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a b s t r a c t

As a special application of delay tolerant networks (DTNs), efficient data collection in the deep sea poses
some unique challenges, due to the need for timely data reporting and the delay of acoustic transmission
in the ocean. Autonomous underwater vehicles (AUVs) are deployed in the deep sea to surface frequently
to transmit collected data from sensors (in a 2-dimensional or 3-dimensional search space) to the surface
stations. However, additional delay occurs at each resurfacing. In this paper, we want to minimize the
average data reporting delay, through optimizing the number and locations of AUV resurfacing events.
We also study the AUV trajectory planning using an extended Euler circuit, where the search space is
a set of segments (e.g., oil pipes) in the deep sea. To further reduce the data reporting delay, several
schemes, which schedules multiple AUVs cooperatively, are also explored. Finally, experiments in both
the synthetic and real traces validate the efficiency and effectiveness of the proposed algorithms.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

While the sea is the largest habitat on earth, it remains largely
unexplored. The search efforts for the missing Malaysia flight
MH370 demonstrated that it is extremely difficult to conduct an
efficient search process in the deep sea for data collection. In
addition to the vast area of search space, data reporting in the deep
sea also poses a unique challenge that does not occur in regular
land communications. Although several different types of media
canbeusedunder the sea, the acoustic transmission [10,3]was first
used for underwater communications. However, it is well known
that the acoustic transmission suffers from a very significant signal
attenuation. Based on [27], the data rate of the acoustic technique
is usually limited to 10 kbps with the maximum transmission
range up to 100 m. Due to the limited data rate and the limited
transmission range, acoustic techniques are not applicable to big
data transmissions in the deep sea. Therefore, to report data in a
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search effort, autonomous underwater vehicles (AUVs) deployed in
the deep sea are used to surface frequently and transmit collected
data to the surface station. A motivational example could be the
detection of oil pipe leaks through robotic submarines in the Gulf
of Mexico [12].

This paper considers a special scheduling problem aiming to
minimize the average data reporting delay. AUVs are used to search
and collect data in a given 2-dimensional (2-D) search space,which
is parallel to the water surface with a given depth. We also extend
a scenario of a 3-dimensional (3-D) search space, through reducing
it to a 2-D search space. In a given search space, the data reporting
should be done in a timely manner; however, additional delay
occurs at each AUV resurfacing. Fig. 1 shows such a scenario of
data reporting from the deep sea. We consider the search space
to be a set of segments (e.g., oil pipes), which is represented as a
set of weighted edges in a graph. We propose an AUV trajectory
planning using an extended Euler circuit, and then, we determine
the number and locations of resurfacing events on the circuit (or
simply cycle). Specifically, we study the following problems in
sequence. (i) Given the circumference of a cycle of a search space
at a given depth, we determine the number and locations of AUV
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Fig. 1. Data reporting in the deep sea.
resurfacing events. (ii) We study a more general case where the
search space is a collection of edges, called sensing edges. AUVs can
collect the data from the sensing edges. We then determine the
cycles that cover all sensing edges, where some edges may appear
more than once. (iii) Using the geometric property, we replace
some multiple-visited sensing edges with geometrically-shortest-
distance links that are not sensing edges in the graph (called non-
sensing edges), as to shorten the cycle circumference. Note that no
data is collected from the non-sensing edges. We also adjust the
number and locations of AUV resurfacing events for cycles with
non-sensing edges. (iv) Given a search space of multiple cycles, we
study a cooperative AUV trajectory planning, where the cycles are
merged to further reduce the average data reporting delay.

The key difference between our approach and the classic
ferry approaches [37,38] lies in the AUV resurfacing events that
bring an extra delay. If the AUVs resurface frequently, then the
uncollected data needs to wait longer to be reported, which
leads to an increased average data reporting delay. On the other
hand, if the AUVs resurface infrequently, then the collected data
within the AUV needs to wait longer to be reported, which also
leads to an increased average data reporting delay. This tradeoff
poses some unique challenges of combining the design of AUV
resurfacing events and trajectory planning in the deep sea, which
have not been explored in existing works on underwater sensor
networks [1,5,25,24] and corresponding protocols [2,6,7,33,18,8].
We also study AUV surfacing events in cycles with non-sensing
edges, as well as the cooperative AUV trajectory planning.

2. Related work

Recently, underwater sensor networks [1,24,39] have become
a very hot topic. Chandrasekhar et al. [5] surveyed different lo-
calization algorithms that are relevant to underwater sensor net-
works, including range-based and range-free algorithms. They
also explored challenges in meeting the requirements posed by
emerging applications for such networks (e.g. offshore engineer-
ing). Pompili et al. [25] studied the routing algorithms for delay-
insensitive and delay-sensitive applications. An architecture for
three-dimensional underwater sensor networks was considered,
and a model characterizing the acoustic channel utilization effi-
ciency was introduced. This model can adjust the optimal packet
size for underwater communications, given monitored volume,
density of the sensor network, and application requirements. More
detailed surveys on underwater sensor networks were reported
in [2,6]. Routing techniqueswere surveyed, including vector-based
routing, sector-based routing, clustering-based routing, focused
beam routing, reliable and energy balanced routing, multi-sink
opportunistic routing, location-aware source routing, and so on.
The monitoring problem has also been studied in underwater sen-
sor networks. Jawhar et al. [18] proposed an efficient framework
in AUV-extended sensor networks for pipeline monitoring. Linear
sensor networks are used to monitor underwater pipelines. The
data is collected from the sensor nodes, and then, transmitted to a
surface sink using AUVs. This approach has a significantly smaller
sensor transmission range than previous techniques, and can fur-
ther reduce the interference between sensor nodes tomitigate hid-
den terminal and collision problems. Eichhorn et al. [8] designed
a modular AUV system for the automated detection and analysis
of water quality parameters. The AUV carrier platform is called
‘‘CWol’’, which is based on Fraunhofer IOSB-AST with a payload-
sensitive design. The integration of the payload unit in the AUV car-
rier platformwere studied. Compared to previousworks, this paper
uses underwater sensor networks to detect oil pipe leaks. We fo-
cus on AUV resurfacing decisions and the AUV trajectory planning
to collect the data from underwater sensors.

Data collection has been considered as an important problem
in sensor networks. Vasilescu et al. [31] built a sensor network
consisting of static and mobile underwater sensor nodes. The
mobile nodes can locate and hover above the static nodes for
data collection, and they can perform network maintenance
functions such as deployment, relocation, and recovery. Yao
et al. [36] developed one data collection protocol called EDAL,
which stands for Energy-efficient Delay-Aware Lifetime-balancing
data collection. Their design leverages one result from the open
vehicle routing problem to prove the problem hardness. Both
centralized and distributed heuristics are proposed to reduce the
computational overhead and improve the algorithm scalability. Liu
et al. [21] proposed a novel compressive data collection scheme
for wireless sensor networks, by leveraging empirical observations
that sensory data possess strong spatiotemporal compressibility.
Their scheme requires fewer compressed measurements, thus
greatly reduces the energy consumption. It allows simple routing
strategy without much computation and control overheads, which
leads to strong robustness in practical applications. Incel et al. [15]
studied a fundamental problem: how fast can information be
collected from a wireless sensor network organized as tree? They
first considered time scheduling on a single frequency channel
with the aim of minimizing the number of time slots required
(schedule length) to complete a convergecast. Next, they combined
schedulingwith transmission power control tomitigate the effects
of interference, and show that while power control helps in
reducing the schedule length under a single frequency, scheduling
transmissions using multiple frequencies is more efficient.

