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Abstract—Mobile crowdsensing is a new paradigm in which
a crowd of mobile users exploit their carried smart devices to
conduct complex computation and sensing tasks in mobile social
networks (MSNs). In this paper, we focus on the task assignment
problem in mobile crowdsensing. Unlike traditional task schedul-
ing problems, the task assignment in mobile crowdsensing must
follow the mobility model of users in MSNs. To solve this problem,
we propose an oFfline Task Assignment (FTA) algorithm and an
oNline Task Assignment (NTA) algorithm. Both FTA and NTA
adopt a greedy task assignment strategy. Moreover, we prove
that the FTA algorithm is an optimal offline task assignment
algorithm, and give a competitive ratio of the NTA algorithm.
In addition, we demonstrate the significant performance of our
algorithms through extensive simulations, based on four real
MSN traces and a synthetic MSN trace.

Index Terms—Crowdsensing, delay tolerant network, mobile
social network, task assignment

I. INTRODUCTION

Mobile crowdsensing is a new paradigm involving a crowd
of mobile users that exploit their carried smart devices to
provide complex computation and sensing services in mobile
social networks (MSNs) [9]. Since it can utilize the mobility
of users to solve large-scale mobile sensing tasks, it has
stimulated a number of attractive applications, such as urban
WiFi characterization [7], traffic information mapping [6], and
so on. Moreover, there have been some platforms, frameworks,
and incentive mechanisms, designed for mobile crowdsensing
in MSNs, such as in [3], [12], [16].

Consider that a mobile user in an MSN has some inde-
pendent mobile sensing tasks, such as urban WiFi charac-
terization, traffic information mapping, and so on. However,
these tasks exceed its processing ability. Then, it requests
other mobile users for help by starting a crowdsensing. In
this crowdsensing, the requester will send tasks to and receive
results from other mobile users, which generally involve large-
size data transmissions. In order to decrease communication
costs, mobile users prefer to adopt short-distance wireless
communication technologies (e.g., WiFi or Bluetooth), instead
of 3G/4G. Fig. 1 shows a simple example of this crowdsensing.
The requester moves around, and sends tasks to another mobile
user via Bluetooth when they encounter with each other, or
via WiFi when they visit access points, respectively. After this
mobile user processes the tasks, it sends the results back to the

Fig. 1. Mobile crowdsensing in MSNs: the requester assigns tasks to and
collects the results from other mobile users via Bluetooth when they meet, or
via WiFi when they encounter access points, respectively.

requester when they meet again. Then, an important problem
is how the requester assigns these tasks to other mobile users,
so as to minimize the average makespan of all tasks.

In this paper, we focus on the above task assignment
problem. In this problem, the makespan of a task not only
includes the time of this task being conducted by a mobile
user, but also contains the time of being sent from the requester
to this user and the time for the result of this task being sent
back to the requester. Nevertheless, the task can be assigned
and the result can be returned, only when the requester meets
the mobile user with some probability, which must follow
the mobility model of users in MSNs. Such characteristics
make our problem different from traditional parallel machine
scheduling problems [1], [2], [4], [5]. The most related work
to our problem is the serendipity system, in which a so-called
Water Filling algorithm is proposed to allocate tasks among the
mobile users in an MSN [15]. This work also takes the delivery
time of the tasks and their results into consideration. However,
it mainly focuses on minimizing the latest makespan of all
tasks, so that the processing order of tasks is not important. In
contrast, the tasks in our problem are independent. We only
concern their average makespan.

To solve the above task assignment problem in mobile
crowdsensing, we first propose a greedy oFfline Task As-
signment (FTA) algorithm. The requester always assigns its
tasks to the earliest idle mobile user, i.e., the user who has
the minimum expected time to finish the tasks that have
been assigned to it. What is more, unlike the Water Filling
algorithm, the tasks in FTA must be assigned according to
the ascending order of their workloads. In this way, the
requester can achieve the optimal result in the offline case.



Further, by extending FTA, we propose an efficient oNline
Task Assignment (NTA) algorithm, in which the requester
repeatedly conducts the above greedy task assignment, when
it encounters each mobile user, until all tasks are assigned.
More specifically, our major contributions include:

1) We first introduce the task assignment problem into
mobile crowdsensing in MSNs. Unlike traditional task
scheduling problems, the requester not only needs to
assign tasks, but also needs to recycle the results. More-
over, these can be conducted only when the requester
meets other mobile users with some probabilities.

2) We propose an offline task assignment algorithm, i.e.,
FTA, in which a greedy task assignment strategy is
adopted. Moreover, we prove that such a greedy strategy
can achieve the minimum average makespan.

3) We also propose an online task assignment algorithm,
i.e., NTA, by extending FTA. Furthermore, we prove
that NTA can achieve a better performance than FTA.
Additionally, we analyze the competitive ratio of NTA.

4) We conduct extensive simulations on four real traces
and a synthetic trace to evaluate the FTA and NTA al-
gorithms. The results show that the proposed algorithms
can achieve smaller average makespans, compared with
other algorithms.

The remainder of the paper is organized as follows. We
introduce the network model, and the problem in Section II.
The FTA and NTA algorithms are proposed in Sections III
and IV, respectively. In Section V, we evaluate the perfor-
mance of our algorithms through extensive simulations. After
reviewing related work in Section VI, we conclude the paper
in Section VII.

