
1

Performance Analysis of Broadcast Protocols in Ad
Hoc Networks Based on Self-Pruning

Fei Dai and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract— Self-pruning is an effective method to reduce broad-
cast redundancy in ad hoc wireless networks. Unlike flooding, in
a self-pruning broadcast protocol, a node may not forward a
broadcast packet if a certain self-pruning condition is satisfied
based on the neighborhood information. For each broadcasting,
only a subset of nodes forward the broadcast packet and still
guarantee the complete network delivery under the ideal network
situation that no packet is lost due to packet collision and
node mobility. We evaluate the performance of the family of
self-pruning protocols under various network situations with����� . The objective is to observe the efficiency and reliability
of these protocols as a function of network density, congestion,
and mobility, and provide a guideline of implementation in the
“real world”. Our performance analysis reveals that the protocol
reliability is barely affected by packet collision. However, most
self-pruning protocols suffer from low delivery ratio in highly
mobile networks. We further explore various techniques that
improve the delivery ratio and show that both high efficiency
and reliability can be achieved in highly mobile networks.

I. INTRODUCTION

Ad hoc wireless networks (or simply ad hoc networks)
are dynamic in nature, where global information/infrastructure
such as minimal spanning tree is no longer suitable to support
broadcasting. Flooding is a simple approach to broadcasting
without global information/infrastructure; in flooding, a broad-
cast packet is forwarded exactly once by every node. How-
ever, due to the broadcast nature of wireless communication
media, redundant transmissions in blind flooding may cause
the broadcast storm problem [1], in which redundant packets
cause contention and collision.

Self-pruning is an effective method in reducing broadcast
redundancy. In self-pruning-based broadcast protocols [2], [3],
[4], [5], [6], [7], [8], each node collects neighborhood topology
information via exchanging “Hello” messages and extracts
broadcast history information from incoming broadcast pack-
ets. Each node decides its role in a specific broadcasting: it
either becomes a forward node and forwards the broadcast
packet, or becomes a non-forward node and does nothing.
Collectively, forward nodes, including the source node, form
a connected dominating set (CDS) and ensure the coverage. A
set of nodes is a dominating set if every node in the network
is either in the set or a neighbor of a node in the set. Recently,
we proposed a general self-pruning scheme [9] that combines
the strength of several existing broadcast protocols. According

This work was supported in part by NSF grants CCR 9900646, CCR
0329741, ANI 0073736, and EIA 0130806. Email: � fdai,jie � @cse.fau.edu.

to this generic scheme, several existing broadcast algorithms
can be viewed as special cases of a coverage condition with
various configuration parameters. The term “coverage” comes
from the fact that if a node’s neighbor set is “covered” by
several forward nodes, it becomes a non-forward node. A
simulation study was conducted to compare the performance
of several special cases of the coverage condition, and examine
the effects of several implementation options. Although the
coverage condition is a localized algorithm that is based on
only local information and converges in constant rounds, it
exhibits similar average efficiency (i.e., percentage of forward
nodes) to several non-localized broadcast algorithms that pro-
vide constant approximation ratios. However, those protocols
were simulated in networks without collision or mobility.

In this paper, we first evaluate the family of self-pruning
protocols in “real” networks with collision, contention, and
mobility. Simulation results show that collision is not a serious
problem when a small forwarding jitter delay (�	��

�) is
used, and contention is relieved with efficient self-pruning
protocols. However, many efficient self-pruning protocols ex-
hibit relatively low delivery ratio in mobile networks. One
drawback of the self-pruning method is that it demands
accurate neighborhood information and cannot ensure the
coverage with outdated topology information. Then we discuss
five optimization techniques, and show that, using appropriate
techniques, high reliability (i.e., high delivery ratio) can be
achieved with high efficiency in highly mobile networks.

Williams and Camp [10] have also simulated a self-pruning
protocol the Scalable Broadcast Algorithm (SBA) [7]. SBA is
a special case of our general self-pruning scheme. Compared
with other self-pruning protocols, SBA has lower pruning effi-
ciency (i.e., higher broadcast redundancy), causes higher end-
to-end delay, and is more resilient to mobility. A variation of
SBA called the neighbor coverage scheme, which is proposed
and simulated by Tseng et al [11], shows similar properties
in the simulation. A simulation study of the entire protocol
family is still necessary in order to achieve both efficiency
and reliability via the general self-pruning scheme.

II. SELF-PRUNING PROTOCOLS

In self-pruning protocols, each node collects the � -hop
topology information via � rounds of “Hello” message ex-
changes with its neighbors. The “Hello” messages also prop-
agate the priority of each node, which could be a permanent

2

property (e.g., node id) or a dynamic one (e.g., node degree).
During a broadcast process, each node can also extract from
the incoming broadcast packets a list of visited nodes that
have forwarded the same broadcast packet. If a self-pruning
protocol does not use visited node information in its coverage
condition, it is a static protocol; otherwise, it is a dynamic
protocol. Static protocols maintain a relatively stable CDS for
the use of both broadcasting and unicasting. Dynamic proto-
cols are for broadcasting only, but generate a smaller CDS.
In the generic self-pruning scheme [9], each node decides its
own status (forwarding/non-forwarding) independently based
on the following condition.
Coverage Condition: Node � has a non-forward node status
if for any two neighbors � and � , a replacement path exists
that connects � and � via several intermediate nodes (if any)
with either higher priority values than the priority value of �
or with visited node status.

