequence).

Suppose that �z = 〈z1, . . . , zt〉 is a maximal hard sequence where t < r. We claim that the following
is a ΣP

k procedure for H
=m.

12



172 Procedure EasyH

173 1. Input: w ∈ {0, 1}m.

174 2. Nondeterministically guess �v ∈ V and 〈u1, . . . , u�−1〉 ∈ {0, 1}m×(�−1) , where 6 = r − t.

175 3. Compute f(�v, 〈u1, . . . , u�−1, w, zt, . . . , z1〉) = (�y, 〈x1, . . . , xr〉).

176 4. If (�v, �y) �∈ BLEω � coBLE
ω , reject

177 5. Accept if x� ∈ H.

178 This procedure is computable by a ΣP
k machine because a ΣP

k machine can recognize BLEω
deterministically using parallel queries to a ΣP

k−1 oracle. Suppose that w ∈ H and Procedure
EasyH does not accept. Then, 〈z1, . . . , zt, w〉 would satisfy the definition of a hard sequence, which
violates the maximality of �z. It remains to show that if Procedure EasyH accepts, then w is really
in H. First, since �z is a hard sequence, each zi ∈ H and each xi ∈ H for 6+ 1 ≤ i ≤ r. Since the
procedure accepted, x� ∈ H and (�v, �y) ∈ BLEω � coBLE

ω . Suppose that 6 is odd. Then �x ∈ BLHω
since 6 is the largest index of the xi ∈ H. Furthermore, since f is a reduction from BLE

ω �BLH
ω to

coBLE
ω �BLHω , we have

179 (�v, 〈u1, . . . , u�−1, w, zt, . . . , z1〉) ∈ BLEω �BLHω ⇐⇒ (�y, �x) ∈ coBLE
ω �BLHω .

180 Therefore, 〈u1, . . . , u�−1, w, zt, . . . , z1〉 �∈ BLHω . Thus, w ∈ H (otherwise the largest index of the
components in H would be odd). The reasoning for even 6 is analogous.

181 Next, suppose that �z = 〈z1, . . . , zt〉 is a maximal hard sequence and t ≥ r. Then we claim that
the following is a ΣP

j procedure for E
=m.

182 Procedure EasyE

183 1. Input: w ∈ {0, 1}m.

184 2. Nondeterministically guess 〈v1, . . . , v�−1〉 ∈ {0, 1}m×(�−1), where 6 = r + s− t.

185 3. Compute f(〈v1, . . . , v�−1, w, zt, . . . , zr+1〉, 〈zr, . . . , z1〉) = (〈y1, . . . , ys〉, �x).

186 4. Accept if y� ∈ E.

187 This procedure is clearly computable by a ΣP
j machine. As before, if w ∈ E and the procedure

rejects, then 〈z1, . . . , zt, w〉 would constitute a hard sequence and violate the maximality of �z. Since
�z is a hard sequence, �z ′ = 〈z1, . . . , zr〉 is also a hard sequence. By the definition of a hard sequence,
for all �v ∈ V , if f(�v, �z ′ R) = (〈y1, . . . , ys〉, 〈x1, . . . , xr〉), then for all i, 1 ≤ i ≤ r,

188 (�v, �y) ∈ BLEω � coBLE
ω =⇒ xi ∈ H.

189 Now, suppose (�v, �y) is indeed in BLEω � coBLE
ω . Then, �x = 〈x1, . . . , xr〉 �∈ BLHω . Since zi ∈ H for

1 ≤ i ≤ r, it is also the case that �z ′ R �∈ BLHω . However, (�v, �y) ∈ BLEω � coBLE
ω , �x �∈ BLHω and

�z ′ R �∈ BLHω implies that either

190 (�v, �z ′) ∈ BLEω �BLH
ω and (�y, �x) �∈ coBLE

ω �BLHω

191 or

192 (�v, �z ′) �∈ BLEω �BLH
ω and (�y, �x) ∈ coBLE

ω �BLHω .
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193 This contradicts the properties of f in the statement of this lemma. Thus, it must be the case that
(�v, �y) �∈ BLE

ω � coBLE
ω , or in other words,

194 �v ∈ BLEω ⇐⇒ �y ∈ coBLE
ω .

195 In particular, this is true when �v = 〈v1, . . . , v�−1, w, zt, . . . , zr+1〉.
196 Suppose that Procedure EasyE accepts the input string w. Then y� ∈ E. Since �z is a hard

sequence, we also know that yi ∈ E for 6+ 1 ≤ i ≤ s. If 6 is odd, then y� implies that �y �∈ coBLE
ω .

Thus, 〈v1, . . . , v�−1, w, zt, . . . , zr+1〉 �∈ BLEω . Again, since �z is a hard sequence, zi �∈ E for t ≥ i ≥
r + 1. Therefore, w �∈ E. (Otherwise, 〈v1, . . . , v�−1, w, zt, . . . , zr+1〉 would be in BLE

ω , because the
index of the largest component in E would be odd.) The argument for 6 even is analogous.