In sensor networks that are on the ground, message ferries
(or data mules) are also used to collect the data from different
sensors [29]. For example, Zhao et al. [37] designed a set of special
message ferries to carry data for sensors in the network. The main
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idea behind this approach is to introduce non-randomness in the
ferry movement and exploit such non-randomness to deliver data.
As a result, the efficiency of the ferry route (i.e., ferry trajectory
planning) is very important [16]. Sugihara and Gupta [26] focused
on the trajectory scheduling problem for the data mule to achieve
the smallest data delivery latency in the case of minimum energy
consumption at each sensor. Since their problem is NP-hard,
an approximation algorithm was presented and analyzed with
respect to the approximation ratio. Tekdas et al. [28] explored
synergies among mobile robots and wireless sensor networks in
environmental monitoring through a system, in which robotic
data mules collect measurements gathered by sensors. A proof-of-
concept system was implemented to increase the system lifetime
by conserving energy that the sensing nodes otherwise would
use for communications. Klein et al. [19] considered the source
localization using acoustic sensors dispersed over a large area,with
the individual sensors located too far apart for direct connectivity.
An unmanned aerial vehicle was employed for collecting sensor
data, with its route adaptively adjusted based on data from sensors
already visited, in order to minimize the time to localize events of
interest. The key difference between this paper and the traditional
message ferry (or data mule) approach lies in the AUV resurfacing
process that brings an extra delay. While the routes of traditional
message ferries are 2-dimensional [4,23,17,22,34], the routes of
AUVs in this paper are 3-dimensional.

Traditional trajectory planning problems are usually formu-
lated as traveling salesman problems (TSPs) or their extensions.
The objective of the TSP is to find the shortest possible route that
visits each node (sensor) exactly once and returns to the origin. For
example, Moazzez et al. [23] used multiple message ferries to co-
operatively visit sensors. Sensors are divided into several groups,
while each sensor group has a message ferry to collect the data.
Clearly, the trajectory of the message ferry in each sensor group
is a TSP. Ma et al. [22] modeled trajectory planning problems as
TSPs with additional distance and time constraints. A heuristic tra-
jectory planning algorithm was presented for different scenario
constraints. By comparison, this paper considers AUVs to go along
pipes (i.e., edge traversal), which is formulated as an Eulerian cy-
cle problem that finds the shortest possible route to visit each edge
(instead of node) exactly once.

3. Framework and problem formulation

This paper studies the data collection in the deep sea with
delay minimization. Our research is motivated by the detection
of oil pipe leaks through robotic submarines in the Gulf of
Mexico [12]. As shown in Fig. 2(a), we study a search space that
is a set of oil pipes deployed in the seabed. Nodes are sources or
destinations of oil pipes, which are not necessarily linear. Sensors
are densely and uniformly deployed along pipes to detect the
leakages. Another application scenario is the seabed settlement
monitoring [13], where the sensors are deployed to monitor the
seabed environmental change.

Underwater acoustic communications suffer from a significant
signal attenuation. Based on [27], the data rate of the acoustic
technique is usually limited to 10 kbps with the maximum
transmission range up to 100 m. Therefore, AUVs are used to go
along pipes to collect the data from the sensors, and then surface
to report the data. The above data collection and AUV resurfacing
are periodic. Our objective is to collect and report the data with a
minimal average delay. If the AUVs resurface frequently, then the
uncollected data needs to wait longer to be reported, which leads
to an increased average data reporting delay. On the other hand,
if the AUVs resurface infrequently, then the collected data within
the AUV needs to wait longer to be reported, which also leads to
an increased average data reporting delay. For further processing,
the search space is converted to a given graph with a certain depth
in the sea, as shown in Fig. 2(b). The lengths of the pipes are the
edge weights in the given graph. The edges in the given graph are
also called sensing edges, since AUVs need to traverse these edges
to collect the data.

In Section 4, we will start with an ideal case, where the given
graph is composed of only one cycle. As shown in Fig. 2(c), we
would like to determine the number and locations of resurfacing
events that minimize the average data delay. However, the
assumption that the given graph is cyclicmay not be very practical.
Therefore, in Section 5,we discuss how to construct cycles from the
given graph, based on the extended Eulerian cycles. An example
is shown in Fig. 2(d). Each connected component in the given
graph of Fig. 2(b) is converted to a cycle (i.e., cycles ABDBACA and
EGHFHGE). The constructed cycles are only composed of sensing
edges, where some edgesmay appearmore than once, as the given
graph is not necessarily Eulerian. At this time, we could use the
results in Section 4 to schedule the AUV resurfacing events for each
constructed cycle.

In Section 6, we would improve the cycle construction,
through replacing some multiple-visited sensing edges with
geometrically-shortest-distance links that are not sensing edges
in the graph, as to shorten the circumference of the resultant
cycle. These geometrically-shortest-distance links are called non-
sensing edges, since no data is collected from them. An example
is shown in Fig. 2(e), where we use the non-sensing edges of DC
and EF to shorten the circumferences of the cycles in Fig. 2(d).
Smaller circumferences of the constructed cycles can result in
smaller average data reporting delays. Furthermore, in Section 7,
we observe that cycles can be merged with a cooperative AUV
scheduling. As shown in Fig. 2(f), the two smaller cycles in Fig. 2(e)
are merged, leading to a bigger cycle of ABDFHGECA. The cycle
merge can also reduce the average data reporting delay [32].
Several cycle merge criteria are discussed with respect to the cycle
circumferences and the geographical distances among different
cycles.

Finally, all notations are shown in Table 1.

4. Resurfacing frequency

4.1. Basic scenario

This subsection focuses on a basic scenario, where the search
space is completely parallel to the water surface. We start with
a cycle of search space in a given depth with several AUVs, as
shown in Fig. 2(c). We determine the AUV resurfacing frequency.
In the search space, sensors are uniformly distributed along the
cycle, while the data has a constant generation rate. Let us consider
the scenario with only one AUV, which has a unit speed. Let C
denote the circumference of the cycle. We first consider that the
depth from the search space to the water surface is fixed and is
denoted by L. Note that the cruising speed and the diving/surfacing
speed of the AUV may not be the same. However, they can be
converted to the unit speed through the distance scaling. For
simplicity, AUVs are assumed to have unit speeds. This paper
assumes that the perturbation of ocean currents is limited, and
thus, can be relatively ignored. According to [30], the speed of
ocean currents is usually less than 5 km/h (though an occasionally
strong ocean current can exceed this speed). On the other hand,
according to [14], the cruising speed of AUVs are 37 km/h, and the
diving/surfacing speed of AUVs are 26 km/h. Since the speed of
AUVs is much larger the speed of ocean currents, it is reasonable
to relatively ignore the perturbation of ocean currents.

Let k denote the surfacing frequency per circulation of the cycle.
The locations for surfacing are uniformly distributed along the
cycle. We consider the data generation rate of the sensor to be
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(a) Search space layout. (b) The given graph. (c) AUV resurfacing.

(d) Cycle construction. (e) Cycle enhancement. (f) Cycle merge.

Fig. 2. An illustration for the background and problem formulation.
Table 1
All notations used in this paper.

C A cycle and its circumference. Ci is used for multiple cycles.

For 3-dimensional cycles, we have C =
 

f ′(λ)2 + g ′(λ)2 + h′(λ)2dλ, in which x = f (λ), y = g(λ), and z = h(λ) are parametric equations.

L
Depth from the search space to the water surface.
For 3-dimensional cycles, L denotes the average cycle depth.
λ0 , λ1 , . . . are sampling points on a cycle to compute L.

k Surfacing frequency per circulation of the cycle for an AUV.
Dn Optimal average data reporting delay for n AUVs in a cycle C .

G

The given graph G = (V , E). V is the set of vertices, and E is the set of sensing edges. V ′ is the set of vertices with odd degrees.
G′ is constructed by G and matching in V ′ via sensing edges.
G′′ is constructed by G and matching in V ′ via non-sensing edges.
v, v′ , u, u′ , w, and w′ are some vertices used in the proof.

Si Length of ith sensing edge in a cycle with non-sensing edges.
S ′

i Length of ith non-sensing edge in a cycle with non-sensing edges.
C∗ Total length of sensing edges in C =


i(Si + S ′

i ), i.e., C
∗

=


i Si .
d Distance between two closest points of two cycles. For example, d(C1, C2) is the distance between C1 and C2 .
larger than 1
C , which implies that an AUV can always collect new

data when it re-circulates the cycle. The objective is to minimize
the average data reporting delay, from the time that the data is
generated to the time that the data arrives at the water surface.
It is assumed that the data can then be quickly transmitted in the
air to a base station (and this part of delay is neglected). Therefore,
the overall data reporting delay includes three parts as follows:

• For each AUV, its actual travel length is C+2kL per circulation of
the cycle. Here, 2kL results from k times of surfacing from depth
L, counting AUVboth coming up and going down. Consequently,
each data item needs to wait an average time of C+2kL

2 before
being transmitted from the sensor to the AUV.