II. MODEL & PROBLEM

A. Network Model

We consider an MSN that is composed of a crowd of
mobile users, denoted by the set V={v0, v1, ..., vn}. Suppose
that there is a user in this MSN, called the requester, who
has some indivisible mobile sensing tasks. However, the total
workload of these tasks is beyond its processing ability. Then,
it starts crowdsensing. Other users in this MSN are assumed
to be willing to participate in this crowdsensing due to some
incentive mechanisms. Nevertheless, when these users conduct
the crowdsensing tasks, they prefer to adopt the short-distance
wireless communication model, so as to decrease the cost.
More specifically, the requester moves around. If it encounters
another mobile user, it assigns one or more tasks to this user.
Then, this user will process these tasks. This might take some
time. Also, the user will return the results of processed tasks
to the requester, when they meet in the future.

Here, we say that two mobile users “encounter” or “meet”,
meaning that they move close and can directly communicate
with each other via Bluetooth, or they enter the communication
range of some access points respectively, so that they can
indirectly contact each other via WiFi, as shown in Fig. 1.
In this paper, we assume that the communication duration

and bandwidth are enough for each user to receive tasks or
return results. Moreover, we consider a widely-used mobility
model [10], [17]. That is, the inter-meeting time between
each user vi ∈ V and the requester follows the exponential
distribution, whose rate parameter is λi. Moreover, we assume
that the requester has known the rate parameter λi of each user
vi, which can be derived from its historical encounter records.

B. Problem

Consider a mobile crowdsensing in the above MSN. Without
loss of generality, we let the requester be user v0, and suppose
that the requester has m indivisible mobile sensing tasks, de-
noted by J={j1, j2, · · · , jm}. These tasks might be different
types of tasks. Despite this, their workloads can be uniformly
indicated by the sensing time, denoted as τ1, τ2, · · · , τm. For
simplicity, we assume that all tasks in J need to be assigned
to other users, and each task will be assigned to only one user.

In this paper, we focus on the average makespan of the tasks
in J . The makespan of a task is the time that the requester
finally receives the result of this task. We use M(j) to denote
the makespan of an arbitrary task j ∈ J . Moreover, we use
a partition Π= {J1, J2, · · · , Jn} to denote a task assignment
strategy, in which Ji (1 ≤ i ≤ n) is an ordered set of tasks,
satisfying

∑n
i=1 Ji = J and Ji ∩ Ji′ = ∅ for ∀Ji, Ji′ ∈ Π.

If Ji = ∅, the requester will not assign any tasks to user vi.
Otherwise, the requester will send the tasks in Ji to user vi,
and then, user vi will process these tasks according to their
orders in Ji. For ∀j, j′∈Ji, we use j≼j′ to indicate that task
j will be processed prior to j′ in Ji (if j ̸= j′). In addition,
we use AM(Π) to denote the average makespan of all tasks
for a given task assignment strategy Π. That is,

AM(Π)=
1

m

∑
j∈J

M(j)|Π. (1)

Then, our objective is to determine a task assignment
strategy Π to minimize the average makespan AM(Π). In
the following sections, we consider two cases: the offline
task assignment and the online task assignment. The former
indicates that the requester makes the task assignment decision
before it encounters any other mobile user, while the latter
means that the requester dynamically makes the immediate
task assignment decision at each time when it encounters a
mobile user. To distinguish, we use ΠF and ΠN to denote the
offline task assignment strategy and the online task assignment
strategy, respectively. Moreover, we use Π∗

F and ΠOPT to
denote the corresponding optimal strategies.

III. FTA: OFFLINE TASK ASSIGNMENT

In this section, we first derive the formula to compute the
average makespan for an arbitrary task assignment strategy,
and then introduce the greedy task assignment strategy, fol-
lowed by the detailed algorithm and the proof of optimality.

A. Basic Formula

Without loss of generality, we consider an arbitrary offline
task assignment strategy ΠF = {J1, J2, · · · , Jn}, and derive
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Fig. 2. The average makespan of an offline task assignment strategy ΠF =
{J1, J2}: AM(ΠF )= 1
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the average makespan of all tasks for this task assignment
strategy. More specifically, we have the following theorem:

Theorem 1: The average makespan AM(ΠF ) for the offline
task assignment strategy ΠF ={J1, J2, · · · , Jn} satisfies:

AM(ΠF )=
1

m

n∑
i=1

∑
j∈Ji

(
2

λi
+

∑
j′∈Ji∧j′≼j

τj′). (2)

Proof: We consider an arbitrary task j ∈ Ji. It involves
three phases. At the beginning, the task will be sent to user
vi by the requester. This happens only when the requester
meets user vi. Since the inter-meeting time of user vi and the
requester follows the exponential distribution with a rate pa-
rameter λi, the expected time of this phase is

∫∞
0

λite
−λitdt=

1
λi

. In the second phase, user vi will process the tasks in
Ji. Note that user vi will first process those tasks that are
prior to j in Ji. Thus, the time of task j being processed in
this phase is

∑
j′∈Ji∧j′≼j τj′ . In the third phase, the result

of task j will be returned to the requester by user vi when
they have another meeting. The expected return time is still∫∞
0

λite
−λitdt= 1

λi
. Thus, the expected makespan of this task

is 2
λi
+
∑

j′∈Ji∧j′≼j τj′ . By computing the average value of the
expected makespans of all tasks in this way, we can get that
the theorem holds.

Theorem 1 gives a formula, by which we can compute the
average makespan for each possible offline task assignment
strategy. According to the formula in this theorem, we can
derive a basic property of the optimal offline task assignment
strategy Π∗

F , as follows.
Theorem 2: Suppose the optimal offline task assignment

strategy is Π∗
F = {J1, J2, · · · , Jn}. Then, the tasks with

small workloads will be processed first. More specifically, for
∀j, j′∈Ji (1≤ i≤n), if τj≤τj′ , then the order of tasks j and
j′ in Ji satisfies j≼j′.