197 Finally, we point out that we have for each length m either a ΣP
k machine that recognizes strings

in H
=m or a ΣP

j machine that recognizes strings in E
=m. A polynomial length advice function

can store a maximal hard sequence for each length m which is needed by the two machines. As
argued at the beginning of this proof, if m is long enough, then we have H ∈ ΣP

k /poly. Therefore,
the Polynomial Hierarchy collapses to ΣP

k+2 by Yap’s Theorem [Yap83]. ✷

198 Corollary 19 For k > j, let H and E be ≤P
m -complete for Σ

P
k and ΣP

j respectively. Assuming
that PH does not collapse, for all 0 < ε < 1 and for all r(n) and s(n) in O(nε), we have the strict
containments:

199 PHr(n)-tt‖Es(n)-tt � PHr(n)-tt‖E(s(n) + 1)-tt � PH(r(n) + 1)-tt .

5 Function classes

200 In this section we show that for functions computed by polynomial-time Turing machines with
access to two oracles, the order of the queries is critical. Theorem 10 showed that if the easy
questions are asked first, then there is an equivalent machine that asks the hard questions and the
easy questions in parallel. The main theorem in this section states that the converse does not hold
unless the Polynomial Hierarchy collapses.

201 Theorem 20 For k > j ≥ 1, let H and E be ≤P
m -complete for Σ

P
k and Σ

P
j respectively. Then, for

all polynomial-time computable functions r(n) and s(n), where r(n) ≤ ε log n for some ε < 1 and
s(n) ∈ O(log n), PFHr(n)-tt;Es(n)-tt �⊆ PFEs(n)-tt;Hr(n)-tt unless PH ⊆ ΣP

j+1.

202 Theorem 20 follows immediately from Lemma 22 which we prove below. To motivate the proof
of this lemma, we first prove a restricted version of Theorem 20 where H is ΣP

2 complete, E is NP
complete and just one query is asked to each oracle.

203 Theorem 21 Let H and E be ≤P
m -complete for ΣP

2 and NP respectively. Then

204 PFH1-tt;E1-tt ⊆ PFE1-tt;H1-tt =⇒ PH ⊆ ΣP
2 .

205 Proof: Consider the function:

206 FirstH(x, y, z) =

{
H(x)E(y) if x �∈ H

H(x)E(z) if x ∈ H

207 Recall that H(·) and E(·) denote the characteristic functions of H and E and that H(x)E(y)
represents the concatenation of H(x) and E(y). The function FirstH(x, y, z) is easily computable
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214 Figure 2: An example of the easy case. Using an E oracle we determine that y �∈ E, z �∈ E and q1 �∈ E. Thus,
Out

E(M(x, y, z)) = {00, 10} and Out
E(M ′(x, y, z)) = {11, 00}. We then conclude that FirstH(x, y, z)

must be 00 and x �∈ H .
215

by a PFH1-tt;E1-tt machine M that asks whether x ∈ H followed by the appropriate query to E.
However, there is no obvious way to compute FirstH in PFE1-tt;H1-tt since it is not clear which of
y ∈ E and z ∈ E to ask.

208 If PFH1-tt;E1-tt ⊆ PFE1-tt;H1-tt , then FirstH ∈ PFE1-tt;H1-tt via some polynomial-time Turing
machine M ′. Consider the branches of the oracle query trees of M and M ′ on input (x, y, z) where
the queries to E are answered correctly. Let Out

E(M(x, y, z)) and Out
E(M ′(x, y, z)) denote the

set of outputs of the machines on these paths. Since the queries to H may be correctly or incorrectly
answered, the sets Out

E(M(x, y, z)) and Out
E(M ′(x, y, z)) have at most two values each. From

our construction of M , we know that

209 Out
E(M(x, y, z)) = { 0E(y), 1E(z) }.

210 Now, suppose that Out
E(M ′(x, y, z)) is not equal to Out

E(M(x, y, z)) (see Figure 2). Since both
M and M ′ compute FirstH, the correct value of FirstH(x, y, z) must appear in both sets. Thus,

211
Out

E(M ′(x, y, z)) �= Out
E(M(x, y, z))

=⇒ Out
E(M ′(x, y, z)) ∩Out

E(M(x, y, z)) = {FirstH(x, y, z)}.

