
Utility-based Uploading Strategy in Cloud Scenarios

Ziqi Wan, Jie Wu and Huanyang Zheng
Department of Computer and Information Sciences, Temple University, USA

Email: {ziqi.wan, jiewu, huanyang.zheng}@temple.edu

Abstract—There is a great potential to boost the performance
of mobile devices by offloading computation-intensive parts of
mobile applications to the cloud. However, this potential is
hindered by a gap between how individual mobile devices demand
computational resources and how cloud providers offer them:
offloading requests from a mobile device usually require a quick
response, which may be infrequent, and is subject to variable
network connectivity, whereas cloud resources incur relatively
long setup times, are leased for long time quanta, and are
indifferent to network connectivity. In this paper, we present the
design of utility-based uploads sharing strategy in cloud scenarios,
which bridges the above gap through providing computation
offloading as a service to mobile devices. Our scheme efficiently
manages cloud resources for offloading requests to improve
offloading performances of mobile devices, as well as to reduce
the monetary cost per request of the provider. We also schedule
offloading requests to resolve the contention problem for cloud
resources. The proposed scheme makes offloading decisions with
a controlled risk to overcome the uncertainties caused by variable
network connectivity and program execution. Simulation results
show that the proposed scheme can reduce the costs of cloud
resources and enable mobile computation speedup for mobile
devices.

Keywords—Computation, connectivity, mobile devices, offload-
ing, resource management.

I. INTRODUCTION

The idea of offloading computation from mobile devices
to remote computational resources to improve performance
and reduce energy consumption has been addressed over the
past decade. The usefulness of computation offloading hinges
on the ability to achieve high computation speedups with
small communication delays. In recent years, this idea has
received more attention due to the significant rise of mobile
applications, the availability of powerful clouds, and the im-
proved connectivity options for mobile devices. By identifying
the offloadable tasks at runtime, recent work has aimed to
generalize this approach to benefit more mobile applications.

Despite great potential, a key challenge in computation
offloading lies in the mismatch between how individual mo-
bile devices demand and access computational resources and
how cloud providers offer them. Offloading requests from a
mobile device require quick responses which may be infre-
quent. Therefore, the ideal computational resources suitable
for computation offloading should be immediately available
upon request and should be quickly released after execution. In
contrast, cloud computational resources have long setup times
and are leased for long time quanta. For example, it takes about
27 seconds to start an Amazon EC2 VM instance. The time
quantum for leasing an EC2 VM instance is one hour. If an
instance is used for less than an hour, the user must still pay
for one-hour usage. This mismatch can thus hamper offloading
performance and incur high monetary cost.

Another challenge for cloud providers is reducing data
center costs while guaranteeing the promised Service Level
Agreement (SLA) [1] to cloud consumers. Current virtualiza-
tion technology offers the ability to easily relocate a virtual
machine from one host to another without shutting it down,
thus giving the opportunity to dynamically optimize the place-
ment with a small impact on performance. The problem of
cost reduction becomes even more complex when considering
a relationship between the processing speed of a job and the
number of processing machines. Indeed, in cloud computing,
the speedup pattern is not simply linear. CPU, memory and
I/O resources will all influence the job processing speed. It
becomes more challenging when a large number of jobs are
competing for these resources. We need to monitor the utility
decay speed and waiting benefit for sharing. The longer the
time one waits, the higher the time cost, but the probability
of sharing VM with more users is also higher. In this case,
our main focus is balancing the time cost and sharing benefit.
It is clear that only considering time cost or machine rent
cost is not good enough. The utility of the MapReduce jobs,
which combines both job makespan and type of machine, has
not been carefully studied. As shown in Fig. 1, due to the
complexity of the speedup patterns of the real cloud clusters,
the scheduling policies should either adapt to the changing
pattern or be more robust.

In this paper, we propose a strategy for users to share
the cloud services to boost their performance by speeding
up their process while minimizing their rent cost from the
cloud machines. A system that bridges the above-discussed
gaps by providing computation offloading as a service provide
an intermediate service between a commercial cloud provider
and mobile devices can make the properties of underlying
computing and communication resources transparent to mobile
devices and can reorganize these resources in a cost-effective
manner to satisfy offloading demands from mobile devices.
An uploading management system receives mobile user com-
putation offload demands and allocates them to a shared set
of compute resources that it dynamically acquires (through
leases) from a commercial cloud service provider. The goal of
this system is to provide the benefit of computation offloading
to mobile devices while, at the same time, minimizing the
leasing cost of computational resources.