• It can be seen that the cycle has been partitioned into k intervals
by the surface points. The average delay, from the time that the
data is received by the AUV to the time that the AUV arrives the
surface point, is clearly C

2k .
• Finally, the surfacing process takes a time of L.
In total, the average data reporting delay for one AUV (denoted by
D1) is

D1 =
C + 2kL

2
+

C
2k

+ L. (1)

Eq. (1) isminimized to C
2 +

√
2LC+L, when k =


C
2L (the surfacing

frequency). This analysis is summarized in the following theorem:

Theorem 1. Optimally, the AUV resurfaces after traveling a distance
of

√
2LC in a cyclic search space with a circumference, C, and a depth,

L.

We define the length of
√
2LC as an optimal interval. When

L = 2C , the traveling distance before resurfacing is 2C , i.e., once
every two circulations of the cycle. The insight behind optimal
resurfacing is a tradeoff: As k increases, the data item needs towait
AUV for a longer time, but its time spent on AUV before resurfacing
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(a) Basic scenario. (b) General scenario. (c) Average depth, L.

Fig. 3. An illustration for the extended scenario.
reduces. Note that k =


C
2L is the optimal value that balances the

above tradeoff.
Next, we discuss the schedule with n AUVs for one cycle.

They traverse the cycle with identical directions (i.e., clockwise or
counter-clockwise). Initially, they are equally distributed on the
cycle. Using a calculation that is analogous to Eq. (1), the average
data reporting delay for n AUVs (denoted by Dn) is

Dn =
C + 2kL

2n
+

C
2k

+ L. (2)

Eq. (2) can be minimized to C
2n +


2LC
n + L, when we have k =

nC
2L . The optimal scheduling is that n AUVs start being uniformly

distributed on the cycle, and each AUV resurfaces after traveling a

distance of C
k =


2LC
n . Note that the length of the optimal interval

decreases logarithmically with respect to the number of AUVs for
one cycle.

4.2. General scenario

The previous subsection discusses a basic scenario, where
the search space is completely parallel to the water surface. An
example of a basic scenario is shown in Fig. 3(a). As an extension,
this subsection studies a general scenario, where the search space
may not be parallel to the water surface, as shown in Fig. 3(b).
Mathematically, the search space can be described by a closed
curve, which can be in turn represented by parametric equations.
Let x = f (λ), y = g(λ), and z = h(λ) denote the corresponding
parametric equations. Since sensors in the search space can have
different depths to the water surface, we use L to denote the
average search space depth, as shown in Fig. 3(c). Meanwhile, C
remains to denote the circumference of the cycle. By definition, we
have the following equation:

C =

 
f ′(λ)2 + g ′(λ)2 + h′(λ)2 dλ. (3)

Since points on the search space may have heterogeneous
heights, the optimal AUV resurfacing schedule becomesmore com-
plex. Consequently, we propose a two-stage resurfacing scheme.
In the first stage, we determine the travel distance between two
consecutive resurfacing events. According to Theorem 1. We con-
sider the AUV to resurface after traveling a distance of


2LC as

an approximation. In the second stage, we determine the sur-
face points to minimize the average data reporting delay. To re-
duce the delay brought by the resurfacing process, we would
like to choose surface points that are closer to the water surface.
Let (x0, y0, z0), (x1, y1, z1), . . . , (xm, ym, zm) denote the surfacing
points, which correspond to λ0, λ1, . . . , λm in parametric equa-
tions. They satisfy the following constraint: λi+1

λi


f ′(λ)2 + g ′(λ)2 + h′(λ)2 dλ =


2LC

i = 0, 1, . . . ,m. (4)

Eq. (4) means that the distance between consecutive surface
points is


2LC . Once the initial surface point of (x0, y0, z0) is

determined, the subsequent surface points can be calculated by
Eq. (4). We choose the surface point that is closer to the water
surface. Consequently, the initial surface point can be optimally
determined as (x0, y0, z0) with λ0 = argmax 1

m


i h(λi).

5. Cycle construction

In the previous section, it is assumed that the traveling cycle
for AUVs is given. However, this may not be true for real-world
applications. Therefore, in this section, we focus on constructing
such a cycle in a given search space, aiming to minimize the
circumference of the cycle. We assume that the search space is a
set of segments (oil pipes), represented by a weighted given graph
G. The cost associated with each edge in G is the length of the
corresponding segment (the length of the oil pipe). An example
of the search space is shown in Fig. 2(a), while the corresponding
given graph is shown in Fig. 2(b).

In graph theory, an Eulerian trail in a graph is a trail which visits
every edge exactly once. Similarly, an Eulerian circuit or Eulerian
cycle is an Eulerian trail which starts and ends on the same vertex.
An Eulerian cycle exists, if and only if each vertex in the given graph
has an even degree. Given an Eulerian graph, we can construct
such a cycle in a linear time proposed by Hierholzer [9]: Choose
any starting vertex v in G, and follow a trail of edges from that
vertex until it returns to v. It is not possible to get stuck at any
vertex other than v. This is because the even degrees of all vertices
ensure that, when the trail enters another vertex u, there must be
an unvisited edge leaving u. The trial formed in this way may not
visit all the edges of the given graph. As long as there exists a vertex
v that belongs to the current trail and v has adjacent edges that
are unvisited, we can start another trail from v, following unvisited
edges until they return to v. This new tour starting at v can join the
previous tour. If we repeat the above process, then all edges can be
eventually visited by the tour.

Let us consider a general graph G with odd-degree vertices (or
simply odd vertices). Since the total degree of all vertices must
be even (each edge is counted twice), there must exist an even
number of odd vertices in G. We then pair odd vertices using
minimum weight perfect matching [20], aiming to reduce added
costs to paired odd vertices, where the cost of a pair (u, v) is the
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Algorithm 1 Extended Eulerian cycle
In: A given graph G;
Out: An extended Eulerian cycle;
1: Consider subset V

′

of all odd vertices in G;
2: Set the cost betweenpairs of vertices inV

′

as their shortest path
distances in G;

3: Find a minimum weight perfect matching in V
′

;
4: Construct a newweighted graph G

′

with vertex set V
′

and edge
set of matching pairs;

5: Combine G
′

and G to obtain a new weighted graph G
′′

;
6: Return an Eulerian cycle in G

′′

by applying Hierholzer’s
algorithm.

(a) Given graph. (b) Matching. (c) Eulerian cycle.

Fig. 4. An example of Algorithm 1 with a cycle of ABDCEFHFEGECDA.

shortest path cost of u and v in G. Finally, we add a virtual edge
between each matching pair to make all odd vertices even-degree
vertices (or simply even vertices), leading to a newgenerated graph
G′′. The linear Hierholzer’s algorithm is then applied to derive the
Eulerian cycle.

Note that the Eulerian cycle in G′′ is no longer an Eulerian cycle
in G, as each virtual edge G′ is mapped to a set of edges in G.
Therefore, several edges will be visited more than once (i.e., it is
no longer a tour, but a closed walk). Hence, we call it an ‘extended
Eulerian cycle’ for convenience. The proposed algorithm is shown
in Algorithm 1with an example in Fig. 4. The given graph is shown
in Fig. 4(a), while the corresponding odd-degree vertexmatching is
shown in Fig. 4(b). G′′ can be obtained through combining Fig. 4(a)
and (b). The resultant Eulerian cycle is shown in Fig. 4(c).

