T

Reliability
Enhanced Social
Crowdsourcing

Wei Chang and Jie Wu
Temple University
Email: wei.chang@temple.edu

Introduction

» Crowdsourcing:

o Job owner partitions a tedious work into pieces, and
outsources them onto a crowdsourcing platform.

o Independent freelances search and take up some
subworks. After finishing subb-works, they return results
to the platform.

o Centralized platform: Amazon Mturk

Introduction

e amazonmechanicalturk reQuESTER
amazonmechanical turk s [am— | 203,115 HITs

Timer: 00:00:00 of 10 minutes Want to work on this HIT? Want to see other HITs? Total Earned: $4.72

[M M Total HITs Submitted: 7

Reward: $0.02 per HIT HITs Available: 39 Duration: 10 minutes

Copy Text from Business Card
Requester: Oscar Smith
Qualifications Required: MNone

Your Current Quality Score is:
Please Copy Text from Business Card: If you have a high enough score, you willbe ¢ ==
consldered for promotion to a Trusted Worker.

Mame

Title Company

Email Webnsite
Piease Accept Address: 2

HIT First hacress Line 1

add line
City State Zip Code

MOTE. This is a Sample

Phone: click here ifnot a LS. phane aumber #

Work | Ext
Please select/crop company logo or
. . Mobile
image from the business card above.
Fax

Click + Drag to select the company logo.
add phone

1S Project may Comniam poenuany Expici OF Onensive COTHETIL, 107 EXSNpie, NUONY. (See cetaily

Introduction

« Crowdsourcing

* Problem with the conventional crowdsourcing:

o Although crowdsourcing brings more knowledge
diversity and a large amount of labor force, the
iIndependent feature of workers causes the problem
that it can only process simple and independent
works. For complex tasks, we need trusted experts.

o It is hard for a newly created task to attfract enough
participants in a relatively short fime, unless the task
owner gives a very attractive payment. We need
priority for our tasks.

Introduction

« Crowdsourcing

* Problem with the conventional crowdsourcing:

o trusted experts
o prioritized tasks

« Social Crowdsourcing (SC): explores the social
relations among participants
o Add a new dimension, sociality, to existing platforms.

o A Job can be completed, via iterative recruitment of
workers through social ties.

o Unlike the existing systems, workers of SC are nof
iIndependent.

Introduction

Crowdsourcing
Problem with the conventional crowdsourcing
Social Crowdsourcing (SC)

Reliability issue with SC
o Early return Social-HITs
o Ofﬂlﬂe @ \ @ rlE-E-dE]lllllEr ﬂOWﬁE. @
o Drop out & Oﬂ;’ﬁ\@/
/ 25
& Remﬂ> @
flows

Introduction

Crowdsourcing

Problem with the conventional crowdsourcing
Social Crowdsourcing (SC)

Reliability issue with SC

Reliability enhanced SC
o Preplanned redundant return paths in SC
o Returning rules

System model

Social Crowdsourcing models the job’s outsourcing
procedure via the process of iterafively recruiting

friends’ friends.

Job owner: creates social-HIT (i.e. task)
Human Worker:

o Locally processes the social-HIT

o Further propagates the social-HIT to others, and collects results
o Return the results to the participant, who gave the social-HIT

System model

Social Crowdsourcing models the job’s outsourcing

procedure via the process of iterafively recruiting
friends’ friends.

Job owner: creates social-HIT (i.e. task)

Human Worker:
o Locally processes the social-HIT
o Further propagates the social-HIT to others, and collects results
o Return the results to the participant, who gave the social-HIT
Worker status:
o Awake, sleep, done, and dead

Social Crowdsourcing:
design details

o A social-HIT: (Jobld, Father, Lifelime, Hop, Instruct)

o JobID: unique id of the original job

o Father: the participant who gave the social-HIT

o LifeTime: timely clean-up the starved job

o Hop: the number of remaining hops

o Instruct: job description and specific returning conditions

Social Crowdsourcing:
design details

o A social-HIT: (Jobld, Father, Lifelime, Hop, Instruct)

e Refurning condifions:

For relay nodes (Hop is non-zero):

o When a node is awake and receives ¢ replies, the
node immediately retfurns his result;

o If the node is in sleep and receives more than ¢
replies during sleeping, it should return all of them
when it wakes up.