Proof: The contradiction method is adopted. Assume that
there exists the tasks j, j′ ∈ Ji ∈ Π∗

F , satisfying τj ≤ τj′ but
j′ ≼ j. Without loss of generality, we assume that j′ and j
are the k-th and h-th tasks in Ji, respectively, where k < h.
Then, we construct another task assignment strategy Π′

F by
exchanging the orders of the tasks j and j′ in Ji. Computing
AM(Π∗

F ) and AM(Π′
F ) according to Eq. 2 in Theorem 1,

and comparing them, we have:

AM(Π∗
F )−AM(Π′

F )=
1

m
(h−k)

(
τj′−τj

)
>0. (3)

This means that the new task assignment strategy Π′
F can

achieve a smaller average makespan than Π∗
F . This is a

contradiction to the optimality of Π∗
F . Thus, the assumption

is incorrect, and we have j≼j′.
Fig. 2 shows a simple example of computing the average

makespan for an offline task assignment strategy ΠF =
{J1, J2}, where J1 = {j1, j3}, and J2 = {j2, j4}. The
makespan of the task j1 contains the expected time for the
requester v0 sending the task, the time for v1 processing the
task, and the expected time for v1 returning the corresponding
result. Thus, M(j1)=

2
λ1

+ τ1. Besides, the makespan of the
task j3 needs to contain the waiting time for v1 processing the
task j1 which is prior to j3. That is to say, M(j3)=

2
λ1
+τ1+τ3.

Likewise, we can get M(j2) =
2
λ2

+ τ2 and M(j4) =
2
λ2

+
τ2 + τ4. Then, the average makespan for the task assignment
strategy ΠF is AM(ΠF )=

1
4 (M(j1)+M(j2)+M(j3)+M(j4)).

In this example, the workloads of the tasks j1, j2, j3, and j4
satisfy τ1<τ2<τ3<τ4, and ΠF is actually the optimal task
assignment strategy. In order to achieve the minimum average
makespan, users v1 and v2 first process j1 and j2, respectively.

B. Basic Solution

According to Theorem 2, we adopt a greedy offline task as-
signment strategy by assigning the tasks with small wordloads
first. Before the detailed solution, we first define a concept of
expected processing time.

Definition 1 (Expected Processing Time): The expected
processing time of a user, denoted by EPT , is the expected
time for the user to meet the requester, process the tasks in
hand, and return the result. More specifically, the expected
processing time of a user is double the expected time of
the user meeting the requester, plus the total workloads of
the tasks in hand. For example, the expected processing
time of a user vi who has the tasks {ji1 , ji2 , · · · , jik} is
EPTi=

2
λi
+τi1+τi2+· · ·+τik . In addition, when the user has

no tasks in hand, its expected processing time is double the
expected time of the user meeting the requester.

The basic idea of FTA is that we always assign the minimum
workload task among the tasks that have not been assigned
to the user with the smallest expected processing time. At
the beginning, we sort all tasks in the ascending order of
their workloads. Without loss of generality, we assume that
the workloads of the tasks satisfy τ1 < τ2 < · · · < τm.
First, we assign the task j1 to the user with the smallest
expected processing time. At this time, the expected processing
time of each user is double the expected time of the user
meeting the requester. Without loss of generality, we assume
that λ1≥λ2≥· · ·≥λn, which means that user v1 is the user
with the minimum expected processing time. Thus, the task
j1 is assigned to user v1. Second, we focus on the task j2.
Now, user v1 has the task j1 in hand. Its expected processing
time becomes 2

λ1
+τ1. The minimum expected processing time

will be Min{ 2
λi
+τ1,

2
λ2
, · · · , 2

λn
}. Without loss of generality,

we assume that user v2 has the minimum expected processing
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Fig. 3. Example: greedily assign the tasks j1, j2, j3, j4 (τ1 = 4, τ2 = 6, τ3 = 8, τ4 = 10) to users v1, v2, v3 (λ1 = 1/4, λ2 = 1/5, λ3 = 1/11), and the
optimal task assignment strategy is Π∗

F ={J1, J2, J3}, where J1={j1, j3}, J2={j2, j4}, and J3=∅.

time. Then, we assign the task j2 to user v2. In this way, the
remaining tasks are assigned in turn.

Fig. 3 shows the process of greedily determining the optimal
strategy Π∗

F through a simple example, in which four tasks
j1, j2, j3, j4 are assigned to three users v1, v2, v3. In this exam-
ple, τ1=4, τ2=6, τ3=8, τ4=10, and λ1=

1
4 , λ2=

1
5 , λ3=

1
11 .

At the beginning, the expected processing times of users
v1, v2, v3 are 2

λ1
, 2

λ2
, and 2

λ3
, as shown in Fig. 3(a). Then,

the task j1 is assigned to the user v1, as shown in Fig. 3(b).
After this, the expected processing time of user v1 becomes
2
λ1
+τ1, which is larger than that of user v2. Then, the task j2

is assigned to the user v2, as shown in Fig. 3(c). In the same
way, the task j3 is assigned to the user v1 again in Fig. 3(d).
Finally, the task j4 is assigned to the user v2 again in Fig. 3(e).