To illustrate the reason for using only one large cycle instead
of multiple small cycles to cover the search space, a motivational
example is provided. Let us consider the scheduling of two AUVs
for the search space of two neighboring cycles connected by
one vertex, as shown in Fig. 5(a). Then, we have two scheduling
policies as follows. Scheduling 1 assigns one AUV for each of the
two neighboring cycles. The two AUVs operate independently, as
shown in Fig. 5(b). Scheduling 2 considers the two neighboring
cycles as one large cycle. The two AUVs operate cooperatively in
the combined cycle, as shown in Fig. 5(c). We have the following
theorem:

Theorem 2. The average data reporting delay of Scheduling 2 is no
larger than that of Scheduling 1 for the given search space.

Proof. Suppose the circumferences of the two neighboring cycles
are C1 and C2, respectively. Then, their delays are

C1
2 +

√
2LC1 + L

and C2
2 +

√
2LC2 +L, respectively. Their weighted average delay for

Scheduling 1 is

C1 ×


C1
2 +

√
2LC1 + L


+ C2 ×


C2
2 +

√
2LC2 + L


C1 + C2

. (5)
(a) Search space. (b) Scheduling 1. (c) Scheduling 2.

Fig. 5. Two scheduling policies for two neighboring cycles.

Algorithm 2 Extended cycle with non-sensing edges
In: A given graph G;
Out: A cycle with all edges in G plus some links not in G;

Same as Algorithm 1, except the change of step 2: Set the cost
between each pair of vertices in V

′

as their geometric distance.

(a) Given graph. (b) Matching. (c) Eulerian cycle.

Fig. 6. An example of Algorithm 2 with a cycle of ABDCEGEFHFDA.

For Scheduling 2, the circumference of the combined cycle is C1 +

C2. As shown in Eq. (2), its average data reporting delay is

C1 + C2

4
+


L(C1 + C2) + L. (6)

Note that we have (C1+C2)2

4 ≤
C2
1+C2

2
2 . It can also be proved that

C1
√
2LC1 + C2

√
2LC2 ≥ (C1 + C2)

√
L(C1 + C2), or

√
2C1.5

1 +
√
2C1.5

2 ≥ (C1 + C2)
1.5. This is because derivations show that the

function
√
2+

√
2( C2

C1
)1.5−(1+

C2
C1

)1.5 is non-negativewith respect

to positive C2
C1
. Therefore, the average data reporting delay in Eq. (5)

is always no less than that in Eq. (6), meaning that Scheduling 2 is
no worse than Scheduling 1. The key insight behind this theorem
is that these two AUVs have balanced traversals in Scheduling 2,
instead of relatively-unbalanced traversals in Scheduling 1. �

Assuming that the given graph is connected, Theorem 2 shows
that independent schedules for several cycles with small circum-
ferences are not better than a joint schedule that combines those
small cycles to a larger one. Therefore, we favor the scheduling pol-
icy that constructs one extendedEulerian cycle for AUVs to traverse
all the sensing edges, rather than scheduling policies that assign
the AUVs to traverse small cycles independently. If the given graph
is not connected, then Algorithm1would obtainmultiple cycles, as
shown in Fig. 2(d). This case will be further explored in Section 7.
The next section will introduce non-sensing edges to shorten the
cycle circumference.

6. Cycle enhancement

6.1. Extended cycles

The previous section derives an extended Eulerian cycle to
minimize the circumference of the cycle. In contrast, this section
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will further shorten the cycle by visiting shorter non-sensing
edges (edges not in G), instead of visiting redundant sensing edges
(sensing edges that appear more than once in the cycle). As we
recall that, a virtual edge is added between every two matching
odd vertices. The cost of the virtual edge is the shortest path cost of
these two vertices. However, multiple appearances of an edge do
not contribute to the reduction of the data reporting delay, since
data is generated at a given rate. On the other hand, odd vertices
can be connected via non-sensing edges with costs measured as
geographic distances in straight lines.

Algorithm 2 describes such an extension of Algorithm 1,
through replacing some multiple-visited sensing edges with
geometrically-shortest-distance links that are not sensing edges in
the graph. An example of Algorithm 2 is shown in Fig. 6. It further
reduces the circumference of the cycle by using non-sensing edges.
Moreover, we have the following theorem.

Theorem 3. In the resultant cycle constructed by Algorithm 2, the
total length of non-sensing edges is no larger than the total length of
sensing edges.

Proof. We first show that no single edge (w, w′)will appear in the
shortest paths of two matching pairs {v, v′

} and {u, u′
}. We prove

this fact by contradiction. Suppose the shortest path from v to v′

is (v, . . . , w, w′, . . . , v′). Similarly, the shortest path from u to u′

is (u, . . . , w, w′, . . . , v′). Then, we will have two better matching
pairs {v, u} with paths (v, . . . , w, . . . , u), and {v′, u′

} with paths
(v′, . . . , w′, . . . , u′). That is, edge (w, w′) can be removed in the
new pairings. This contradicts the goal of minimum cost perfect
matching. Therefore, the total length of virtual edges generated
from Algorithm 1 for G′ is no larger than the total length of edges
in G (i.e., the total length of sensing edges). Since Algorithm 2 is an
enhancement of Algorithm 1 for matching in G′, and not all virtual
edges are non-sensing edges, we conclude that Theorem 3 clearly
holds. �

In general, only a subset of virtual edges in Algorithm 1 are re-
placed by non-sensing edges in Algorithm 2. Some sensing edges
may still appear twice in the resultant cycle, as shown in Fig. 6
(e.g., sensing edges of GE and HF).

6.2. Shifting the surface point

In Section 5, we have discussed the surfacing frequency for a
cycle of sensing edges with a given number of AUVs. The cycles are
constructed based on an extended Eulerian cycle throughmultiple
visits of some sensing edges. Then, the methodology in Section 4
can be used to determine the number and locations of resurfacing
events in such cycles. However, this section constructs cycles with
both sensing and non-sensing edges. It is meaningless for AUVs
to resurface in the middle of non-sensing edges, since the data is
only collected from sensing edges. If a schedule assigns an AUV
to resurface at a non-sensing edge, then a better schedule can be
obtained through shifting that resurface time to an earlier time
when the AUV enters that non-sensing edge.

To better illustrate the idea of shifting, an example is shown
in Fig. 7. If an AUV plans to resurface at a non-sensing edge, then
this surface point is shifted to the end of the last sensing edge it
traverses. The current shifting will not alter the next surface point.
In Fig. 7, the first portion of the interval between AUV surfacing
and next AUV surfacing belongs to a non-sensing edge, on which
the AUV surfacing is shifted. This shifting scheme can always get
a smaller delay, since it removes the unnecessary delay at a non-
sensing edge, during which no data is collected. However, can
we totally remove the effect of non-sensing edges by adjusting
both surfacing frequency and location? The next subsection gives
a definite answer, but with a stringent constraint.
Fig. 7. An illustration of the shifting.

6.3. Exploring the optimal scheduling

In Section 4, we have explored the optimal AUV surfacing
frequency for the search space of a cycle, which is composed of
only sensing edges. Since Algorithm 2 constructs cycles with non-
sensing edges, in this subsection, we re-explore the AUV surfacing
frequency for such kinds of cycles. For simplicity, we only consider
the scheduling with one AUV. Suppose the cycle is composed of
alternating sensing edges (denoted by Si, with its length as Ci) and
non-sensing edges (denoted by S ′

i , with its length as C ′

i ). In other
words, the cycle of C is composed of S1, S ′

1, S2, S
′

2, and so on. Its
circumference is C =


i(Si + S ′

i ).
Here, we give out a new solution to determine the number and

locations of resurfacing events for cycles with non-sensing edges.
Let us remove all non-sensing edges from C to form a new cycle
C∗

: S1, S2, . . . , Sm. Based on Theorem 1, we can calculate the
optimal frequency and corresponding surface points within C∗,
which can then bemappedback to the original cycle C as a solution.
An example is shown in Fig. 8, where the original cycle C is in
the left part and the new cycle C∗ is in the right part. In C∗, we
use the methodology stated in Section 4 to calculate the surface
points (the AUV resurfaces after traveling a distance of

√
2LC∗,

based on Theorem 1). Four surface points are determined and then
mappedback to the original cycleC as the final solution. InC∗, if the
interval between adjacent surfacing points (with interval length
of

√
2LC∗) never goes across two sensing edges in C∗, then this

solution is optimal. In other words, the optimality prerequisite is
that the length of each sensing edge should be an integer multiple
of optimal interval length (i.e.,

√
2LC∗). If an interval goes across

two sensing edges in C∗, it will intersect with a non-sensing edge
in C , leading to a non-optimal result. This is because AUVs should
not surface at a non-sensing edge.