For the non-relay nodes (Hop equals zero):

o When a node is awake and finish the work, it
should immediately return the result.

Social Crowdsourcing:
design details

o A social-HIT: (Jobld, Father, Lifelime, Hop, Instruct)

« Returning conditions for relay nodes:

o When a node is awake and receives ¢ replies, the node
immediately returns his result;

o If the node is in sleep and receives more than c replies during
sleeping, it should return all of them when it wakes up.

Qamial CHITT:
3{133, C, dec..., 0, instruct..., data= Iy). data>
& -~ & & 2, instruct..., data=
X \

ct..., data=_
|.-"

Reliability issue
o Successful return rate:

o P;: the probability that a node with Hop=i successfully
returns its subfree’s results to its father node.

o . average number of child
o R: reliability

Fi=R-Y_. (;)-Pfl-uﬂ_m—f

Reliability issue

e Successful return rate:

o P;: the probability that a node with Hop=i successfully
returns its subfree’s results to its father node.

o . average number of child
o R: reliability
« For example, when r=15 and R=0.8, we have:

Py c = c=T |lc=8le=9 | e=10)] c=11
H =751 .7999 [.7994 | .7962 | .7736 1828 0
H =6 7999 | 7994 | .7962 | 7724 de° 0
H=71.7999 | .7994 [.7962 | .7716 0 0

Reliability enhanced SC:
GEC structure

« Grandpa, Father, Current node structure (GFC)
represent a triangle relation in which a non-root
node records the identfities of its father (a primary
return node) and grandfather/sibling (a backup
return node)

e

o Children of non-root node Children of the root node

Reliability enhanced SC:
GEC structure

Grandpa, Father, Current node structure (GFC)
represent a triangle relation in which a non-root
node records the identfities of its father (a primary
return node) and grandfather/sibling (a backup
return node).

Property 1: The proposed GFC structure can tolerate any
non-consecutive node failure.

Property 2: The proposed GFC structure can tolerate any
non-common-source link failure, if there 1s at least one return
flow unbroken between the root and 1ts children.

When should we use the
backup paths?

« Using the backup path too early may cause many
potential results dropped off.

When should we use the
backup paths?

« Using the backup path too early may cause many
potential results dropped off.

« Returning results too late may result in both father
and grandpa nodes left.

e
,-'

Since each node has only two op’rfons ‘d orly
using the backup one may cause t
GFC-SNCA adopts the foIIowmg |
not use its backup return nod

primary one have enough op TUﬂI
data to a higher-level node.

GFC structure-based
returning rules

Rule 1: For node w satisfied S(u,t) = Awake,
ACC(u,t) > c. and either (1) S(v.t) = Done/Dead or (2)

ACC(x,t) > Cy, ACC(v,t) < Cs, if its grandfather node

satisfies one of the following three conditions. then « should
give the results to x instead of v.

If S(x,t) = Sleep. ACC'(x,t) = ¢, then u — x at t.
IfP?O{ACC,Lf—l—Qf)EC|A C(z,t) < c} -
Pro{S(z,t+At) = Sleep | S(x,t) = Sleep} = P,

then v — = at tume t.

If the number of collected results of x does not
change in the next k consecutive time intervals, and
ACU(t+k-At) > Cy, then u — z at t + k - At.

N
-
, 4 Grandfather (x)
A g
&Aathm (v)

Decision node (u)

« Current decision node:
o Wake + have collected enough results

« Father node:

o Dead/ done

o The number of collected results are
significantly less then grandfather node

« Grandfather node:

o Sleeping + have collected enough
results

o Very likely to collected enough results
and wake up before next checking
time

o Have collected a large portion from its
children + the number of collected

results does not changed in a period of
time

GFC structure-based
returning rules

Rule 2:1f [N (u)| = 0,0 < Hop(u) < H. S(v,t) = Sleep.