Our main contributions are summarized as follows:

• We introduce a utility model, which combine both
time cost and machine rent price cost.

• Multiple efficient algorithms are proposed to max-
imize the utility gains in the cloud settings. The
optimality prerequisite is explored. The performances
of the proposed algorithms are analytically studied.



Fig. 1. Utility model.

• Extensive experiments are conducted to evaluate the
proposed solutions. The results are shown from dif-
ferent perspectives to provide insightful conclusions.

We start by formulating an optimization problem whose
solution can guide the required decision making in Section 2.
In Section 3, we develop a set of novel techniques, includ-
ing resource-management mechanisms that select resources
suitable for computation offloading and adaptively maintain
computational resources according to offloading requests. In
Section 4, we propose several greedy algorithms that properly
allocate offloading tasks to the cloud resources with limited
control overhead. The results in Section 5 shows good evidence
that our algorithm works well in practice. In Section 6, we list
recent related works of others. Section 7 concludes the paper
and discusses possible future work.

II. BACKGROUND AND PROBLEM STATEMENT

A. Background

Cloud computation resources are usually provided in the
form of virtual machine (VM) instances. To use a VM instance,
a user installs an OS on the VM and starts it up, both
incurring delay. VM instances are leased based on a time
quanta. Amazon EC2 uses a one-hour lease granularity. If a
VM instance is used for less than the time quanta, the user still
needs to pay for that usage. A cloud provider typically provides
various types of VM instances with different properties and
prices. We provide some properties and prices for three types
of Amazon EC2 VM instances: Standard On-Demand Small
instance (m1.small), Standard On-Demand Medium instance
(m1.medium) and High-CPU On-Demand Medium instance
(c1.medium). For some pricing models (e.g., EC2 spot), the
leasing price may change over time. Note that the server
component of offloaded mobile computation needs to run on a
VM instance. This server component needs to be launched
at the time the offloading request is made, and terminated
when the required computation is complete. The lifetime of
the server component is typically much less than the lease
quantum used by the cloud service provider. An important
question we consider in our system design is how to ensure
that there is enough VM capacity available to handle the
mobile computation load without needing to always launch
VM instances on-demand and incur a long setup time.

B. Problem Statement

A basic computation-offloading system is composed of a
client component running on the mobile device and a server
component running in the cloud. The client component has

Fig. 2. A waiting buffer.

three major functions. First, it monitors and predicts the
network performance of the mobile device; Second, it tracks
and predicts the execution requirements of mobile applications
in terms of input/output data requirements and execution time
on both the mobile device and the cloud; Third, using this
information the client component chooses some portions of
the computation to execute in the cloud so that the total
execution time is minimized. The server component executes
these offloaded portions immediately after receiving them and
returns the results back to the client component so that the
application can be resumed on the mobile device. Computation
offloading trades off communication cost for computation gain.
Previous systems usually assume stable network connectivity
and adequate cloud computation resources. However, in mobile
environments a mobile device may experience varying or
even intermittent connectivity, while cloud resources may be
temporarily unavailable or occupied. Thus, the communication
cost may be higher, while the computation gain will be
lower. Moreover, the network and execution prediction may
be inaccurate, causing system performance degradations.

Our basic idea is manipulating a waiting queue between
mobile device users and cloud server to achieve good of-
floading performance at low monetary cost by sharing cloud
resources among users, as shown in Fig. 2. Specifically, the
goal is to minimize the usage cost of cloud resources under the
constraint that the speedup of using cloud service against local
execution. The problem of offloading can be further divided
into the following two subproblems:

• Cloud resource management: This is the problem of
determining the number and type of VM instances to
lease over time. It has two major goals. First, there
should always be enough VM instances to ensure high
offloading speedup. Second, the cost of leasing VM
instances should be minimized.

• Offloading decision: This is the problem of deciding
whether a mobile device offloads a computation task.
The challenge comes from the uncertainties of net-
work connectivity, program execution, and resource
contention. A wrong offloading decision will both
waste cloud resources and result in lower speedup. It
is very important to properly handle the uncertainties.