Note that the optimality prerequisite for the above solution is
very stringent and is not likely to be satisfied in real traces. If the
length of Si is not an integer multiple of optimal interval length,
then the amount of resurfacing on Si (calculated by Ci/

√
2LC∗)

should be rounded off to the closest integer (except when it is
less than one, then one should be used). For each sensing edge
Si, the surface points are equally distributed, so that all intervals
within the sensing edge Si have the same length and no interval
goes across to a non-sensing edge. This scheme should work well,
particularly when the length of each sensing edge is close to an
integer multiple of

√
2LC∗.
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Fig. 8. The algorithm optimality. The sensing edges are in the solid line, while the non-sensing edges are in the dotted line.
(a) Two cycles. (b) Merge result.

Fig. 9. An illustration for the two-way cycle merge.

Algorithm 3 Cycle merge (minimum delay criterion)
In: The resulting cycles by Algorithm 2;
Out: The cycle merge result;
1: while there exists more than one cycle do
2: for each pair of cycles do
3: Calculate the merge benefit as the resulting value differ-

ence between Eqs. 7 and 8;
4: if the largest merge benefit is positive then
5: Merge that pair of cycles as a bigger cycle;
6: else
7: Break the while loop;
8: return The cycle merge result;

7. Cycle merge

7.1. Two-way merge

In Sections 5 and 6, we have discussed how to construct
the cycles from the given graph of the search space. However,
the given graph is not necessarily connected. Therefore, multiple
cycles may be obtained, as shown in Fig. 2(d) and (e). However,
we observe that cycles can be further merged with a cooperative
AUV scheduling. As previously shown in Fig. 2(f), the two smaller
cycles of ABDCA and EFHGE in Fig. 2(e) are merged to a bigger
cycle of ABDFHGECA. The cycle merge can reduce the average data
reporting delay [32], by balancing the AUV traversals in different
cycles. This subsection discusses the two-way cycle merge.

As shown in Fig. 9, suppose we have two cycles, C1 and C2. The
distance between C1 and C2 is defined as the smallest distance
Algorithm 4 Cycle merge (most unbalanced criterion)
In: The resulting cycles by Algorithm 2;
Out: The cycle merge result;
1: while there exists more than one cycle do
2: for each pair of cycles do
3: Calculate their cycle circumference difference;
4: if the merge of the pair of cycles with the largest cycle

circumference difference reduces the average data reporting
delay then

5: Merge that pair of cycles as a bigger cycle;
6: else break the while loop;
7: return The cycle merge result;

between two points that are located in C1 and C2, respectively. Let
d(C1, C2) denote this distance. Suppose there are n1 AUVs assigned
to the cycle C1, while there are n2 AUVs assigned to the cycle C2.
According to Eq. (2), the average data reporting delay for these two
cycles is

C1 ×


C1
2n1

+


2LC1
n1

+ L


+ C2 ×


C2
2n2

+


2LC2
n2

+ L


C1 + C2
. (7)

If C1 and C2 are merged, then we can obtain a bigger cycle with a
circumference of C1 + C2 + 2d(C1, C2). Meanwhile, n1 + n2 AUVs
can be assigned to this merged cycle. The merged cycles include
both sensing edges and non-sensing edges. If we use the shifting
strategy in Section 6.2 to schedule these AUVs, then the average
data reporting delay for themerged cycle should be no larger than

C1 + C2 + 2d(C1, C2)

2(n1 + n2)
+


2L[C1 + C2 + 2d(C1, C2)]

(n1 + n2)
+ L. (8)

If we compare the resulting values in Eqs. (7) and (8), then we can
determinewhether C1 and C2 should bemerged. The insight behind
the cycle merge is similar to that in Theorem 2. If the traversals of
AUVs in C1 and C2 are more unbalanced, then we aremore likely to
merge C1 and C2, in order to balance AUV traversals. For example,
if C1 is large, C2 is small, n1 is small, and n2 is large, then we should
merge C1 and C2, assuming that d(C1, C2) is not too large. This is
because C2 has too many AUVs that can be re-balanced to collect
the data from C1, in which the AUVs are not sufficient.

A greedy cycle merge method is proposed to further reduce the
average data reporting delay, as shown inAlgorithm3. At each step,
it greedily merges the pair of cycles that yields the largest merge
benefit (the value difference between Eqs. (7) and (8)). The cycle
merge only happens when the given graph is not connected.
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Algorithm 5 Cycle merge (geographically closest criterion)
In: The resulting cycles by Algorithm 2;
Out: The cycle merge result;
1: while there exists more than one cycle do
2: for each pair of cycles do
3: Calculate their geographical distance;
4: if themerge of thepair of cycleswith the closest geographical

distance reduces the average data reporting delay then
5: Merge that pair of cycles as a bigger cycle;
6: else break the while loop;
7: return The cycle merge result;

7.2. Different merge criteria and three-way merge

The last subsection demonstrates that AUVs in adjacent cycles
should be scheduled collaboratively. This subsection discusses two
different merge criteria: the most unbalanced criterion merges
the most unbalanced pairs of cycles first, and the geographically
closest criterion merges the geographically closest pairs of cycles
first. Themerging process is described as follows: first,we calculate
the average data reporting delay of each cycle in the monitoring
area. Then, we scan all the merging combinations, and merge
the two cycles determined by the criterion. This merge process
is repeated, until there exists no merge that can minimize the
average data reporting delay. Algorithms 4 and 5 are proposed to
implement the most unbalanced criterion and the geographically
closest criterion, respectively. Different merge criteria can have
different advantages under certain scenarios, as shown in the
experiments.

Moreover, the cycle merge can be implemented in a three-
way manner. In each greedy iteration, we can additionally try
to merge three cycles. Three-way merge naturally extends two-
way merge by additionally considering merging three cycles in a
greedy iteration. However, it is different from consecutive two-
way merges. An example is shown in Fig. 10, where Fig. 10(a)
includes the scenario of three cycles that are close to each other.
Fig. 10(b) shows the result of consecutive two-way merges, which
takes four inter-cycle traverses. Meanwhile, Fig. 10(c) shows the
result of the three-way merge, which only takes three inter-cycle
traverses. It can be seen that, through reducing AUV inter-cycle
traverses, a three-way merge can further optimize the multiple-
cycle AUV trajectory planning.

7.3. Parallel cycle merge implementation

This subsection shows that the proposed cyclemerge algorithm
can be implemented in parallel. The key observation is that we
are not likely to merge cycles, which are geographically remote.
Consequently, the key idea is to cut the scenario into several small
regions, and then conduct the cyclemerge algorithm for each small
region in parallel. Note that the parallel merge algorithm may
degrade the merge performance, since inter-regional merges are
no longer considered. Therefore, there exists a tradeoff between
the parallelism speedup and the performance.

Experiments are conducted to verify the above tradeoff in Al-
gorithm 3. We generate search spaces of 500 m × 500 m with 10
and 25 circles (sparsely and densely distributed circles), respec-
tively. The circle circumference is uniform-randomly selected from
40, 60, and 80 m. Circles are not nested or intersected. There ex-
ists a sensor in every meter for each circle. The data generation
speed is 10 Mb/s for each sensor. 20 AUVs are used and the AUV
speed is 1 m/s. The sea depth of the search space is 100 m. The
number of AUVs in each circle is proportional to its circumference.
The experimental result is shown in Fig. 11. It can be seen that, a
larger degree of parallelism leads to a larger performance degrada-
tion (i.e., a larger average data reporting delay), as well as a smaller
running time. In Fig. 11(a), when the degree of the parallelism is
4, the average data reporting delay increases by about 11%, but
the program running time decreases by about 60%. Another no-
table point is that, the parallel merge algorithm performs better
in the scenario with sparsely distributed circles than the scenario
with densely distributed circles. This is because the scenario with
sparsely distributed circles has less inter-regional merges than the
scenario with densely distributed circles.