212 By definition, the first bit of FirstH(x, y, z) is H(x). So, if there exists (y, z) such that the sets
Out

E(M ′(x, y, z)) and Out
E(M(x, y, z)) differ, we can determine whether x ∈ H or x ∈ H by

guessing (y, z) and answering queries to E. When such a (y, z) pair exists, we call x an easy string .
Otherwise, no such (y, z) pair exists and we call x a hard string (see Figure 3). For each length n,
we will consider two cases. Either all of the strings of length n are easy or there exists a hard string
for length n. Combining the two cases will allow us to collapse PH. The simplest way to combine
the two cases is to use an advice function to provide a hard string, if one exists. This will collapse
PH to the ΣP

4 level. A more sophisticated approach will bring PH down to the ΣP
2 level.
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217 Figure 3: An example of the hard case. When x is a hard string, for all choices of y and z,
Out

E(M(x, y, z)) = Out
E(M ′(x, y, z)). In this example, for this choice of y and z, we used an E ora-

cle to determine that y �∈ E, z ∈ E and q1 �∈ E. Thus, Out
E(M(x, y, z)) = Out

E(M ′(x, y, z)) = {00, 11}.
218

219 Formally, the two cases are (for polynomial bounded 6(n) specified later):

220 Case 1: (All strings of length n are easy.)

221 (∀x, |x| = n)(∃y, z, |y| = |z| = 6(n))[Out
E(M(x, y, z)) �= Out

E(M ′(x, y, z))].

222 Case 2: (There exists a hard string for length n.)

223 (∃x, |x| = n)(∀y, z, |y| = |z| = 6(n))[Out
E(M(x, y, z)) = Out

E(M ′(x, y, z))].

224 For each n, we can provide an NPE machine with 1 bit of advice stating whether Case 1 or
Case 2 holds for strings of length n. If Case 1 holds, then the NPE machine can determine whether
x ∈ H by guessing (y, z) and checking whether Out

E(M(x, y, z)) �= Out
E(M ′(x, y, z)). When the

“correct” (y, z) is guessed, the set,

225 Out
E(M(x, y, z)) ∩Out

E(M ′(x, y, z))

226 contains one string ab where a = H(x). Thus, when all strings are easy, there exist NPE machines
which can recognize H=n and H

=n.
227 If there exists a hard string for length n, then the advice function also provides a hard string

x. Note that Out
E(M ′(x, y, z)) can be computed using only 1 query to E. However, in Case 2 we

have

228 Out
E(M ′(x, y, z)) = Out

E(M(x, y, z)) = { 0E(y), 1E(z) }.

229 Thus, a P machine with the advice and 1 query to E can compute χE
2 — that is, χE

2 is 2-enumerable.
Using standard tree pruning techniques [ABG90, BKS95, Ogi95, AA96], we can show that E can
be solved in P with advice. (A detailed discussion of the tree pruning procedure follows this proof.)

230 So, for each length n, given polynomial advice, we either have an NPE machine that recognizes
H=n (Case 1) or a P machine that recognizes E=n (Case 2). Furthermore, the sizes and the
running times of these machines are bounded by a single polynomial in n. Thus, as in Lemma 18,
we can combine the two cases to get ΠP

2 ⊆ ΣP
2 /poly which collapses PH to ΣP

4 using Yap’s theorem

16



[Yap83]. We can improve upon the collapse of PH in two ways. First, we can modify the definitions
of Case 1 and 2 to get a PE

tt machine for H
=n in Case 1 and a P machine for E=n in Case 2. This

method uses the techniques of Amir, Beigel and Gasarch [ABG90] to construct a better polynomial
advice function. This improvement would collapse PH to ΣP

3 . The second method uses the latest
refinements of the hard/easy argument [HHH99, BF99] to show that PH actually collapses to ΣP

2 .
One key difference in the new approach is that we do not have to look for a hard string x; we simply
guess whether the input string is a hard string. We sketch the proof of the second method next.

231 We construct an NPNP machine N to recognize H as follows. First, we rewrite H as

232 H = {x : (∃Pu)(∀Pv)[R(x, u, v)] }

233 for some polynomial-time computable predicate R. On input x, the computation of N is divided
into two parallel strategies. The first strategy presupposes that x is an easy string. In this first
strategy, N guesses (y, z) ∈ {0, 1}�(n) × {0, 1}�(n) and checks whether Out

E(M(x, y, z)) differs
from Out

E(M ′(x, y, z)) using its NP oracle. Note that when the correct pair (y, z) is found, the
machine N can prove that x is an easy string. Let ab be the single string in Out

E(M(x, y, z)) ∩
Out

E(M ′(x, y, z)). Then, x ∈ H if and only if a = 0. If no such (y, z) pair exists, then all
computation paths following the first strategy will reject.