III. MODEL DESCRIPTION

A. Offloading Gain and Risk

When an offloadable task, Ok, is initiated at time tk, the
offloading controller needs to determine if it is beneficial to
offload this task to the cloud. Let us use Tws to denote the



time to wait for connectivity before sending the data, Ts for
the time to send the data, Tc for the execution time of the
task in the cloud, Twr for the time to wait for connectivity
before receiving the result, and Tr for the time to receive the
result. The local execution time is L(Ok), which is estimated
by the execution predictor. The response time of offloading to
an active Server, R(Ok), can be expressed as: R(Ok) = Tws+
Ts +Tc +Twr +Tr. It is beneficial to offload only if the local
execution time is longer than the response time of offloading.
Therefore, we use their difference to represent the offloading
gain: G = L(Ok)−R(Ok). Because of the uncertainties in the
mobile environment, the offloading controller can only obtain a
distribution for G (i.e., E(G)). Simply using E(G) to make the
offloading decision will introduce the risk of longer execution
time.

Our risk-controlled offloading is based on two key ideas.
First, we use risk-adjusted return in making the offloading
decision so that the return and risk of offloading are simultane-
ously considered. Specifically, E(G) and σ(G) are used as the
return and risk of the offloading gain, respectively. Thus, the
risk-adjusted return of offloading gain is E(G)−σ(G). When
its value is larger than a certain threshold, the computation
task will be offloaded to the cloud. Otherwise, it will be
locally executed. Second, we re-evaluate the return and risk
when new information is available. When a computation task
is initiated, the offloading controller evaluates its return and
risk of offloading gain. The detailed algorithms to compute
them are described in the appendix. If the risk-adjusted return
(i.e., E(G), σ(G) ) is larger than a threshold, the offloading
controller offloads the task to the cloud. In addition, it also
listens to the connectivity status which has a high impact
on E(G) and σ(G). Once new connectivity information is
updated, it re-evaluates the risk-adjusted return and adjusts its
decision accordingly.

B. Utility-based Offloading Model

We extend the utility-based model from economics to cloud
computing; we assume A is the award of completing a request,
R is the service price, C is the utility decay based on time cost.
We first define U = A − R − C as the utility of a job. We
assume the rent cost is equally shared by each job in the cloud
at a certain time period. Let nt be the number of jobs in the
cloud at time t. Thus the highest possible rent cost at time t is
Rt = α/nt. α is the total rent cost of the cloud service during a
certain time period. The number of jobs in a certain time period
starting with t0 can only increase as the number of jobs keep
growing, then we have nts = nt0 +∆nt1 +∆nt2 + ...+∆ntf .
ts is the job start time, ∆nti is the number of newly added
jobs on time slot ti.

1) Linear time Model: We first assume the utility decays
linearly with time. Then C = β(tf − ta), β is the unit time
decay, ta is the job arrival time, and tf is the finishing time
of a job request.

Ut = A− α/nts − β(tf − ta) (1)

Note that the job start time ts is not necessary to be the job
request arrival time. Therefore, there is a tradeoff between rent
cost and time decay. For example, when a job request has been
generated, it can choose to wait for more jobs coming to lower
the rent cost or to get into the cloud as soon as possible to

minimize the time decay. It would be more complicated, if a
deadline or a service level agreement is concerned. To make
it simple, we cut the time line into discrete time slots. It is
also practical, as the cloud service takes job requests in each
time slot to avoid large communication overhead. Assume the
utility gains of a job starting at time slot i and time slot j
(j > i) are Ui and Uj . The time length of a slot is ∆t.

Ui − Uj = −α(1/ni − 1/nj)− β(ti − tj)
= α(1/nj − 1/ni) + β∆t(j − i)
= −α(∆ni+1 + ...+ ∆nj)/njni + β∆t(j − i)

(2)

Let Y = ∆ni+1 + ∆ni+2 + ...+ ∆nj , the above equation can
be simplified as Ui − Uj = −αY/(ni + Y )ni + β∆t(j − i).
We further assume the average growth of jobs in the cloud is
∆n. Thus, Y = (j− i)∆n and Ui−Uj = (β∆t−α∆n/(ni+
Y )ni)(j− i). Now, we can see that if β∆t−α∆n/(ni+Y )ni
greater than 0, the utility gain at time slot i is greater than the
utility gain at time slot j. Especially, when j = i+ 1, we can
have Ui − Ui+1 = (β∆t− α∆n/(ni + ∆n)ni). So it is only
based on the number of jobs ni in the cloud at ti. Further, we
consider the choice of local process.