8. Experiments

Experiments are conducted to evaluate the performances of
the proposed algorithms. After presenting the basic settings,
the evaluation results are shown from different perspectives to
provide insightful conclusions.

8.1. Basic settings

Our experiments denote the shifting algorithm in Section 6.2
as Algorithm 2s, and the approximated optimal algorithm with
round-off in Section 6.3 as Algorithm 2r. For Algorithms 1, 2, 2s,
and 2r, if the given graph is not connected, theywill obtainmultiple
cycles. For this case, the number of AUVs distributed to each cycle
is proportional to the cycle circumference. Algorithms 3, 4, and 5
are cycle merge algorithms with different merging criteria. One
baseline is used for comparison:

• Baseline distributes AUVs according to the lengths of the
sensing edges. The number of AUVs assigned to a sensing edge
is proportional to its length (i.e., edge weight). For each sensing
edges, the corresponding AUVs also uniformly go back and forth
along that sensing edges.

Three related works are used for comparison:

• Sugihara [26] focused on the trajectory scheduling problem
for the AUV to achieve the smallest data delivery delay under
energy constrains (sensors have identical energy consumptions
in our experiments). An approximation algorithm is provided.

• Moazzez [23] usedmultiple AUVs to cooperatively visit sensors.
Sensors are divided into several groups, while each sensor
group has an AUV to collect the data by solving a traveling
salesman problem.

• Ma [22] modeled trajectory planning problems as traveling
salesman problems with additional distance and time con-
straints for multiple AUVs. A heuristic trajectory planning al-
gorithm was provided.

Acoustic techniques [10,3] are not compared, since they suffer
from a significant signal attenuation. Based on [27], the data rate
of the acoustic technique is usually limited to 10 kbps with the
maximum transmission range up to 100m. Due to the limited data
rate and the limited transmission range, acoustic techniques are
not applicable in our scenario.

The average data reporting delay is the key performancemetric
in the experiments. We are interested in how the average data
reporting delay is impacted by the settings (e.g., the sea depth, the
graphdensity, the percentage of non-sensing edges in the cycle, the
number of AUVs, and so on). Experiments are organized as follows:

• Section 8.2 will test the performance gap between Algorithms
1 and 2 (cycle construction methods based on sensing and non-
sensing edges in Sections 5 and 6.1).

• Section 8.3will test the performance gap betweenAlgorithms 2,
2s, and 2r (resurfacing points adjustments for cycles with non-
sensing edges in Section 6).

• Section 8.4 will test the performance gap between Algorithms
3, 4, and 5 (different cycle merge criteria in Section 7).
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(a) Three cycles. (b) Two-way merge. (c) Three-way merge.

Fig. 10. An illustration for the three-way cycle merge.
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(a) Sparsely distributed cycles. (b) Densely distributed cycles.

Fig. 11. The tradeoff between the parallelism speedup and the performance.
(a) Given 20 sensing edges. (b) Given 100 sensing edges. (c) Given 500 sensing edges.

Fig. 12. Performance gap between Algorithms 1 and 2.
• Section 8.5 will test the performance gap under basic and gen-
eral scenarios (2-D and 3-D search spaces described in Sec-
tion 4), with respect to all the algorithms (including comparison
algorithms).

• Section 8.6 will test the performance of all algorithms in real
traces to demonstrate their applicability in the real world.

Sections 8.2, 8.3, 8.4, and 8.5 are simulations based on synthetic
traces to capture the performance gap and the insight. The AUV
speed is set to be 1 m/s in these subsections. Section 8.6 includes
simulations based on several real oil pipe traces to evaluate the
algorithm applicabilities. In real traces, the cruising speed of AUVs
are set to be 37 km/h, and the diving/surfacing speed of AUVs are
set to be 26 km/h, according to [14]. The data generation speed is
simulated to be 10 Mb/s for each sensor.
8.2. Performance gap between Algorithms 1 and 2

This subsection tests the performance gap between Algorithms
1 and 2. Note that Algorithm 1 constructs the cycle through
shortest paths, while Algorithm 2 constructs the cycle through
geometrically-shortest-distance links. For these two algorithms,
we would like to verify the impact of the graph density, in terms of
the average data reporting delay. Our experiments are based on a
special synthetic trace, which is generated through a uniformly-
random placement of 100 nodes on a 100 m × 100 m square.
To guarantee the graph connectivity, a minimum spanning tree is
constructed. Then, sensing edges, with given total numbers of 20,
100, and 500, are introduced to uniform-randomly connect these
nodes. Note that the given number of sensing edges represents the
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(a) Given depth L = 10 m. (b) Given depth L = 100 m. (c) Given depth L = 1000 m.

Fig. 13. Performance gap between Algorithms 2, 2s and 2r.
Fig. 14. An example of the synthetic trace in Section 8.4. It has a 10 m × 6 m grid
and four circles. Three circles have radiuses of 2 m, and one circle have a radius of
4 m.

graph density. For each edge in the synthetic trace, there exists
a sensor in every meter. The given depth of the search space is
set as 100 m and 1000 m, respectively. Since this synthetic trace
is randomly generated, experiments on this synthetic trace are
repeated to determine the average, until the confidence interval
of the average result is sufficiently small (1% for a 90% probability).

The experimental results are shown in Fig. 12. Different subfig-
ures have different graph densities. The sensing edges in Fig. 12(a)
are sparser than the sensing edges in Fig. 12(c). The perfor-
mance gap between Algorithm 1 and Algorithm 2 is significant
in Fig. 12(a), which represents the results for the sparsest trace.
However, the performance gap between these two algorithms de-
creases when the trace becomes denser, as shown in Fig. 12(b) and
(c). This is because the gap between (i) pairwising odd vertices
through the shortest path, and (ii) that through the geometrically-
shortest-distance links, becomes smaller as the trace gets denser.
If the trace is sparse, pairwising odd vertices through the shortest
path could be very costly, since the geometrical distances among
these vertices could be much smaller. Another observation is that
a larger sea depth brings a larger delay. This is very intuitive, since
AUVs need more time to resurface. Finally, the last observation
is that the reduction of the average data reporting delay brought
by one more AUV decreases with respect to the current number
of AUVs. This effect follows the law of the diminishing return. In
Fig. 12(a), if the sea depth is 1000 m, the delay brought by Al-
gorithm 1 with one AUV is about 8000s. Meanwhile, if 8 AUVs
are used, then the delay reduces to about 4000s (about 50% re-
duction). Generally speaking, a denser and larger trace should use
more AUVs to achieve a small average data reporting delay.

8.3. Performance gap between Algorithms 2, 2s, and 2r

This subsection tests the performance gap between Algorithms
2, 2s, and 2r. These algorithms are introduced in Section 6, where
we adjust the number and locations of resurfacing events for cycles
with non-sensing edges. Our experiments are based on another
synthetic trace. It includes 100 nodes and has a shape of ‘‘V’’, which
corresponds to the layout of the sensing edges in the search space.
Each side of the V-trace has a length of 100 m and there exists a
sensor in every meter for it. The intersection angle between the
two sides of the V-trace is given as 10°, 30°, and 50°, respectively.
A smaller intersection angle brings a shorter geometrical distance
between the two ends of the V-trace. Only one AUV is used. The
given depth of the search space is set as 10 m, 100 m, and 1000 m,
respectively. The above parameter settings are used to tune the
graph density for the proposed algorithms.