C. The Detailed Algorithm

Based on the above solution, we design the FTA algorithm,
as shown in Algorithm 1. In Step 2, the set of tasks that are
assigned to each user is initialized to be an empty set. More-
over, the expected processing time of each user is initialized
in Step 3. Next, the algorithm assigns all tasks, in turn. In
Step 5, the user with the minimum expected processing time
is determined. Then, the task is assigned to this user in Step
6. After the assignment, the expected processing time of this
user is updated in Step 7, for the next round of computation.
The computation overhead is dominated by Step 5, which is
O(mn). In addition, as the input of this algorithm, the tasks
are assumed to have been sorted in ascending order of their
workloads in advance. This will lead to an extra computation
overhead of O(m logm).

D. The Optimality

The FTA algorithm adopts an efficient greedy strategy to
assign all tasks. Here, we prove that this greedy strategy is
exactly optimal for the offline task assignment case.

Theorem 3: Suppose that the workloads of the tasks
j1, j2, · · · , jm satisfy τ1 ≤ τ2 ≤· · ·≤ τm, among which the
tasks j1, j2,· · ·, jk−1 (1≤k≤m) have been assigned according
to the FTA algorithm. Denote the set of tasks that have been
assigned to user vi as J ′

i , and assume that the current expected
processing time of this user is EPTi. Then, the optimal task
assignment strategy Π∗

F={J1, J2, · · · , Jn} satisfies:
1) The user who currently has the minimum expected

processing time will be assigned the maximum number
of tasks in the following rounds of task assignments:

EPTi=Min{EPT1, · · · , EPTn}⇒
|Ji−J ′

i |=Max{|J1−J ′
1|, · · · , |Jn−J ′

n|}, (4)

Algorithm 1 The FTA Algorithm
Require: J={j1, j2, · · · , jm : τ1≤τ2≤· · ·≤τm},

V ={v1, v2, · · · , vn : λ1, λ2, · · · , λn}.
Ensure: ΠF ={J1, J2, · · · , Jn}

1: for each user vi do
2: Ji=∅;
3: EPTi=

2
λi

;
4: for task j from j1 to jm do
5: imin=argmin{EPT1, EPT2, · · · , EPTn};
6: Assign task j to vimin : Jimin =Jimin+{j};
7: EPTimin =EPTimin+τimin ;

where |Ji−J ′
i | is the number of tasks in the set Ji−J ′

i .
2) The task jk will be assigned to the user who currently

has the minimum expected processing time:

EPTi=Min{EPT1, · · · , EPTn}⇒jk∈Ji. (5)

Proof: 1) First, we prove part 1 by using the contradiction.
Assume that although EPTi = Min{EPT1, · · · , EPTn},
Ji − J ′

i is not the set with the maximum tasks among
{J1 − J ′

1, · · · , Jn − J ′
n}. Without loss of generality, we let

|Jl−J ′
l | =Max{|J1−J ′

1|, · · · , |Jn−J ′
n|} (1 ≤ l ≤ n, l ̸= i).

Moreover, we assume that Ji−J ′
i = {ji1 , · · · , jis}, Jl−J ′

l =
{jl1 , · · · , jlr}, and r>s. Then, we construct another task as-
signment strategy Π′

F = {J1, · · · , J̄i, · · · , J̄l, · · · , Jn}, where
J̄i−J ′

i={jl1 , · · · , jlr}, J̄l−J ′
l ={ji1 , · · · , jis}, by exchanging

the tasks in Ji−Ji and Jl−J ′
l . After a careful computation on

AM(Π∗
F ) and AM(Π′

F ) according to Theorem 2 and Eq. 2
in Theorem 1, we have:

AM(Π∗
F )−AM(Π′

F )=
1

m
(s−r)(EPTi−EPTl)>0. (6)

Thus, the new task assignment strategy Π′
F can achieve a

smaller average makespan than Π∗
F . This is a contradiction

to the optimality of Π∗
F . Due to the contradiction, we have

that part 1 of the theorem holds.
2) We still adopt the contradiction method for part 2.

Assume that EPTi =Min{EPT1, · · · , EPTn}, but jk ̸∈ Ji
(i.e., jk ̸∈ Ji − J ′

i). Without loss of generality, we assume
that task jk is assigned to user vl in the optimal offline task
assignment strategy Π∗

F , i.e., jk∈Jl−J ′
l (l ̸= i), and assume that

the task with the smallest workload in the task set Ji−J ′
i is jh

(k<h≤m). According to Theorem 2, tasks jk and jh are the
first tasks to be processed in Jl−J ′

l and Ji−J ′
i , respectively.

Now, we construct another task assignment strategy Π′
F by

exchanging the tasks jk ∈ Jl −J ′
l and jh ∈ Ji−J ′

i . Then,
computing AM(Π∗

F ) and AM(Π′
F ) according to Eq. 2 in
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Theorem 1, and comparing them, we have:

AM(Π∗
F )−AM(Π′

F )=
1

m
(|Jl−J ′

l |−|Ji−J ′
i |)(τk−τh). (7)

Since EPTi=Min{EPT1, · · · , EPTn}, we have |Ji−J ′
i |>

|Jl−J ′
l | according to the proof of part 1. Moreover, we have

τk<τh due to k<h. Thus, we can get

AM(Π∗
F )−AM(Π′

F )>0. (8)

This shows that the new task assignment strategy Π′
F can

achieve a smaller average makespan than Π∗
F . This is a

contradiction to the optimality of Π∗
F . Thus, the assumption

is incorrect, and we have jk∈Ji−J ′
i⊆Ji. The theorem holds.