234 The second strategy presupposes that the input string x is a hard string. In this case, N asks
its NP oracle whether (∀Pu)(∃Pv)[¬R(x, u, v)]. Normally, an NP oracle cannot answer this ΠP

2

question. However, using x as a hard string, we can use Procedure Prune (Figure 4) to find the
witness v such that ¬R(x, u, v) is true (for any fixed u).3 Let, N ′ be an NP machine which guesses
u and looks for the witness v deterministically using the tree pruning procedure. This procedure
requires an algorithm to 2-enumerate χE

2 for strings up to a certain polynomial length 6(n). This
6(n) is the bound used in the formal definitions of Case 1 and Case 2. If such a witness v is found,
then N ′ rejects. If Procedure Prune terminates without producing a witness, then N ′ accepts. So,
if N ′(x) rejects on all paths, x ∈ H. Hence, in the second strategy, the base machine N will simply
ask the NP oracle whether N ′(x) rejects. Note that in the second strategy, the base machine N will
accept only if the search for witnesses succeeds for all u. Thus, acceptance by the second strategy
is correct even if it turns out that x is not a hard string. Combining the two strategies, we have
an NPNP algorithm for H. Therefore, PH collapses to ΣP

2 . ✷

236 The proofs of Theorem 21 and Lemma 22 use a tree pruning technique to search for wit-
nesses. This tree pruning technique was discovered independently by Beigel, Kummer and Stephan
[BKS95], by Ogihara [Ogi95] and by Agrawal and Arvind [AA96]. This technique was used to show
that if a language A is d-self-reducible and is a bd-cylinder, then either A ∈ P or A is p-superterse.
Here a language A is called a bd-cylinder if there exists a polynomial-time computable binary OR
function f such that for all x and y

237 x ∈ A ∨ y ∈ A ⇐⇒ f(x, y) ∈ A.

238 In our applications we need to consider the unbounded analog of a bd-cylinder. We call a set A a
d-cylinder4 if there exists a polynomial-time computable any-ary OR function f such that for all
sequences 〈x1, . . . , xt〉

240 #A
ω (x1, . . . , xt) ≥ 1 ⇐⇒ f(x1, . . . , xt) ∈ A.

235 3Other tree pruning procedures, such as those by Amir, Beigel and Gasarch [ABG90] or Hoene and Nickelsen
[HN93] would also work in this restricted case.

239 4Alternative terminology in the literature refer to such sets A as sets that have ORω [CK95, AA96].
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241 We will use this tree pruning algorithm in several situation, so we describe it now in general
terms. The requirements and parameters for using Procedure Prune (Figure 4) are:

242 1. An input string w of length n.

243 2. A language B formulated as B = {w : (∃u ∈ {0, 1}b(|w|))[P (w, u)]} where b(n) is a polynomial
in n and P (w, u) is some predicate, not necessarily computable in polynomial time.

244 If w ∈ B and P (w, u) holds, then we say that u is a witness for w ∈ B. The objective of the
tree pruning is to find such a witness if it exists. From B we define an auxiliary language B′

to be the set of witness prefixes. (Clearly, w ∈ B if and only if (w, ε) ∈ B′.)

245 B′ = {(w, u) : (∃v ∈ {0, 1}*)[|uv| = b(|w|) ∧ P (w, uv)]}.

246 3. A language A that is a d-cylinder via an any-ary OR function f .

247 The language B′ must reduce to A via a ≤P
m -reduction h.

248 4. A polynomial-time computable function t(n) ∈ O(log n).

249 From t(n) we define a related polynomial-time computable function 6(n) ∈ nO(1) as follows.
For a single instance w of B, with |w| = n, we need to consider 2t(n)−1 instances of B′ each of
length up to n+ b(n). Each instance of B′ is then reduced to A using the reduction h. This
generates 2t(n)−1 instances of A which is combined into one instance of A using the any-ary
OR function f . Then 6(n) is defined to be a bound on the length of this output from f .

250 5. A pruning function g : {0, 1}�(n)×t(n) → {0, 1}t(n) such that

251 ∀x1, . . . , xt(n) ∈ {0, 1}�(n), g(x1, . . . , xt(n)) �= χA
ω (x1, . . . , xt(n)).

252 The pruning function g is not necessarily computable in polynomial time.

272 The general strategy in Procedure Prune is a fairly standard tree pruning strategy. The pro-
cedure maintains a list Q of potential witness prefixes. In each iteration of the main loop, each
prefix is extended by appending a 0 and a 1 to the prefix. This doubles the number of prefixes in
Q. The list Q is then pruned down to 2t(n) − 1 elements. The entire procedure terminates when
the prefixes in Q have reached full length and cannot be further extended.

273 We claim that if w ∈ B, then Procedure Prune finds a witness for w ∈ B. The main observation
is that if w ∈ B, then at every step of the procedure, Q contains some (w, u) where u is the
prefix of a witness — i.e., (w, u) ∈ B′. This is certainly true at the beginning of the procedure,
since in Step 2 we add every prefix of length t(n) to Q. Suppose that during some iteration
of Step 4, the pair (w, uz) removed from Q is the only pair in Q ∩ B′. Then, yz ∈ A and for
1 ≤ i ≤ 2t(n), i �= z =⇒ yi �∈ A. In that case, χA

ω (x1, . . . , xt(n)) is in fact equal to σz. (Here
{σ1, . . . , σ2t(n)} = {0, 1}t(n) and σi[d] denotes the d-th bit of σi.) This violates our assumptions
about g. Thus, w ∈ B implies that Q∩B′ is never empty throughout the execution of the procedure.
Obviously, if w �∈ B, then the procedure does not produce any witnesses. Also, note that since
|Dd| = 2t(n)−1, we can also guarantee that each xd has length bounded by 6(n).