C. Offloading Decision

Complicating this issue is the fact that mobile devices
access cloud resources over wireless networks which have
variable performance and/or high service cost. For example,
3G networks have relatively low bandwidth, causing long com-
munication delays for computation offloading. On the other
hand, although WiFi networks have high bandwidth and are
free to use in many cases, their coverage is limited, resulting
in intermittent connectivity to the cloud and highly variable
access quality even when connectivity exists. Therefore, the
decision of maintaining the length of request queue, as shown
in Fig. 3, is very important.

Assume the local processing speed is sl, and the cloud
processing speed is sc. Then the acceleration of the cloud is
ac = sc/sl. Adopt the utility function above. The local process
has the utility of Ult = A − β(tf − ta). It does not have the
shard rent cost of cloud. However, it is still possible that the
local process has a higher utility cost. Here we assume that the
workload of a job w is the same for cloud process and local
process. Then the utility of local process is Ult = A−βw/sl,
and the utility of cloud process is Uct = A−α/nts−β(w/sc+
ts−ta). Uct−Ult = β(w/sc−w/sl+ts−ta)+α/nts . It should
be noted that there are many time cost models. However, the
common thing among most of the time models is that the
longer the time makespan is, the higher the cost.

Since jobi may not be the first job to start, we define
the start time of jobi as tstarti , so the processing time of of
jobi is wi/s(mi). The relationship between the workload and
the processing speed is wi =

∫ ti
tstart
i

S(mi(t))dt. However,
the number of machines cannot be changed in the Hadoop
configuration. The finishing time of jobi can be transferred
as follows. The above is discussed under the assumption that
cloud service is powerful enough. So there is not congestion
in the cloud when the number of applications are huge. The
key idea in deciding whether to wait for a cheap price or to
start early to save money the decreasing speed of R and time
decay; what’s more, cloud processing should generate more



Fig. 3. Decide the number of requests in the queue.

utility gain than the local processing, otherwise we should
adopt local process which is cheap and steady.

D. Offloading Decision under Monotonic Arrival

The offloading controller uses the information from the
connectivity and execution predictors to estimate the potential
benefits of the offloading service. Ideally, if future connectivity
and execution times can be accurately predicted immediately
after the mobile application starts, the offloading controller can
make the global optimal offloading decision.

However, such global optimum is unavailable in reality. A
good estimation will help a lot. Instead, the offloading con-
troller uses a greedy strategy to make the offloading decision.
A Markov chain (discrete-time Markov chain or DTMC) is
a mathematical system that undergoes transitions from one
state to another on a state space. It is a random process
usually characterized as memoryless: the next state depends
only on the current state and not on the sequence of events that
preceded it. This specific kind of “memorylessness” is called
the Markov property. Markov chains have many applications
as statistical models of real-world processes.

A Markov chain is a sequence of random variables X1, X2,
X3, ... with the Markov property, namely that, given the present
state, the future and past states are independent. Formally,
Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) =
Pr(Xn+1 = x | Xn = xn), if both conditional probabilities
are well defined, i.e. if Pr(X1 = x1, ..., Xn = xn) > 0. The
possible values of Xi form a countable set S called the state
space of the chain. Markov chains are often described by a
sequence of directed graphs, where the edges of graph n are
labeled by the probabilities of going from one state at time n to
the other states at time n+1, Pr(Xn+1 = x | Xn = xn). The
same information is represented by the transition matrix from
time n to time n+ 1. However, Markov chains are frequently
assumed to be time-homogeneous (see variations below), in
which case the graph and matrix are independent of n and so
are not presented as sequences.

These descriptions highlight the structure of the Markov
chain that is independent of the initial distribution Pr(X1 =
x1). When time-homogenous, the chain can be interpreted
as a state machine assigning a probability of hopping from
each vertex or state to an adjacent one. The probability
Pr(Xn = x|X1 = x1) of the machine’s state can be analyzed
as the statistical behavior of the machine with an element x1
of the state space as input, or as the behavior of the machine
with the initial distribution Pr(X1 = y) = [x1 = y] of states
as input, where [P ] is the Iverson bracket. The stipulation that
not all sequences of states must have a nonzero probability of

Fig. 4. Dominance Scheduling and Shared Scheduling.

occurring allows the graph to have multiple connected compo-
nents, suppressing edges encoding a zero transition probability,
as if a has a nonzero probability of going to b but a and x lie in
different connected components, then Pr(Xn+1 = b|Xn = a)
is defined, while Pr(Xn+1 = b|X1 = x, ...,Xn = a) is not.