The experimental results are shown in Fig. 13, in terms of the
average data reporting delay. Since we have adjusted the number
and locations of resurfacing events in Section 6 for cycleswith non-
sensing edges, these traces are used to validate the improvements
of those adjustments. As previously mentioned, this synthetic
trace has a shape of V. The intersection angles between the two
sides of the V-trace are given as 10°, 30°, and 50°, respectively.
A smaller intersection angle means that the corresponding non-
sensing edges are shorter, and thus, the adjustment strategy should
be less efficient. It can be seen that the Algorithm 2s (shifting
scheme) is very effective, especially when the trace has a cycle
of long non-sensing edges (i.e., the trace with an intersection
angle of 50°). On the other hand, if the total length of non-
sensing edges is very small, then the performance improvement
brought by Algorithm 2s is limited. The delay reduction brought by
Algorithm 2s ranges from about 5%–20%, compared to Algorithm
2. This is because a longer non-sensing edge means that AUVs are
more likely to surface on that non-sensing edge, which should be
adjusted by Algorithm 2s. In contrast, Algorithm 2r has a limited
reduction on the average data reporting delay. Although Algorithm
2r could be optimal under a stringent constraint, that constraint is
uncommon (at least in this synthetic trace). Therefore, the shifting
scheme is recommended for its simplicity and effectiveness.

8.4. Performance gap between Algorithms 3, 4, and 5

This subsection tests the performance gap between Algorithms
3, 4, and 5. These algorithms are introduced in Section 7, where
we use different cycle merge criteria to reduce the average data
reporting delay. We also design a synthetic trace for evaluations.
This synthetic trace generates a search space of 500m× 500mgrid
with a given number of circles. Each circle serves as a cyclic search
space (i.e., a cycle for AUVs). Circle centers are randomly-located
on grid intersections. The radius of a circle is chosen from 10m and
50 m. Circles are not nested or intersected. There exists a sensor in
every meter for each circle. An example of such a synthetic trace
is shown in Fig. 14. This subsection involves 500 AUVs, which are
evenly distributed to circles according to their radiuses. The sea
depth of the search space is set as 100 m and 1000m, respectively.
We have four different circle settings:
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(a) Two-way merge with L = 100 m. (b) Three-way merge with L = 100 m.

(c) Two-way merge with L = 1000 m. (d) Three-way merge with L = 1000 m.

Fig. 15. Performance gap between Algorithms 3, 4 and 5.
• Setting i generates 20 circles of radiuses 10 m.
• Setting ii also generates 20 circles. 10 circles have radiuses of

10 m and 10 circles have radiuses of 50 m.
• Setting iii generates 20 circles of radiuses 50 m.
• Setting iv generates 500 circles of radiuses 10 m.

Settings i, ii, and iii have the same number of circles with different
radiuses. Settings i and iv have different number of circles, but have
the same circle radiuses. Settings iii and iv have different number of
circles and different circle radiuses, but have the same circle areas
in total (500 × π102

= 20 × π502). Since circles are randomly-
located, experiments on this synthetic trace are repeated to deter-
mine the average, until the confidence interval of the average result
is sufficiently small (1% for a 90% probability).

We start with two-way cycle merges, which merges two cycles
(i.e., circles) in each greedy iteration. The evaluation results are
shown in Fig. 15(a) and (b). Theorem 1 is used to schedule the
AUV resurfacing in each circle. In Fig. 15, ‘‘no merge’’ means that
AUVs in different circles surface independently, i.e., AUVs will
not cooperate with each other. It can be seen that cycle merge
algorithms (Algorithms 3, 4, and 5) can always reduce the average
data reporting delay, compared to the ‘‘no merge’’ algorithm. This
is because cycles are merged only if the average data reporting
delay can be reduced. In the setting i, the delay reduction brought
by the cycle merge algorithms is very limited. For example, the
delay reduction brought by Algorithm 5 with L = 100 is only
4s (109s − 105s = 4s), which is only about 4% performance
improvement. This is because circles are overly sparse in the
setting i (20 circles of radiuses 10 m only take 2.5% area of the
500 m × 500 m grid). As a result, circles are relatively far from
each other, and every few circles are eventually merged in the
setting i. In contrast, in the setting ii, the delay reduction brought
by the cycle merge algorithms is significant. The delay reduction
brought by Algorithm 4 with L = 100 is 23s (115s − 92s = 23s),
which is 20% performance improvement. Algorithm 4 outperforms
Algorithms 3 and 5 in the setting ii (for both L = 100 and L =

1000m), since it balances themerge between cycles with different
circumferences (circles with different radiuses of 10 m and 50 m).
However, Algorithm 3 outperforms Algorithms 4 and 5 in the
setting iii, which has 20 circles of radiuses 50 m. It means that we
mainly consider themerge delay reduction when cycles have large
circumferences. In contrast, Algorithm 5 outperforms Algorithms 3
and 4 in the setting iv, which has 500 circles of radiuses 10 m. The
geographical distance is the most important factor, when cycles
have small circumferences. Different cycle merge criteria have
advantages under different scenarios.

We also evaluate three-way cycle merges, which merges three
cycles (i.e., circles) in each greedy iteration. Three-way merge is
described in Section 7.2, and is illustrated in Fig. 10. It naturally
extends two-way merge by additionally considering merge three
cycles in a greedy iteration. The evaluation results for three-way
merges are shown in Fig. 15(c) and (d). Compared to two-way
merges, three-way merges can further reduce the data reporting
delay (however, less than 10% performance improvements are
brought). For example, in setting ii and L = 100 m, Algorithm 4
has average data reporting delays of 92s for two-way merge and
88s for three-way merge. In setting iv and L = 100 m, Algorithm 5
has average data reporting delays of 113s for two-way merge and
109s for three-way merge. Clearly, three-way merge outperforms
two-way merge through reducing AUV inter-cycle traverses. As a
tradeoff, three-waymerge has a higher time complexity than two-
way merge, since it scans tuples of cycles instead of pairs of cycles
in each greedy iteration.

8.5. Experiments for basic and general scenarios

This subsection tests all the algorithms (including comparison
algorithms), under both basic and general scenarios (2-D and 3-D
search spaces described in Section 4). Our experiments are based
on a synthetic trace that is similar to the one in Section 8.2. We
also generate the synthetic trace through a uniformly-random
placement of 100 nodes on a 100 m × 100 m square. Sensing
edges, with given total numbers of 100 and 500, are introduced
to uniform-randomly connect these nodes. The given number of
sensing edges represents the graph density. Note that the given
graph may not be connected. There exists a sensor in every meter
for each edge. Ten AUVs are used. For the basic scenario, the given
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(a) Basic scenario (2-D search space). (b) General scenario (3-D search
space).

Fig. 16. Examples for basic and general scenarios (10 nodes and 8 edges).

Table 2
Results for basic and general scenarios.

Trace setting Comparison
algorithms

The scenario

Basic scenario General scenario

100 sensing
edges

Algorithm 1 1853s 1954s
Algorithms 2, 2s,
2r

1805s, 1724s,
1796s

1865s, 1794s, 1843s

Algorithms 3, 4, 5 1643s, 1704s,
1694s

1734s, 1783s, 1755s

Baseline 2563s 2801s
Sugihara [26] 2216s 2418s
Moazzez [23] 1756s 1814s
Ma [22] 1945s 2074s

500 sensing
edges

Algorithm 1 4175s 4421s
Algorithms 2, 2s,
2r

4104s, 4053s,
4089s

4363s, 4312s, 4355s

Algorithms 3, 4, 5 3861s, 3978s,
3942s

4144s, 4301s, 4234s

Baseline 5236s 5812s
Sugihara [26] 4632s 4893s
Moazzez [23] 4005s 4288s
Ma [22] 4154s 4341s

depth of the search space is set as 100 m, as shown in Fig. 16(a).
For the general scenario, the depth of each node is uniform-
randomly chosen from 50 m and 150 m (the average search space
depth remains 100 m). An example is shown in Fig. 16(b). Since
this synthetic trace is randomly generated, experiments on this
synthetic trace are also repeated to determine the average results.