274 Procedure Prune takes a polynomial number of iterations, since p(n) is bounded by a polynomial
and |Q| never exceeds 2t(n)+1. However, the complexity of the entire procedure also depends on
the complexity of deciding P (w, u) and on the complexity of g. In the proof below, we will use
Procedure Prune in two different settings, each with a different complexity.
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253 Procedure Prune

254 1. Input: w with |w| = n

255 W.l.o.g. assume that b(n) ≥ t(n).

256 2. Q = {(w, u) : u ∈ {0, 1}t(n)}.
257 Initialize Q to be all witness prefixes of length t(n).

258 3. If for each (w, u) ∈ Q, |u| = b(n), then output the first (w, u) ∈ Q such that P (w, u) holds.
Terminate the procedure.

259 When |u| = b(n), then the prefix u cannot be further extended.

260 4. Repeat until |Q| = 2t(n) − 1:

261 (a) let (w, u1), . . . , (w, u2t(n) ) be the first 2t(n) elements in Q.

262 (b) for 1 ≤ i ≤ 2t(n), let yi = h(w, ui). Recall that h reduces B′ to A.

263 (c) for 1 ≤ d ≤ t(n), let Dd = {yi : σi[d] = 1}.
264 Here {σ1, . . . , σ2t(n)} = {0, 1}t(n) and σi[d] denotes the d-th bit of σi.

265 (d) for 1 ≤ d ≤ t(n), use the any-ary OR function f to construct xd such that

266 xd ∈ A ⇐⇒ A ∩Dd �= ∅.

267 (e) let z be the index such that σz = g(x1, . . . , xt(n)). Remove (w, uz) from Q.
268 The proof in the text shows that uz cannot be the unique witness prefix in Q.

269 5. Replace each (w, u) ∈ Q with (w, u0) and (w, u1). Goto Step 3.

270 Extend each prefix by one bit. This doubles the size of Q.

Figure 4: Tree-pruning procedure used in Theorem 21 and Lemma 22.
271

275 Lemma 22 For k > j ≥ 1, let H and E be ≤P
m -complete for Σ

P
k and ΣP

j respectively. Suppose
that r(n) and s(n) are polynomial-time computable functions such that r(n) ≤ ε log n for some
ε < 1 and s(n) ∈ O(log n). Then, for all oracles X,

276 PFHr(n)-tt;Es(n)-tt ⊆ PFEs(n)-tt;Xr(n)-tt =⇒ PH ⊆ ΣP
j+1.

277 Proof: This proof is similar to the proof of Theorem 21. As before, in the easy case we have
Out

E(M(· · ·)) �= Out
E(M ′(· · ·)) and in the hard case we have Out

E(M(· · ·)) = Out
E(M ′(· · ·)).

There are two differences between this proof and the proof of Theorem 21. First, in the proof
of Theorem 21, k is coincidentally equal to j + 1. In this proof, instead of showing that H ∈
NPE , we prove that a ΠP

j+1 complete language L is contained in NPE . The second difference
is that in the easy case of Theorem 21, Out

E(M(x, y, z)) ∩ Out
E(M ′(x, y, z)) contains exactly

one string. This allowed us to determine whether x ∈ H immediately. In the easy case of this
proof, Out

E(M(· · ·)) ∩ Out
E(M ′(· · ·)) may contain more than one string. Nevertheless we can

still determine whether w ∈ L using Procedure Prune to find a witness for w ∈ L.
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278 Consider the function FirstH(�x, �y0, . . . , �yq(n)) = σχE
ω (yσ) where σ = χH

ω (�x) and q(n) = 2r(n)−1.
Here �x is a sequence with r(n) components and each �yi is a sequence with s(n) components. Each
component of �x and �yσ has length m = n/(r(n)+s(n)2r(n)) so that |(�x, �y0, . . . , �yq(n))| = n. W.l.o.g.
we assume that there exist polynomial-time computable functions r̃(m) and s̃(m) such that for
n = mr̃(m)+ms̃(m)2r̃(m), r̃(m) = r(n) and s̃(m) = s(n). (This is possible because r(n) ≤ ε log n.)
This allows us to express the number of components in �x and �yσ in terms of the length of each
component rather than the length of (�x, �y0, . . . , �yq(n)). Since r(n) and s(n) are in O(log n), r̃(m)
and s̃(m) are also in O(log n).