Theorem 3 shows that, in each round of task assignment,
the current task with the smallest workload should always be
assigned to the user who has the minimum expected processing
time. This is exactly the task assignment strategy adopted by
the FTA algorithm. Thus, we directly have:

Corollary 4: The FTA algorithm can achieve the optimal
average makespan for the offline task assignment case.

IV. NTA: ONLINE TASK ASSIGNMENT

In this section, we propose the online task assignment
algorithm NTA, in which the task assignment decision is made
only when the requester meets each mobile user. First, we
introduce the basic solution, and then present the detailed
algorithm, followed by the performance analysis.

A. The Basic Solution

Before the detailed solution, we first define a concept of
instant processing time for each user, as follows.

Definition 2 (Instant Processing Time): The instant process-
ing time, denoted by IPT , is the time for a mobile user,
who has just encountered and received some tasks from the
requester, to process these tasks and return the results. That is
the total workloads of the tasks in hand plus the expected time
for the user return the results to the requester. For example,
the instant processing time of a user vi who has the tasks
{ji1 , ji2 , · · · , jik} is IPTi=

1
λi
+τi1+τi2+· · ·+τik .

The basic idea of the NTA algorithm is that the requester
makes the task assignment decisions only when it meets other
mobile users, and the decisions are based on the instant
processing time of the encountered users. The detailed solution
is presented as follows. At the beginning, the requester holds
all tasks in J . When it encounters a mobile user vi, it starts

an online task assignment process. More specifically, the
requester first computes the instant processing time IPTi of
user vi and the expected processing time of other users who
have not been met by itself. Then, it adopts the same greedy
strategy as that in FTA to assign tasks, while using the instant
processing time IPTi to replace the expected processing time
EPTi in FTA. That is, it always assigns the task with the
minimum workload to the user who has the minimum instant
processing time or expected processing time, until all tasks
are assigned. Through this process, the requester will get a
task assignment result {J1, · · · , Ji, · · · , Jn}. However, only
Ji among them is the final result. The requester only assigns
the tasks in Ji to user vi, while keeping the remaining tasks
(i.e., the tasks in J−Ji) in hand. This ends a round of online
task assignment. Actually, the requester might continue to
meet other mobile users. For each encounter, it makes an
online task assignment decision in the same way, to assign
some tasks to the encountered user, until all tasks are assigned.

Fig. 4 shows an example, in which the requester has
four tasks j1, j2, j3, j4 (τ1 = 4, τ2 = 9, τ3 = 10, τ4 = 11),
and wishes to assign them to three mobile users v1, v2, v3
(λ1 =

1
4 , λ2 =

1
6 , λ3 =

1
7 ). In Fig. 4, the requester encounters

v2 first. Then, the requester computes the instant processing
time of v2 and the expected processing time of v1 and v3:
EPT1=

2
λ1

=8, IPT2=
1
λ2

=6, and EPT3=
2
λ3

=14, among
which IPT2 is the smallest. Thus, the requester assigns the
task j1, which has the smallest workload, to user v2. Then,
IPT2 becomes IPT2=

1
λ2
+τ1=10. Next, the requester adopts

the same greedy strategy to assign the remaining tasks. As a
result, we have J1 = {j2}, J2 = {j1, j3}, and J3 = {j4},
as shown in Fig. 4(a). Among them, only J2 = {j1, j3} is
the final result, and J1, J3 are temporary results. Then, the
requester assigns the tasks j1 and j3 to v2, while keeping
the remaining tasks j2 and j4 in hand for future online task
assignments. In the second step, the requester encounters user
v1. Then, the requester conducts the same task assignment
process. The result is J1 = {j2, j4}, and J3 = ∅, as shown in
Fig. 4(b). Moreover, J1={j2, j4} is the final result. According
to this result, the requester assigns the tasks j2 and j4 to v1.
Now, there are no remaining tasks. Then, J3 = ∅ is also the
final result. Thus, the final result is ΠN ={J1, J2, J3}, where
J1={j2, j4}, J2={j1, j3}, and J3=∅.

B. The Detailed Algorithm

The detailed NTA algorithm is presented in Algorithm 2.
When the requester meets an arbitrary user vi, it first initializes
the instant processing time IPTi and the assigned task set
Ji of the encountered user in Steps 1-2. In Steps 3-6, the
expected processing time and the assigned task sets of other
users are initialized. From Step 7 to Step 15, the requester
determines whether each task in hand should be assigned to the
encountered user vi. First, the requester compares the instant
processing time IPTi and the expected processing time of
other users in Step 8, so as to find the smallest one. The
user who is related to this smallest value is denoted by vimin .
If this user is exactly user vi, the requester will assign the



Algorithm 2 The NTA Algorithm
Require: J={j1, j2, · · · , jm : τ1≤τ2≤· · ·≤τm},

V ={v1, v2, · · · , vn : λ1, λ2, · · · , λn}.
Ensure: ΠN ={J1, J2, · · · , Jn}
When the requester meets user vi do

1: IPTi=
1
λi

;
2: Ji=∅;
3: V=V−{vi};
4: for each other user vl∈V do
5: Jl=∅;
6: EPTl=

2
λl

;
7: for task j from j1 to jm and j∈J do
8: imin=argmin

(
{IPTi}+{EPTl | vl∈V }

)
;

9: if imin= i then
10: Assign task j to vi: Ji=Ji+{j};
11: IPTi=IPTi+τi;
12: J=J−{j};
13: else
14: Jimin =Jimin+{j};
15: EPTi=EPTi+τimin ;
16: return Ji;

current task to this user, update the instant processing time
IPTi, and delete this task from J in Steps 10-12. Otherwise,
the requester will temporarily assign this task to user vimin ,
and will update the expected processing time of this user in
Steps 14-15. After this process, the requester will determine
the tasks that should be assigned to the encountered user vi.
Then, the algorithm outputs the set of these tasks in Step 16.
Next, when the requester meets another user, this algorithm
will be conducted again to assign some of the remaining tasks
to the new encountered user, and so on, until all tasks are
assigned. The computation overhead is dominated by Step 8,
which is O(mn2).