It would be more complicated if the decay function is more
not linear. Another common decay function is the discounted
time decay. In the discounted time decay model, the utility can
be presented as U = (A−R)βt = (A− α/nts)β(tf−ts).

Theorem 1. In a finite horizon monotone stopping rule prob-
lem, the one-stage look-ahead rule is optimal.

Proof: Suppose the horizon is J . One optimal rule is

N∗ = min(n ≥ 0 : Yn ≥ E(V Jn+1|Fn)) (3)

where V JJ+1 =∞, V JJ = YJ , and by backward induction

V Jn = max(Yn, E(V Jn+1|Fn)), n = 0, 1, ..., J − 1 (4)

YJ−1 ≥ E(VJ |FJ−1) = E(V JJ |FJ−1);

YJ−2 ≥ E(VJ−1|FJ−2) = E(V JJ−1|FJ−2);

...

Yn ≥ E(Vn+1|Fn) = E(V Jn+1|FN )

(5)

Thus, we can conclude that the one-stage look-ahead rule is
optimal, in a finite horizon monotone stopping rule problem.

E. Offloading Decision under Random Arrival

In mathematics, the theory of optimal stopping is con-
cerned with the problem of choosing a time to take a particular
action, in order to maximize an expected reward or minimize
an expected cost. Optimal stopping problems can be found
in areas of statistics, economics, and mathematical finance
(related to the pricing of American options). A key example
of an optimal stopping problem is the secretary problem.
Optimal stopping problems can often be written in the form
of a Bellman equation, and are therefore often solved using
dynamic programming.

The secretary problem is one of many names for a famous
problem of the optimal stopping theory. The problem has
been studied extensively in the fields of applied probability,
statistics, and decision theory. It is also known as the marriage
problem, the sultan’s dowry problem, the fussy suitor problem,
the googol game, and the best choice problem. The basic form
of the problem is the following: imagine an administrator is
willing to hire the best secretary out of n rankable applicants



Algorithm 1 TimeFirst
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Compute tavgd and pd for the dominance scheduling policy;
2: Compute tavgs and ps for the shared scheduling policy;
3: if tavgd = tavgs then
4: if pd = ps then
5: Apply tie-breaking rules to find a better policy;
6: else
7: The policy with the lower p is better;
8: else
9: The policy with the lower t is better;

10: Schedule jobs according to the better policy.

for a position. The applicants are interviewed one by one in
random order. A decision about each particular applicant is
to be made immediately after the interview. Once rejected, an
applicant cannot be recalled. During the interview, the admin-
istrator can rank the applicant among all applicants interviewed
so far, but is unaware of the quality of yet unseen applicants.
The question is about the optimal strategy (stopping rule) to
maximize the probability of selecting the best applicant. If
the decision can be deferred to the end, this can be solved
by the simple maximum selection algorithm of tracking the
running maximum (and who achieved it), and selecting the
overall maximum at the end. The difficulty is that the decision
must be made immediately.

The problem has an elegant solution. The optimal stopping
rule prescribes always rejecting the first n/e applicants after
the interview (where e is the base of the natural logarithm)
and then stopping at the first applicant who is better than
every applicant interviewed so far (or continuing to the last
applicant if this never occurs). Sometimes this strategy is called
the 1/e stopping rule, because the probability of stopping at
the best applicant with this strategy is about 1/e already for
moderate values of n. One reason why the secretary problem
has received so much attention is that the optimal policy for
the problem (the stopping rule) is simple and selects the single
best candidate about 37% of the time, irrespective of whether
there are 100 or 100 million applicants. In fact, for any value
of n, the probability of selecting the best candidate when using
the optimal policy is at least 1/e.

Let Wj denote the probability of winning using an optimal
rule among rules that pass up the first j applicants. Then
WjWj+1, since the rule best among those that pass up the
first j + 1 applicants is available among the rules that pass up
only the first j applicants. It is optimal to stop with a candidate
at stage j if j/nWj . This means that if it is optimal to stop
with a candidate at j, then it is optimal to stop with a candidate
at j+1, since (j+1)/n > j/nWjWj+1. Therefore, an optimal
rule may be found among the rules of the following form, Nr
for some r1: Nr : Reject the first r1 applicants and then accept
the next relatively best applicant, if any. Such a rule is called
a threshold rule with threshold r. The probability of win using
Nr is

Pr =

n∑
k=r

1

n

r − 1

i− 1
=
r − 1

n

n∑
i=1

1

i− 1
(6)

Algorithm 2 PriceF irst
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: Compute tavgd and pd for the dominance scheduling policy;
2: Compute tavgs and ps for the shared scheduling policy;
3: if pd = ps then
4: if tavgd = tavgs then
5: Apply tie-breaking rules to find a better policy;
6: else
7: The policy with the lower t is better;
8: else
9: The policy with the lower p is better;

10: Schedule jobs according to the better policy.