279 Clearly, FirstH(�x, �y0, . . . , �yq(n)) can be computed by a PFHr(n)-tt;Es(n)-tt machine M which
uses r(n) parallel queries to H to compute σ = χH

ω (�x) and then uses s(n) parallel queries to E to
compute χE

ω (�yσ). Now, suppose that there exists a PF
Es(n)-tt;Xr(n)-tt machine M ′ which computes

FirstH. Then, we claim that there exists an NPE machine which recognizes L, a ΠP
j+1 complete

language.
280 We construct an NPE machine which uses Procedure Prune to look for witnesses for w ∈ L,

where |w| = n. Since L ∈ ΠP
j+1, L can be written as:

281 L = {w : (∃Pu)(∀Pv)R(w, u, v) },
282 where R(w, u, v) is a ∆P

j−1 computable predicate. Here, L will take the place of the language B
in Procedure Prune described above and H will take the place of the language A. During the
execution of Procedure Prune, we will encounter many instances of �x = 〈x1, . . . , xt(n)〉 produced in
Step 4(c). Here, each xi has length ≤ 6(n). We may assume by padding that each xi has length
exactly m = max{6(n), 6′(n)} for a polynomial-bounded 6′(n) specified later. Then we can set
t(n) = r̃(m). To satisfy the requirements of Procedure Prune, we must also provide a function g
such that g(�x) �= χH

ω (�x). This is accomplished by an NP
E procedure described next.

283 Let q̃(m) = 2r̃(m) − 1. For each pair of vectors (�x, �y), where �x = 〈x1, . . . , xr̃(m)〉 ∈ {0, 1}m×r̃(m)

and �y = 〈�y0, . . . , �yq̃(m)〉 ∈ {0, 1}m×s̃(m)×q̃(m), let Out
E(M(�x, �y)) be the set of outputs of M(�x, �y)

on branches of the oracle query tree where the queries to E are answered correctly. The set
Out

E(M ′(�x, �y)) is defined analogously. From the description of the machine M , we know that

284 Out
E(M(�x, �y)) = {σχE

ω (�yσ) : σ ∈ {0, 1}r̃(m) }.
285 We call �x easy if for some �y, Out

E(M(�x, �y)) �= Out
E(M ′(�x, �y)). In this case, for at least one string

σ ∈ {0, 1}r̃(m), σχE
ω (�yσ) �∈ Out

E(M ′(�x, �y)). Then, we can eliminate the string σ as a possible value
for χH

ω (�x). Thus, we have an NP
E algorithm which given �x as input, produces σ ∈ {0, 1}r̃(m) such

that σ �= χH
ω (�x): guess �y, use the E oracle to compute Out

E(M(�x, �y)) and Out
E(M ′(�x, �y)), then

find σ such that σχE
ω (�yσ) �∈ Out

E(M ′(�x, �y)). This algorithm computes the function g required in
Procedure Prune. The entire tree pruning procedure can be accomplished by an NPE computation
because deciding the predicate (∀Pv)R(w, u, v) can be done with the E oracle.

286 Now, suppose that all the instances of �x encountered during this execution of Procedure Prune
are indeed easy. When the procedure terminates in Step 2, if no witnesses for w ∈ L were found,
the NPE algorithm for L accepts. On the other hand, suppose that one of the �x is a hard string,
then every computation branch of the NPE computation for L will reject. This is because no
computation branch managed to guess �y such that

287 Out
E(M(�x, �y)) �= Out

E(M ′(�x, �y)).

288 To guard against the possibility that �x is a hard string, every time a new instance of �x is
generated in Step 4(c), we start a new tree pruning procedure which assumes that �x is a hard
string. Recall that if �x ∈ {0, 1}m×r̃(m) is a hard string, then

289 ∀�y = 〈�y0, . . . , �yq̃(m)〉 ∈ {0, 1}m×s̃(m)×q̃(m),Out
E(M(�x, �y)) = Out

E(M ′(�x, �y)).
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290 Observe that given Out
E(M(�x, �y)), we can recover χE

ω (�yσ) for 0 ≤ σ ≤ q̃(m), since σχE
ω (�yσ) is

the unique string in Out
E(M(�x, �y)) with prefix σ. In order to use Procedure Prune, we need to

produce a function g that, for any �z ∈ {0, 1}m×t(n) , outputs a value in {0, 1}t(n) that is not χE
ω (�z).

Note that t(n) must be in O(log n) whereas �y has s̃(m)2r̃(m) components. In our procedure for
g, we fill most of �y with dummy strings. Let t(n) = s̃(m) + 1, then t(n) ∈ O(log n). On input
�z = 〈z1, . . . , zt(n)〉 ∈ {0, 1}m×t(n) , our procedure for g constructs �y = 〈0m, . . . , 0m, z1, . . . , zt(n)〉
where the 0m components are repeated s̃(m)2r̃(m) − t(n) times.