C. Performance Analysis

Compared to the offline FTA algorithm, the NTA algorithm
adopts the same greedy strategy to make the decisions on
task assignments, but the decisions are made only when the
requester encounters other users, and the decisions are based
on the instant processing time of the encountered users and
the expected processing time of other users. By using the
instant processing time, instead of the expected processing
time of the encountered users, the requester can achieve a
better performance. Here, we give the sketch proof of such a
performance guarantee.

Theorem 5: The NTA algorithm can achieve a smaller
average makespan than FTA, i.e., AM(ΠN )≤AM(Π∗

F ).
Proof: Without loss of generality, we assume that the

requester meets other users in the order of v1, v2, · · · , vn
during the crowdsensing. Moreover, we use Πi to denote
the temporary online task assignment result for the requester
meeting user vi. Now, we prove AM(Π0)≥AM(Π1)≥· · ·≥
AM(Πn), where Π0=Π

∗
F and Πn=ΠN .

Consider the i-th online task assignment decision made by
the requester when it meets user vi (1≤ i≤n), and assume that
the decision result is Πi = {J1, · · · , Ji−1, Ji, J

′
i+1, · · · , J ′

n}.
In fact, J1, · · · , Ji−1 are the final results determined by the 1st,
· · · , (i−1)-th online task assignment decisions, respectively.
At the i-th online decision, the requester assigns the remaining
unassigned tasks, i.e. the tasks in J − J1 − · · · − Ji−1,
and determines the final result Ji and the temporary results
J ′
i+1, · · · , J ′

n. This decision is made according to the greedy
strategy adopted in the FTA algorithm. The only difference
is that we use the instant processing time IPTi to replace
the expected processing time EPTi. This is due to the reason
that, when the requester has encountered user vi, the time
for the requester sending tasks to vi changes from 1

λi
(in

EPTi) to zero (in IPTi). In Theorem 3, we have proven
that such a greedy strategy can achieve the optimal (expected)
average makespan. The optimality of this strategy still holds
when we use IPTi to replace EPTi in the case that the
requester meets user vi. We can prove this by duplicating
the proof of Theorem 3, while replacing EPTi by IPTi. To
avoid the redundancy, we do not copy the detailed proof here.
This result implies that Ji, J ′

i+1, · · · , J ′
n are the optimal task

assignments until the i-th online decision. Thus, if we denote
the result of the (i−1)-th online task assignment decision
as Πi−1 = {J1, · · · , Ji−1, J

′′
i , J

′′
i+1, · · · , J ′′

n} (here, the final
results J1, · · · , Ji−1 in Πi−1 are the same as those in Πi, and
J ′′
i , J

′′
i+1, · · · , J ′′

n are temporary results in this decision), then
we have that the assignment Ji, J ′

i+1, · · · , J ′
n can achieve the

smaller average makespan than J ′′
i , J

′′
i+1, · · · , J ′′

n . This shows
AM(Πi−1)≥AM(Πi). Due to the arbitrariness of i, we can
get AM(Π0) ≥ AM(Π1) ≥ · · · ≥ AM(Πn) by the same
analysis, implying the correctness of this theorem.

Further, we give the analysis on the competitive ratio of the
NTA algorithm as follows.

Theorem 6: Assume that there is a god, who can foresee
the mobilities of all mobile users as to know at what time the
requester will meet which user. Based on this, the god can
give an ideal optimal online task assignment strategy, denoted
by ΠOPT . Then, we have:

1) The average makespan for the task assignment strategy
ΠN produced by NTA satisfies:

AM(ΠN )−AM(ΠOPT )≤
n∑

i=1

2

λi
. (9)

2) The competitive ratio of the NTA algorithm satisfies:

AM(ΠN )

AM(ΠOPT )
≤1+

m
∑n

i=1
2
λi∑n

j=1 τj
. (10)

Proof: Without loss of generality, we assume that the
requester meets users v1, v2, · · · , vn at the time t1, t2, · · · , tn,
and it also takes the time t′1, t

′
2, · · · , t′n for these users to

return their results to the requester, respectively. Moreover,
we assume that the ideal optimal solution given by the god is
ΠOPT ={J∗

1 , · · · , J∗
n}. Since the god has known the time at

which the requester meets other users, and the time of other
users returning results, this ideal optimal task assignment can



TABLE I
STATISTICS OF THE REAL TRACES.