The evaluation results for all the algorithms are shown in Ta-
ble 2. For the synthetic trace with 100 sensing edges, Algorithm 3
outperforms all the other algorithms under basic and general sce-
narios. Compared to Baseline, Algorithm 3 brings more than 20%
delay reductions. Sugihara [26] performs poorly, since it sacrifices
the average performance to guarantee a bounded result. Although
Moazzez [23] outperforms Algorithms 1 and 2, it still has a larger
data reporting delay than Algorithm3. This is because it is based on
traveling salesman problems that visit sensors instead of sensing
edges. Ma [22] fails to outperform Algorithms 3, 4, and 5, since it
do not cooperate AUVs among different cycles. Algorithm2outper-
forms Algorithm 1 through constructing cycles with non-sensing
edges. Algorithms 2s and 2r improve Algorithm 2 by adjusting the
AUV resurfacing points on non-sensing edges. Algorithms 3, 4, and
5 improve Algorithm 2s by cooperatively scheduling AUVs in dif-
ferent cycles. Another important observation is that the result in
the general scenario is close to (is slightly larger than) the result in
the basic scenario. This is because the average cycle circumference
in the general scenario is larger than that in the basic scenario (a
larger cycle circumference). For the synthetic trace with 500 sens-
ing edges, the results are similar. Therefore, in a general scenario
with a 3-D search space, we can use the average search space depth
to approximate the AUV resurfacing scheduling.

8.6. Experiments in the real trace

This subsection tests the performance of all algorithms in real
traces to demonstrate their applicabilities in the real world. The
real traces are published in [11], which includes three parts. The
first part includes the oil pipe layout near Florida, including SAm-
1, COLUMBUS I to III, Mid-Atlantic Crossing (MAC), BAHAMAS-1,
BAHAMAS-2, GlobeNet, BDNSi, and so on. The second part includes
the oil pipe layout near Taiwan, including CUCN, EAC, FNAL, APCN,
SEA-ME-WE, APCN, RNAL, ASE, and so on. The third part includes
the oil pipe layout near Japan, including TOKYO, Australia–Japan,
Cable, ROTACS, RNAL, APG, ASE, SJC, Trans-Pacific, Express, EAC,
and so on. These oil pipe layouts are shown in Fig. 17. Meanwhile,
the sea depth is set to be the average sea depth in the real world of
3790 m [35]. Sensors are uniformly placed along each pipe, while
the distance between two adjacent sensors on a pipe is 1 km.

The experimental results for the real trace are shown in
Table 3, where ‘‘h’’ represents hours. We use ten and twenty
AUVs to collect the data, respectively. Baseline has the worst
performance, since Baseline schedules AUVs independently. AUVs
on different oil pipes do not cooperate with each other for the data
collection. Sugihara [26] performs poorly, since it sacrifices the
average performance to guarantee a bounded result. Moazzez [23]
performs poorly, since it does not visit sensors on a sensing edge
consecutively. Ma [22] performs poorly, since it does not schedule
AUVs cooperatively.

There exists a significant performance gap between Algorithms
1 and 2. This is because the real trace is sparse, leading to a
large gap between pairwising odd vertices through the shortest
path and that through the geometrically-shortest-distance links.
Since the Japan oil pipe trace is the sparsest, Algorithms 1 and 2
have the largest performance gap (more than 10%) in the Japan
oil pipe trace than the other traces. Algorithm 2s can further
reduce the average data reporting delay of Algorithm 2 by about
5% in the Taiwan and Japan oil pipe traces. This is because AUVs
should not resurface in the middle of non-sensing edges, since
the data is only collected from sensing edges. The performance
gap between Algorithms 2 and 2s is small in the Florida oil pipe
trace, since there are few cycles with long non-sensing edges.
Another notable point is that Algorithm 2r may not outperform
Algorithm 2s, depending on the trace. The optimality prerequisite
of Algorithm 2r is very stringent and may not be satisfied in real
applications, leading to performance degradations. Algorithms 3,
4, and 5 bring further reductions on the average data reporting
delay through cycle merges, based on different criteria (minimum
delay, most unbalanced, and geographically closest). When we
have 10 AUVs, they have about 5%–15% less delay than Algorithm
2s. When we have 20 AUVs, they have 10%–20% less delay than
Algorithm 2s, depending on the real trace. Different cycle merge
criteria have different performances with respect the real traces.
In summary, the proposed algorithms are applicable in the real
traces.

The major advantages of the proposed techniques over existing
techniques are their smaller average data reporting delays. It can
be seen that the average data reporting delay is less than half
an hour in the Florida oil pipe trace, and is less than ten hours
in the Taiwan and Japan oil pipe traces. Our major advantages
come from cooperative AUV schedules through combinational



112 H. Zheng et al. / J. Parallel Distrib. Comput. 104 (2017) 99–113
(a) Florida oil pipes. (b) Taiwan oil pipes. (c) Japan oil pipes.

Fig. 17. Oil pipe layouts in the real traces.
Table 3
Average data reporting delay (in hours) for the real traces.

Trace setting Comparison
algorithms

The number of AUVs

10 AUVs 20 AUVs

Florida oil
pipe trace

Algorithm 1 0.59 h 0.36 h
Algorithms 2, 2s,
2r

0.52 h, 0.49 h,
0.52 h

0.34 h, 0.32 h, 0.34 h

Algorithms 3, 4,
5

0.45 h, 0.43 h,
0.40 h

0.26 h, 0.23 h, 0.21 h

Baseline 0.85 h 0.58 h
Sugihara 0.71 h 0.43 h
Moazzez 0.46 h 0.29 h
Ma 0.49 h 0.31 h

Taiwan oil
pipe trace

Algorithm 1 7.87 h 7.51 h
Algorithms 2, 2s,
2r

7.49 h, 7.26 h,
7.29 h

7.24 h, 7.05 h, 7.04 h

Algorithms 3, 4,
5

6.76 h, 6.95 h,
6.86 h

6.47 h, 6.67 h, 6.61 h

Baseline 9.24 h 8.43 h
Sugihara 8.57 h 7.94 h
Moazzez 7.25 h 7.15 h
Ma 7.31 h 7.22 h

Japan oil pipe
trace

Algorithm 1 9.84 h 8.92 h
Algorithms 2, 2s,
2r

8.65 h, 8.22 h,
8.17 h

8.13 h, 7.85 h, 7.85 h

Algorithms 3, 4,
5

7.75 h, 7.56 h,
7.81 h

7.43 h, 7.29 h, 7.38 h

Baseline 11.43 h 10.28 h
Sugihara 10.36 h 9.75 h
Moazzez 8.71 h 8.31 h
Ma 7.93 h 7.78 h

approaches. Given a graph, cycles with sensing edges and non-
sensing are constructed to reduce the AUV traversing distance.
Based on resultant cycles, AUV resurfacing frequencies and points
are optimized. Cycles are also merged to reduce their total
circumferences.

9. Conclusions and future directions

This paper studies a data collection problem in the deep sea.
The scenario is based on a search space that is a set of oil pipes
deployed in the seabed. Sensors are deployed along the oil pipes
for leak detection, while AUVs are used to collect the data from
the sensors and then resurface to report the data. We focus on
the scheduling of the AUV trajectory planning, as well as the
AUV resurfacing frequencies and their locations. An optimization
problem is formulated by minimizing the average data reporting
delay. The AUV trajectory planning is simplified to an extended
Euler cycle problem, where we construct cycles through both
sensing edges and non-sensing edges. We also discuss the cycle
mergewith differentmerge criteria, where AUVs in different cycles
can operate cooperatively. The cost-effectiveness of the proposed
approach is validated by extensive experiments.

Ourwork has several future directions. The first future direction
is to consider a more realistic speed model of AUVs. The current
model assumes that the cruising speed and the diving/surfacing
speed of AUVs are fixed. This AUV speedmodel can be improved by
considering the acceleration, when AUVs switch among cruising,
diving, and surfacing. The speed of ocean currents should also
be included to justify the AUV trajectory planning. The second
future direction is to deeply explore the AUV resurfacing schedule,
when the given cycle includes non-sensing edges. Schedule
optimality or approximation ratio is desired to guarantee the
system performance. The third direction is to implement real
AUVs to test their applicabilities. Although theoretical analysis is
conducted, the practical performance needs to be validated. The
financial budget of AUV implementations should be evaluated, in
terms of its cost-effectiveness.
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