291 Then, the output of g(�z) can be computed as follows. We simulate M ′(�x, �y) where �x is the
possible hard string and �y is defined as above with �z embedded. Recall thatM ′ is a PFEs(n)-tt;Xr(n)-tt

computation and queries the E oracle first. For now, fix a sequence ξ ∈ {0, 1}s̃(m) of possible
responses from the E oracle. We simulate M ′(�x, �y) using ξ as the response from E and consider the
2r̃(m) possible computation paths that follow. Each of these computation paths assumes a different
response from the X oracle. At the end of each path, M ′(�x, �y) should output a value of the form
σα where σ ∈ {0, 1}r̃(m) and α ∈ {0, 1}s̃(m). Let Out

ξ(M ′(�x, �y)) be the set of these 2r̃(m) outputs.
Each σ should appear exactly once as a prefix of a string in Out

ξ(M ′(�x, �y)). If not, then we know
that either ξ is not the correct response from E or that �x is not a hard string, since Out

E(M ′(�x, �y))
must equal Out

E(M(�x, �y)) if �x is a hard string. In any case we can move on to the next value for
ξ. Now suppose that σ does appear exactly once in Out

ξ(M ′(�x, �y)). Then, for each string σα in
Out

ξ(M ′(�x, �y)), α is a possible value for χE
ω (�yσ). By concatenating the α’s in the correct order, we

obtain a possible value for χE
ω (�y). Thus, for each ξ ∈ {0, 1}s̃(m) we have a possible value for χE

ω (�y).
Since one of the ξ is actually the correct response from E, one of these possible values is in fact
χE
ω (�y). Next, for each candidate for χE

ω (�y), we consider the last t(n) bits as a candidate for χE
ω (�z).

(The leading bits corresponds to the dummy components 0m.) Again, one of these candidates is
in fact χE

ω (�z). Thus, we have 2
t(n)−1-enumerated χE

ω (�z) for any �z ∈ {0, 1}m×t(n). Finally, since
2t(n) > 2t(n)−1, we can use any string in {0, 1}t(n) that is not one of the candidates for χE

ω (�z) as
the output for g(�z). Note that the entire procedure for g(�z) did not use any oracle queries to E or
to X. Therefore, assuming that �x is really a hard string, we have a deterministic polynomial time
algorithm for the function g. This satisfies the requirements of Procedure Prune.

292 So, we can again use Procedure Prune. This time we use the tree pruning procedure to find a
witness for (w, u) ∈ L2 where

293 L2 = { (w, u) : (∃Pv)¬R(w, u, v) }.

294 Here, R(w, u, v) is the same predicate used in the definition of the ΣP
j+1-complete language L.

Clearly, w ∈ L if and only if for all u, (w, u) ∈ L2. In this execution of Procedure Prune, L2 takes
the place of the language B and E takes the place of the language A. We know that B′≤P

mA
because R(w, u, v) is a ∆P

j−1 predicate and E is complete for ΣP
j . Also, in this case, t(n) = s̃(m)+1

and the function g is computed as described above. Finally, since R(w, u, v) is a ∆P
j−1 predicate,

the entire tree pruning procedure for L2 can be executed by a ∆P
j−1 machine.

295 Let N be a ΣP
j machine which on input w, guesses u and uses the ∆

P
j−1 tree pruning procedure

described above to find a witness v for (w, u) ∈ L2. If such a witness is found, N rejects. If the tree
pruning procedure terminates without producing a witness, then N accepts. Thus, if N(w) rejects
on all paths, a witness for (w, u) ∈ L2 was found for every u. Our NPE algorithm for L is simply to
ask E whether N(w) accepts. If the answer is no, then the NPE algorithm accepts. Furthermore,
let 6′(n) denote the length of the longest component of the sequences given to the function g in
this execution of Procedure Prune. Since m = max{6(n), 6′(n)}, this guarantees that a single hard
string �x is enough for all the tree pruning procedures invoked by N .
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296 Finally, suppose that �x is not a hard string and our NPE procedure accepted. Then, we claim
that w is nevertheless in L. To see this, simply note that the NPE algorithm will accept only when
a witness v is found for every u. The validity of this witness was checked in the ∆P

j−1 tree pruning
procedure by evaluating R(w, u, v) directly. Thus, even when �x is not a hard string, it is possible
that the NPE algorithm is lucky and accepts correctly. However, this algorithm will never accept
incorrectly.