IV. ALGORITHMS

A. Dominance Policy and Shared Policy

The offloading controller uses a greedy strategy to make
the offloading decision. Every time an offloadable task is
initiated, the offloading controller determines if it is beneficial
to offload it. Because of the uncertainties inherent in the
mobile environment, the offloading decision takes risk into
consideration. In case a bad decision has been made, it will
also adjust its strategy with new information available.

There are two main scheduling policies: (1) The dominance
scheduling policy allocates a job with as many slots as possible
to greedily achieve an early finishing time for each job.
(2) The shared scheduling policy allocates as many jobs as
possible on available machines. Here we assume a job can
be executed by the way of parallel speedup. Nowadays, most
cloud service providers use the FIFO scheduler. There are other
advanced schedulers like priority scheduler [2] and small job
first scheduler, which show good performance in minimizing
the average completion time of jobs. These schedulers all use
the dominance scheduling policy allocating a job with as many
slots as possible to greedily achieve an early finishing time for
each job.

Actually, sometimes the shared scheduling is equal to or
better than the dominance scheduling policy, because of the
sublinear speedup. For example, in Fig. 4, there are 2 jobs;
assume the processing time for each task with 4 slots is 2 for
each, and the the processing time for each task with 2 slots
is 3 for each. Then the average completion times of different
policies are equal in this example. But the shared policy has
a lower machine time, and it has a lower utility cost than
the other. In this section, we provide several algorithms trying
to maximize the overall utility. We first consider two special
cases, in which either time cost or rent price is more important
than the other aspect for the utility cost.

B. Time First and Price First

In some cases, users only care about the time, and pay
little attention to the rent price. Therefore, we should minimize
the time cost first, then consider minimizing the machine
rent price. If the processing speed S(m) of m machines is
linearly proportioned to m, then ti = wi

kmi
+ tstarti . This is

because tstarti is the waiting time, and wi

kmi
is the processing

time of jobi. To minimize the overall time cost of all jobs,



Algorithm 3 Group Utility − single size
Input: Workloads of all jobs, total number of machines, and

speedup property of machines;
1: for g from 1 to maximum number of machines M do
2: Set g = bN/Mc as the number of jobs in all groups,

except the last group. The number of jobs in the last
group is glast = N − gbN/Mc;

3: Group all the jobs in their workloads. The jobs with
smaller workloads arranged in the earlier processing
group;

4: Compute total U =
∑

(Bi − Uci) of the all group;
5: Compare and find out the best number of jobs for each

group. Schedule jobs in groups with that number.

we need to consider minimizing the waiting time and the
processing time of each job. We try to maximize the number
of parallel machines for each job to minimize the processing
time for each job. What’s more, for different jobs we should
apply the smallest remaining workload first policy to order the
processing sequence of jobs to minimize the average waiting
time. The fact is that the processing speed of a job is not
always linearly related to the number of machines. Fortunately,
if the processing speed is superlinearly related to the number
of machines, we also want to use the maximum number
of machines for each job and schedule the jobs with small
workloads first. However, this kind of policy may not get the
minimum utility cost when the speedup pattern is sublinear.
Although we try to minimize each job’s completion time, it
might generate a very large overall completion time. Here we
assume w1 ≤ w2 ≤ ... ≤ wn are the workloads of n jobs in
a batch, and n ≤ M . Our policy still follows the idea of the
shortest workload job first rule. We define td1, td2, ..., tdn as
the finishing times of n jobs for the dominance policy. The
average finishing time for the dominance scheduling policy is,

tavgd = (td1 + (td1 + td2) + ...+ (td1 + td2 + ...+ tdn))/n

= (ntd1 + (n− 1)td2 + ...+ tdn)/n

= (nw1 + (n− 1)w2 + ...+ wn)/(nS(M))
(7)

