APPENDIX A
PROOF OF THEOREM 1

Proof: Given an order preserving function y; =
f(IZ) =+ 7, in,:cj, if we have Yi +y; € [f(:Ez +
zj), f(z; + x;) + riy;], obviously, y; is also additive
order preserving. Therefore, our goal is reduced to
prove that Vi, Zj, yi+yj € [f(xz—&—xj), f(mi+xj)+7ni+j].

Without loss of generality, we assume z; < x;. Then
we have f(zit+a;)=f(x:)+Af (2i)+ - +Af(zi+a;-1),
Therefore, we have
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Additionally, we have
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From the above two equations, we can easily get
Voi,xj, yi +y; € [f(xi + 25), f(@i + 25) + 7rig5]. Up to
now, Theorem 1 is proved. O
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Given the DBDH (Decisional Bilinear Diffie-Hellman)
assumption, PRMSM is semantically secure against
the chosen keyword attack.

Proof: Assume a polynomial-time adversary A
has a non-negligible advantage ¢ against PRMSM.
Then we can build a simulator B that solves DBDH

with advantage ¢/2. The challenger flips a fair coin ¢
outside of B’s view. If § = 0, he sends (4, B,C,Z) =
(g%, g%, g¢, g?%°) to B; otherwise he sends (A, B, C, Z) =
(9%, 9%, 9¢,9°) to B, where a,b,c,z € Z, are randomly
generated. The goal of B is to guess ¢ for § by
interacting with A and playing the following game.

Setup: B generates his private key (ki,k2), and
sends the public key (g, ¢*', g*2, g%, ¢°, 9%, Z) to A.

Phase 1: B maintains a keyword list L,,, which is
initially empty. A can issue any keyword w € W
and ask B to generate the corresponding keyword
ciphertext @ for polynomial times. If w ¢ L,,, B adds
w to L,, and sends w to A.

Challenge: A sends two keywords wy and w;
with equal length, where wy, wi ¢ L., to B, B
randomly sets u € {0,1}, computes the ciphertext
W, = (ZHwu) k2 ghike 7) and sends ), to A.

Phase 2: A continues to submit keywords to request
B for generating the ciphertext of keyword as in Phase
1. The restriction here is that wg and w; cannot be
submitted.

Guess: A outputs its guess p/ € {0,1} for p. If ¢/ =
i, W, is a correct encryption of w,, then B outputs
§’ = 0; otherwise, B outputs ¢’ = 1.

To complete the proof of Theorem 2, we now com-
pute B’s advantage in solving DBDH. If § = 0, then w,,
is a valid encryption of w,, so A will output 1/ = p
with probability 1/2 + e. Additionally, if § = 1, ie.,
Z is randomly chosen, A will output p/ = p with
probability 1/2. Therefore, B will guess ¢’ = ¢ with
probability 1/2(1/24e+1/2) = 1/2+¢/2. That is, if the
adversary A has advantage ¢ against PRMSM, then
the challenger B will solve DBDH with advantage €/2.
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Given the DL assumption, PRMSM achieves keyword
secrecy in the random oracle model.

Proof: We construct a challenger B that plays the
keyword secrecy game as follows.

Setup: B generates the private key k, k1, ka2 € Zy,
and sends the public key g, g*, gk, gk to A.

Phase 1: A adaptively queries the following oracle
for polynomial times.

O;: the challenger B maintains a O;-list, which is
initially empty. Each entry of O;-list is < w, Ty, >. A
can query O;-list for a keyword w, if w is already in
O;-list, then B returns Ty, to A, otherwise, B generates
the trapdoor T, for w, adds < w, T}, > to O;-list, and
returns T,, to A.

Challenge: B

*

chooses a keyword w

from the keyword dictionary uniformly at
random, and returns the encrypted keyword
T A—— gk-r-H(w*)'kal . gkal'kuQ,gk"l‘)’ and trapdoor

T = (g7, ") to A.



Guess: A outputs its guess w’ for w*, and sends w’
to challenger B. B returns the encrypted keyword @’
to A. If &' matches T,-, then A wins the game.

To complete the proof of Theorem 3, we now com-
pute A’s probability in winning the keyword secrecy
game. Assume A has already tried ¢ distinct keyword-
s before outputting w’, then the size of remaining

keyword dictionary is v — ¢. Additionally, due to the
hardness of discrete logarithm, deriving w* from w*
or T, is at most a negligible probability ¢, therefore,
the probability that A wins the keyword secrecy game
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