297 Therefore, in both the easy case and the hard case, the tree pruning procedures have one-sided
error — the strategies might reject incorrectly, but never accept incorrectly. That is, either all the
�x are easy strings and the top level tree pruning succeeds, or some �x is a hard string and the second
tree pruning procedure succeeds. In either case, the overall procedure accepts x when x ∈ L and
rejects on all branches when x �∈ L. Thus, ΠP

j+1 ⊆ NPE and PH collapses to ΣP
j+1. ✷

298 The proof of Theorem 20 can be extended to the case where more than two rounds of queries
are made. For example, we can modify the proof to show that for polynomial-time computable
r(n), s(n) and t(n), such that r(n) + s(n) ≤ ε log n (for some ε < 1) and p(n) ∈ O(log n)

299 PFHr(n)-tt;Hs(n)-tt;Ep(n)-tt ⊆ PFHr(n)-tt;Ep(n)-tt;Hs(n)-tt =⇒ PH ⊆ NPE.

300 In the modified proof, the two sets Out
E(M(�x, �y)) and Out

E(M ′(�x, �y)) would be defined as
before. If the two sets are not equal, then χH

ω on inputs from {0, 1}m×(r̃(m)+s̃(m)) is (2r̃(m)+s̃(m)−1)-
enumerable. If the two sets are equal, then χE

ω is 2
p̃(m)-enumerable on inputs from {0, 1}m×(p̃(m)+1).

Combining the two tree pruning procedures produces an NPE algorithm for a coNPE language.
We leave the details of this proof to the reader.

301 It is interesting to note that in the proof of Theorem 20, the complexity of the language H is
not used very much. The only requirement that we have for H is that it is hard for coNPE. In fact,
even when E is NP complete and H is ΣP

17 complete, we only use the fact that all Π
P
2 languages

reduce to H. The same holds for H being PSPACE complete.
302 However, when the internal complexity of H is very high, that is, when H is bi-immune for

NPE , then we can exploit the complexity of H itself to obtain a stronger collapse:

303 Theorem 23 Let E be ≤P
m -complete for Σ

P
j where j ≥ 1 and let H be a set bi-immune to NPE .

Then, for all oracles X,

304 PFH1-tt;E1-tt ⊆ PFE1-tt;X1-tt =⇒ P = NP.

305 Proof Sketch: Suppose that PFH1-tt;E1-tt ⊆ PFE1-tt;X1-tt . Let FirstH(x, y, z) be the function we
defined in Theorem 21. As before, FirstH(x, y, z) is easily computable by a PFH1-tt;E1-tt machine
M . Now, suppose that there exists a PFE1-tt;X1-tt machineM ′ which also computes FirstH(x, y, z).
Then, we define Out

E(M(x, y, z)), Out
E(M ′(x, y, z)) as we did in Theorem 21. As before, we say

a string x is easy if Out
E(M(x, y, z)) �= Out

E(M ′(x, y, z)) for some y, z ∈ {0, 1}�(n).
306 Now, suppose there are infinitely many easy strings. Then, one of the following two NPE

algorithms must be infinite:

307 Algorithm 1:

308 On input x, guess y, z ∈ {0, 1}�(n). If Out
E(M(x, y, z)) = Out

E(M ′(x, y, z)), reject. Oth-
erwise, Out

E(M(x, y, z)) ∩Out
E(M ′(x, y, z)) contains a single two-bit string. Accept if the

first bit of that string is 1.
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309 Algorithm 2:

310 On input x, guess y, z ∈ {0, 1}�(n). If Out
E(M(x, y, z)) = Out

E(M ′(x, y, z)), reject. Oth-
erwise, Out

E(M(x, y, z)) ∩Out
E(M ′(x, y, z)) contains a single two-bit string. Accept if the

first bit of that string is 0.

311 Then, we would have an infinite subset of H or H which contradicts the bi-immunity of H. Thus,
all strings with length greater than some n0 must be hard. Therefore, for y, z with length greater
than 6(n0), χE

2 (y, z) is 2-enumerable. Since we can encode E ≤�(n0) in a finite table, χE
2 (y, z) is

2-enumerable for all lengths. Finally, since j ≥ 1 and E is ΣP
j -complete, we have SAT≤P

mE. Thus,
χSAT
2 is also 2-enumerable and we have P = NP [Bei91] (or we can use Procedure Prune directly).

✷

6 Open Problems

312 In this paper, we have combined several proof techniques from bounded query complexity — namely
mind changes, tree pruning and the hard/easy argument. These techniques do have their limita-
tions, however. For example, the hard/easy argument was used to show that for all f(n) ∈ O(nε)
for some ε < 1, PSATf(n)-tt = PSAT(f(n) + 1)-tt implies that PH collapses [Kad88, Wag88]. This
hard/easy argument does not generalize to f(n) = O(n) or higher. For essentially the same rea-
sons, we are not able to generalize Theorem 17 for r(n) and s(n) beyond O(nε) and Theorem 20
for r(n) beyond ε log n. Improvements to these theorems, we believe, would require significant ad-
vances in the state of the art of these proof techniques. As of this writing, we are not aware of any
oracle relativizations where the relativized versions of PSAT(n+ 1)-tt and PSATn-tt are equal but the
relativized PH has infinitely many distinct levels. Such an oracle might exist (e.g., by combining
the results of Yao [Yao85] and of Cai et al. [CGH+88]). However, the implication of its existence
on the limits of the hard/easy argument is unclear.
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