The average finishing time for the shared scheduling policy is

tavgs =
∑

wi/(n× S(
M

n
)) (8)

When a tie-breaking decision is needed, we need to con-
sider the rent machine price as well. And there are some
other tie breaking rules, such as uniform random selection; this
considers the rent cost of machines of the dominance policy.

pd =
M × S(1)×

∑
wi

S(M)
(9)

The rent cost of machines of the shared policy is shown as,

ps =
M × S(1)×

∑
wi

n× S(M/n)
(10)

C. Utility-based Scheduling

The intuition of this policy is to find the proper number of
machines for each job with the maximal utility. Jobs should
follow the order of the smallest workload first policy then
determine the processing sequence. In order to maximize the

utility, we need to minimize the total utility cost Uctotal. For
jobi we assume that the number of machines used does not
changed during the processing, and all M machines are fully
utilized. As we known Uci = pi+b×ti, our objective function
can be written as follows.

Uctotal =

N∑
i

Uci =

N∑
i

(pi + b× ti) (11)

Here, we use the overfitting function of the processing speed
to find the best mi. As S(mi) = k ×mi × αmi−1, the total
cost of jobi is

Uctotal =

n∑
i

(wi(ami + b)/S(mi) + btstarti )

=

n∑
i

(wi(ami + b)/(kmiα
mi−1) + btstarti )

(12)

A naive way is to schedule jobs one by one. Each job
is greedily allocated the optimal number of machines. The
computation complexity is O(N). Here, N is the total number
of jobs. However, this algorithm is actually too bad to use. It
is often the case that one job will use up all the machines
at a time. The waiting time for the following machines will
aggregate. However, the greedy algorithm of scheduling jobs
one by one can be easily extended to the scheduling policy for
a group of jobs to get a better performance with the sacrifice of
time complexity of the algorithm. We assume that the number
of jobs in a group j is gj , and n ≤ M . The total number of
groups is J . It is clear that

∑J
j gj = N .

Here we provide three group utility algorithms. For the
first one, we assume all groups have the same size, which
means all groups contains the same number of jobs. The
complexity of this algorithm is O(MN), which is quite small.
But the restriction of having the same size for each group is
too strong. The second group utility algorithm is the all-sizes
algorithm. In contrast to the single size algorithm, it considers
all the possible group sizes. Although it may get a very good
result, it is very time consuming to enumerate all the possible
combinations of group sizes. The worst time complexity of
this algorithm is O(M !N ). Since both the single size algorithm
and the all-sizes algorithm have some obvious drawbacks, we
provide the greedy size algorithm to make a balance between
performance and time complexity. The idea of the greedy size
algorithm is to greedily determine the number of jobs in each
group. The worst time complexity of this algorithm is O(MN ).

V. EXPERIMENTS

One thing that stands out is that, in general, the more runs
of a job that occur, the faster that job runs. While a job does
not always get better with every run, the general trend is for
jobs to run faster after a few runs. We believe that there are
some likely reasons for this to occur. The first reason that this
may happen is due to the fact that the jobs may already have
their data loaded into memory. Since the jobs have just recently
been run within the cluster, their data still may be present in
RAM. This could mean we could see a substantial increase in
speed.

Another reason this might occur is because the Hadoop
scheduler might be getting used to the job and the data. It is
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Fig. 5. Simulation results of 3 algorithms under hybrid speedup pattern.
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Fig. 6. Trace-based results of 3 algorithms under hybrid speedup pattern.

an adaptive and flexible scheduler. Due to this, the more that
we run the job with the same data, the more it may adapt to
both this data and this job. Unfortunately, determining the exact
cause of this will take more time than what is available for this
paper. Therefore all we are able to do is give our reasoning
as to why this might have occurred. The second thing that
we noticed is that the consistency from run to run seemed
to increase with the number of nodes. Next, we evaluate our
algorithm using real-world access traces [3].

A. Evaluation Results

It is clear that the price first policy has very large time cost
compared to other policies, and the time first policy has the
lowest time cost. The reason is that the price first policy always
use a few machines with minimal cost for every job, so there
are many machines unassigned when the number of jobs are
very small. However, when combining both time and rent cost,
neither the price first policy nor the time first policy are the
best. What’s more, we find that optimal stopping policy share
similar property as price first policy. Thus, we only provide
time first policy in Fig. 5 and Fig. 6.