Trace Contacts Length Requester Other
(hours) users

Intel 2,766 99.8 9 128
Cambridge 6,732 145.6 12 223
Infocom 28,216 76.6 41 264
UMassDieselNet 227,657 95.3 4 36

be seen as a special offline task assignment. Then, we can use
Eq. 2 in Theorem 1 to calculate the average makespan:

AM(ΠOPT )=
1

m

n∑
i=1

(
(ti+t′i)|J∗

i |+
∑
j∈J∗

i

∑
j′∈J∗

i
∧j′≼j

τj′

)
. (11)

On the other hand, we consider an offline task assignment
case without a god. Although there is no god, the requester
still uses ΠOPT as its real offline task assignment strategy,
i.e., ΠF =ΠOPT . Then, according to Theorem 1, we have:

AM(ΠF )=
1

m

n∑
i=1

(
2

λi
|J∗

i |+
∑
j∈J∗

i

∑
j′∈J∗

i
∧j′≼j

τj′

)

=AM(ΠOPT )+
1

m

n∑
i=1

( 2

λi
−ti−t′i

)
|J∗

i |. (12)

Note that, as an offline task assignment solution without a god,
ΠF is not optimal. Actually, we have AM(ΠF )≥AM(Π∗

F )
according to Corollary 4. On the other hand, according to
Theorem 6, we have AM(Π∗

F )≥AM(ΠN ). Thus, we can get
AM(ΠF )≥AM(ΠN ). Replacing AM(ΠF ) in this inequality
by Eq. 12, we have:

AM(ΠN )−AM(ΠOPT )≤
1

m

n∑
i=1

( 2

λi
−ti−t′i

)
|J∗

i |

≤ 1

m

n∑
i=1

2m

λi
=

n∑
i=1

2

λi
. (13)

Thus, the part 1 of this theorem is correct. Further, we can
get AM(ΠOPT )≥ 1

m

∑n
j=1 τj according to Eq. 11. Therefore,

according to Eq. 13, we have:

AM(ΠN )

AM(ΠOPT )
≤1+

∑n
i=1

2
λi

AM(ΠOPT )
≤1+

m
∑n

i=1
2
λi∑n

j=1 τj
. (14)

Thus, this theorem holds.
Theorem 6 shows that the absolute error of NTA is no more

than a fixed value, i.e.,
∑n

i=1
2
λi

, which only depends on the
expected meeting time between the requester and other users.
When the average expected meeting time is very small, our
algorithm can even achieve the nearly optimal result. On the
other hand, the competitive ratio of NTA is subject to both
the average workload of tasks and the expected meeting time.
When the average workload is very large, the competitive ratio
of NTA will be very close to 1, although the absolute error
might change not much. In fact, our simulation results in the
next section have also captured these observations.

V. EVALUATION

We conduct extensive simulations to evaluate the perfor-
mances of the proposed algorithms. The compared algorithms,
the traces that we used, the simulation settings, and the results
are presented as follows.

A. Algorithms in Comparison

In order to evaluate the performances of our algorithms, we
implement the Water Filling (WF) algorithm [15] and the ideal
optimal online task assignment (OPT) algorithm, discussed
in Section IV. Besides, according to classic parallel machine
scheduling mechanisms, we also design and implement anoth-
er algorithm, denoted by LF (Largest-First) [2].

More specifically, the WF algorithm assigns the tasks of the
requester, in turn, to the earliest idle user, i.e., the user who has
the minimum expected processing time [15]. Different from
FTA and NTA, the WF algorithm assigns the tasks according to
their initial orders, i.e., j1, j2, · · · , jm. The OPT algorithm just
makes the optimal offline task assignment decision according
to the real time when the requester meets other users. Like
FTA, NTA, and WF, the LF algorithm also assigns the tasks
to the earliest idle users, but these tasks are assigned according
to the descending order of their workloads, which is exactly
the reverse order of that in FTA.

B. Real-traces Used and Simulation Settings

The Cambridge Haggle Trace [14] includes three traces of
Bluetooth device connections by people carrying mobile de-
vices (iMotes) over a certain number of days. These traces are
collected by different groups of people in office environments,
conference environments, and city environments, respectively.
The nodes in the trace are classified into two groups: internal
nodes and external nodes. Since there is no meeting record
between internal nodes, we only use these internal nodes as
requesters, and let the external nodes receive and process tasks.
Table I shows some statistics of the traces that we used.

The UMassDieselNet Trace [13] contains the bus-to-bus
contacts (the durations of which are relatively short) of 40
buses. Our simulations are performed on traces collected over
55 days during the Spring 2006 semester, with weekends,
Spring break, and holidays removed due to reduced schedules.
The bus system serves approximately ten routes. There are
multiple shifts serving each of these routes. Shifts are further
divided into morning (AM), midday (MID), afternoon (PM),
and evening (EVE) sub-shifts. Drivers choose buses at random
to run the AM sub-shifts. At the end of the AM sub-shift, the
bus is often handed over to another driver to operate the next
sub-shift on the same route, or on another route. For this trace,
we select 4 buses with long trace records as the requesters, and
let the remaining buses act as other mobile users.

In addition, we estimate the rate parameter λi of each user
vi by using the ratio of its meeting times with requesters
and the total duration in the traces. Moreover, we randomly
produce the tasks for each requester. The number of tasks
is selected from {200, 400, · · · , 1000}. The average workload
of all tasks, denoted by τ , is selected from {10, 20, · · · , 50}
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(d) UMassDieselNet
Fig. 5. Performance comparisons on real traces: the average makespan vs. the average workload of tasks (The number of tasks m=300).
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(d) UMassDieselNet
Fig. 6. Performance comparisons on real traces: the average makespan vs. the number of tasks (The average workload of tasks τ=20).

(hours). Moreover, the maximum variance of the workload
of each task is also τ . That is, the workload of each task is
randomly selected from [0, 2τ ].