&

and either (1) ACC(v,t) = ¢, or (2) Pro{ACC(v,t + At) =
c| ACC(v,t) < ¢} - Pro{S(v,t + At) = Sleep | S(v,t) = Father (v)
Sleep} > Ps. then u could return its results to the father v,
uw — v, at tune t.
Decision node (u)

« Current decision node:
o No child and Hop value in the social-hit is non-zero

 Father node:
o Sleeping + have collected enough number of results

o Itis very likely for the father node to collected enough
results and wake up before next checking tfime

GFC structure-based
returning rules

Rule 3: Node u is ready to return results to its father v, —_—p &
S(u,t) = Awake, ACC(u,t) > c. Let x be u’s grandfather. e

If [N(v)| < cand [N(z)| < c. then u — x at time ¢. _‘_,"" {J‘ythff (x)
If [N(v)] < e |[N(z)| > e, S(z,t) = Sleep. and /

either (1) ACC(x,t) > c. or (2) Pro{ACC(z,t + / @D

At) > ¢ | ACC(z,t) < ¢} - Pro{S(z.t + At) =

Sleep | S(x,t) = Sleep} = P, then u — = at t. I /. e
If |IN(v)] > e |N(z)] < ¢, ACC(x,t) > C7 - Father (v)

N(z)|/e, and ACC(v,t) < Cs then v — « at t. ..
[N ()l/e (v,) 2 v Decision node (u)

Current node will directly submit its result to the
grandfather node if one of the following cases is safisfied:

Case 1: both father and grandfather do not have enough
children

Case 2: father will never collect enough result; the
grandfather node is sleeping, and has or will have collect
enough results before next checking time

Case 3: collecting progress of father node is too slow while
grandfather node has collected a majority of the returns
from its children

Extension: Second Requester-
based backup Path

« Consider that, it v fails, plenty of results from v's
children will flock to the v's father, x, which may
cause x's refurn slofs being quickly used up.

Definition 2: According to the receiving time. the sender

of the second received social-HIT, who has the same grandfa-
ther as the first social-HIT. 1s called the Second Requester.

» Returning rules for using the second requester-
based path are the same as the ones for
grandfather nodes (GFC structure).

Percentage of nodes
]
=
*

=

Evaluation

= Rl 1
== Rules 1-2
=& Rules 1-3 |
—y=EGFC
— D-SNCA

g 3 4 5 6
The value of C

(a) Return requirement c

Percentage of nodes

30%

[
o
=2

[
o
=8

—
T3
R

— P-SNCA
= Rule 1
== Rules 1-2|
== FRules 1-3|
=EFGC

7

8

9

10 11

Average of awaked time

(b) Ave. length of awake time

Percentage of nodes

—-SNCA |
Rule 1
== Rules 1-2
2497, | il Ruies 1-3
= EFGC

6 7 s 9
Average of sleep time

(c) Ave. length of sleep tume

Percentage of nodes
]
=
*

=

Evaluation

= Rl 1
== Rules 1-2
=& Rules 1-3 |
—y=EGFC
— D-SNCA

g 3 4 5 6
The value of C

(a) Return requirement c

Percentage of nodes

30%

[
o
=2

[
o
=8

—
T3
R

— P-SNCA
= Rule 1
== Rules 1-2|
== FRules 1-3|
=EFGC

7

8

9

10 11

Average of awaked time

(b) Ave. length of awake time

Percentage of nodes

—-SNCA |
Rule 1
== Rules 1-2
2497, | il Ruies 1-3
= EFGC

6 7 s 9
Average of sleep time

(c) Ave. length of sleep tume

Percentage of nodes
]
=
*

=

Evaluation

= Rl 1
== Rules 1-2
=& Rules 1-3 |
—y=EGFC
— D-SNCA

g 3 4 5 6
The value of C

(a) Return requirement c

Percentage of nodes

30%

[
o
=2

[
o
=8

—
T3
R

— P-SNCA
= Rule 1
== Rules 1-2|
== FRules 1-3|
=EFGC

7

8

9

10 11

Average of awaked time

(b) Ave. length of awake time

Percentage of nodes

—-SNCA |
Rule 1
== Rules 1-2
2497, | il Ruies 1-3
= EFGC

6 7 s 9
Average of sleep time

(c) Ave. length of sleep tume

Conclusion

We first proposed a new crowdsourcing
system, called social crowdsourcing, which
explores the social relationships among
workers.

We considered the reliabllity issues on the
social crowdsourcing system.

We proposed GFC-sfructure and second-
requester-based backup returning paths.

We also provided 3 sets of rules for using
these backup returning paths.

Thanks