In Fig. 5(a) and Fig. 6(a), the average finishing time
increase with the increasing number of requests on each
machine. Obviously, more machines will decrease the average
finishing time of a job. But there is a another trend that the
total rent cost increase with more requests added on each

machine as shown in Fig. 5(b) and Fig. 6(b). Obviously,
adding more machines cannot help decreasing the rent cost.
Here we need to balance the rent cost increase and time cost
increase. The overall utility cost is shown in Fig. 5(c) and
Fig. 6(c). Here we use the Word Count application for all
experiments. The data set for Fig. 6 consists of 8 access traces,
each of which is composed of access requests in 2 days. We
use these time stamps of access requests as the start time of
mobile applications on various mobile devices. We evaluate
the performance through simulation. The average number of
requests from the same user is very low in the traces, indicating
extremely high cost of CloneCloud.

subsection Simulation Summary From our experiment, the
proper scheduling policy might avoid using only one machine,
which provides a high cost of time and price. It might also try
to assign each job with the number of machines in the good
speed range (linear or super-linear range). Once the range is
settled, the utility-based policy can be applied. The utility-
based policy is now a batch launch policy; the number of jobs
started in a batch is decided by the proper speed range of
parallel machines and the total number of machines. Then the
utility-based shifting scheduling policy will decide which kind
of scheduling method is good for those jobs in a batch. Then
we test our algorithms by using the results we get from the
real traces. Three algorithms are shown in Fig. 6. As a result,
the utility-based policy is powerful in maximizing the utility



gains of the cloud clusters.

VI. RELATED WORK

A fundamental aspect for cloud providers is reducing
data center costs while guaranteeing the promised Service
Level Agreement (SLA) [1] to cloud consumers. Several
recent works [4][5] addressed the VM assignment problem
by minimizing the average finishing time of jobs assigned to
machines, and several algorithms [6][7] have been proposed
with the objective of maximizing the utilization of the virtual
machines. Closer to our work, MAUI [8] enables mobile appli-
cations to reduce the energy consumption through automated
offloading. Similarly, CloneCloud [9] can minimize either
energy consumption or execution time of mobile applications
by automatically identifying compute-intensive parts of those
applications. ThinkAir [10] enables the offloading of parallel
tasks with server-side support. These systems focus on how
to enable computation offloading for mobile devices. The
challenges of computation offloading with variable connectiv-
ity have been identified in [11]. A system, Serendipity [29],
was designed for computation offloading among intermittently
connected mobile devices. In contrast, COSMOS proposes
techniques to handle the variable connectivity for offloading
to a cloud.

The concept of cyber foraging [12], i.e., dynamically aug-
menting mobile devices with resource-rich infrastructure, was
proposed more than a decade ago. Since then, significant work
has been done to augment the capacity of resource-constrained
mobile devices using computation offloading [13]. A related
technique proposes the use of cloudlets which provide software
instantiated in real-time on nearby computational resources
[14]. Our work is also related to studies on cloud resource
management. This problem is intensively studied in the context
of power saving in data centers [15] [16]. For example, Lu et
al. [15] uses reactive approaches to manage the number of
active servers based on current request rate. Gandhi et al. [16]
investigate policies for dynamic resource management when
the servers have large setup time. COSMOS is different from
these in three major aspects. First, they minimize the cost
of power consumption, whereas COSMOS reduces the cost
of leasing cloud resources. Second, in COSMOS computation
tasks may be offloaded to the cloud or be executed on local
devices, while in data centers services are always provided by
servers. Third, COSMOS also needs to handle variable network
connectivity of mobile devices, unnecessary for data center.

VII. CONCLUSION AND FUTURE WORK

We consider the design and analysis utility-based scheduler
in the cloud environment. Unlike all existing works, we
propose the notion of the utility for the Virtual Machine
management. Next, we investigate the parallel speedup pattern
in the cloud clusters. After that, we propose several scheduling
algorithms based on the idea of the time cost and rent price.
Then we introduce the policy shifting scheduling algorithm,
provided with bounded performance against the optimal one.
Motivated by the previous scheduling policies, we provide
the three utility-based algorithms. All three algorithms are
for batched start group jobs, but each method has its unique
pros and cons. Our experimental results demonstrate that our
algorithms can achieve very good average utility in the given

settings. The model presented here opens the door for an in-
depth study of how to schedule in the presence of phase over-
lapping. There are a wide variety of open questions remaining
with respect to the design of algorithms that minimize response
time.
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