C. Synthetic Traces and Simulation Settings

In order to evaluate the performances of our algorithms with
different numbers of users and inter-meeting times, we also
conduct a series of simulations on synthetic traces. First, we
determine the number of mobile users, which is selected from
{100, 200,· · ·, 1000}. Then, we randomly select 5% ∼ 10%
of these users as the requesters. Next, we determine the
average rate parameter λ for the exponentially distributed
inter-meeting time between the requesters and other users,
which is selected from {0.01, 0.02,· · ·, 0.10} (1/hour). Then,
for each pair of requesters and mobile users, we randomly
select a value from [0, 2λ] as the rate parameter between them.
Based on these network parameters, we construct an MSN to
produce the synthetic trace. Finally, like the simulations on the
real traces, we also generate the tasks for each requester, where
the number of tasks is selected from {100, 200,· · ·, 1000}, and
the average workload is selected from {5, 10,· · ·, 50} (hours).

D. Evaluation Results

First, we evaluate the performances of the five algorithms
through two groups of simulations on real traces, with different
numbers of tasks and diverse average workloads. In the first
group of simulations, we conduct these algorithms by changing
the average workload, while keeping the number of tasks fixed.
The results of the average makespans are shown in Fig. 5.
For each real trace, the average makespans of FTA and NTA
are more close to that of OPT than the other two algorithms.
Moreover, NTA has a better performance than FTA. In the
second group of simulations, we change the number of tasks,
while keeping the average workload of all tasks fixed. The
results of the average makespans are shown in Fig. 6. For each
real trace, the average makespans of FTA and NTA are still
smaller than those of the two compared algorithms. Moreover,
NTA has the best performance besides OPT. In addition, along
with the increase of the average workload or the number

of tasks, the absolute errors of our algorithms compared to
OPT in both groups of simulations have little change. This is
because the absolute errors of our algorithms mainly depend
on the inter-meeting times between requesters and other users,
and these inter-meeting times are actually derived from the real
traces so that they keep unchange in the whole simulations.
Moreover, when the number of tasks and the average workload
increase, the average makespans of all algorithms become
larger. Since the absolute errors change little, the ratios of
average makespans between our algorithms and OPT are very
close to 1. These observations exactly validate our theoretical
analysis results.

Second, we evaluate the performances of the five algorithms
on the synthetic traces, taking the different number of users,
average workload, number of tasks, and average rate parameter
into account. When we evaluate the performances for one
parameter (i.e., the number of users, the average workload,
the number of tasks, or the average rate parameter), we keep
the other three parameters fixed. The results are shown in
Fig. 7. These results also prove that FTA and NTA have
better performances than WF and LF. Moreover, NTA has
the best performance among the four algorithms. As in the
simulations on real traces, along with the increase of the
average workload or the number of tasks, the absolute errors
of our algorithms also have little change. Nevertheless, along
with the increase of the average rate parameter, the absolute
errors of our algorithms become smaller and smaller. This is
because the average inter-meeting time decreases, which leads
to decreasing absolute errors. In addition, when the number of
mobile users increases, the average time for a requester to meet
a user also decreases, so that the average makespans of our
algorithms decrease. These observations still remain consistent
with our theoretical analysis results.

VI. RELATED WORK

In this paper, we focus on the task assignment problem in
mobile crowdsensing, which involves a lot of mobile users in
solving a large job through their carried mobile devices [9].
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Fig. 7. Performance comparisons on the synthetic traces with the different number of users, average workload, number of tasks, or average rate parameter.

By far, there have been several frameworks, platforms, and
incentive mechanisms designed for crowdsensing systems [3],
[6]–[8], [11], [12], [16]. Among them, the most related work
is the LRBA algorithm designed for a task allocation problem
in mobile crowdsensing [11]. Unlike our work, the problem
in this work is NP-hard, and the tasks are location dependent.

On the other hand, our task assignment problem is also
different from traditional parallel machine scheduling prob-
lems. In fact, there have been thousands of papers on parallel
machine scheduling problems by far. Literatures [2], [5] have
made a detailed review on these works. Even in recent
years, there is still much research on the complex parallel
machine scheduling problems, such as [1], [4]. The most
related works among the existing researches are based on the
parallel machine scheduling models, taking the setup time into
consideration. In these works, each task is assumed to have
a common setup time to all machines, but remains diverse
for different tasks. Moreover, most of these problems are NP-
hard. In contrast, the tasks being sent to mobile users in our
problem follow the mobility model. More specifically, each
task being sent to a mobile user is a probabilistic event. The
probability distribution might be different for mobile users,
but remains common for diverse tasks. Moreover, mobile
users need to return the result for each task, which is also
a probabilistic event. Such a unique task assignment model
makes our problem different from existing parallel machine
scheduling problems.

In addition, there is also much research in the MSN field,
which mainly focuses on routing problems [10], [17]. None
of them have studied task assignment problems, except Water
Filling, which is proposed to allocate tasks among the mobile
users in an MSN [15]. Although this work also takes the
delivery time of the tasks and their results into consideration,
it mainly focuses on minimizing the latest makespan of all
tasks, which is an NP-hard problem, unlike ours.

VII. CONCLUSION

In this paper, we study the task assignment problem for
mobile crowdsensing in MSNs. In order to minimize the
average makespan of the assigned tasks, we propose an offline
task assignment algorithm FTA and an online task assignment
algorithm NTA. Both FTA and NTA adopt a greedy task
assignment strategy, but at different time. Theoretical anal-
ysis shows that FTA is the optimal offline task assignment
algorithm, and NTA can achieve a smaller average makespan
in the online decision case. We also give a competitive ratio
of NTA, and conduct a series of simulations on real traces and

synthetic traces. The results have also proven the significant
performance of our algorithms.
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