It was proved in [9] that the coverage condition ensures
the coverage. Seven self-pruning protocols are simulated and
compared with blind flooding and a new protocol derived from
the coverage condition.
Wu and Li’s algorithm: Wu and Li [2] proposed a marking
process to determine a set of forward nodes (called gateways)
that form a CDS: a node is marked as a gateway if it has two
neighbors that are not directly connected. Two pruning rules
are used to reduce the size of the resultant CDS. According
to pruning Rule 1, a gateway � becomes a non-gateway if all
of its neighbors are also neighbors of another node � that has
a higher priority value; that is, � ’s neighbor set is covered
by � . According to pruning Rule 2, a marked node can be
unmarked if its neighbor set is covered by two other nodes
that are directly connected and have higher priority values.
Two types of priority are used: node id and the combination
of node degree and node id.
Dai and Wu’s algorithm: Dai and Wu [3] extended the
previous algorithm by using a more general pruning rule called
Rule � : a gateway becomes a non-gateway if its neighbor set is
covered by � other nodes that are connected and have higher
priority values. Rules 1 and 2 are special cases of Rule �
where � is restricted to 1 and 2, respectively.
Span: Chen et al [4] proposed the Span protocol to construct a
set of forward nodes (called coordinators). A node � becomes
a coordinator if it has two neighbors that are not directly
connected, indirectly connected via one intermediate coordina-
tor, or indirectly connected via two intermediate coordinators.
Before a node changes its status from non-coordinator to
coordinator, it waits for a backoff delay which is computed
from its energy level, node degree, and the number of pairs
of its neighbors that are not directly connected. The backoff
delay can be viewed as a priority value, such that nodes with
shorter backoff delay have a higher chance of becoming co-
ordinators. Span cannot ensure a CDS since two coordinators
may simultaneously change back to non-coordinators and the
remaining coordinators may not form a CDS. To conduct a
fair comparison of Span and other broadcast algorithms that
guarantee the coverage, we use an enhanced version of Span,
where a node becomes a coordinator if it has two neighbors
that are not directly connected or indirectly connected via one

(a) Rule 1

v

(g) SBA

vv

(f) LENWB (h) Self−Pruning Rule

v

(b) Rule 2

v

(c) Rule k

v v

(d) Rieck

(e) Span

v

Fig. 1. Node � in the center of each subgraph can be self-pruned by the
corresponding protocol. Gray nodes have higher priorities than � . Black nodes
are visited nodes. Nodes in the the dashed circle are neighbors of � .

or two intermediate nodes with higher priorities.
Rieck’s algorithm: Rieck et al [5] recently proposed a CDS
algorithm that can be viewed as a special case of the enhanced
Span. In Rieck’s algorithm, a node � is in the CDS if it has
two neighbors that are not directly connected or indirectly
connected via one intermediate node with higher priority than
� . Unlike Span, the case that two neighbors are indirectly
connected via two intermediate nodes with higher priorities
is not considered. Therefore, the resultant CDS is larger than
that in Span. On the other hand, Rieck’s algorithm preserves
all shortest paths in the original network.
LENWB: Sucec and Marsic [6] proposed the Lightweight and
Efficient Network-Wide Broadcast (LENWB) protocol, which
computes the forward node status on-the-fly. Whenever node
� receives a broadcast packet from a neighbor � , it computes
the set

�
of nodes that are connected to � via nodes that

have higher priority values than � . If � ’s neighbor set, �����
	 ,
is contained in

�
, node � is a non-forward node; otherwise,

it is a forward node.
SBA: Peng and Lu [7] proposed SBA to reduce the number of
forward nodes. As in LENWB, the status of a forward node
is computed on-the-fly. When a node � receives a broadcast
packet, instead of forwarding it immediately, � will wait for
a backoff delay. For each neighbor � that has forwarded
the broadcast packet, node � removes ������	 from �����
	 . If
�����
	 does not become empty after the backoff delay, node �
becomes a forward node; otherwise, node � is a non-forward
node.
Stojmenović’s algorithm: Stojmenovic et al [8] extended Wu
and Li’s algorithm in two ways: (1) Suppose every node knows
its accurate geographic position, only 1-hop information is
needed to implement the marking process and Rules 1 and
2. That is, each node maintains only a list of its neighbors
and their geographic positions (connections among neighbors
can be derived). (2) The number of forward nodes are further
reduced by a neighbor elimination algorithm similar to the one
used in SBA.

Figure 1 illustrates the pruning ability of different protocols.
Node � can be pruned by Wu and Li’s algorithm in subgraphs
(a) and (b), Dai and Wu’s algorithm in subgraphs (a) to (c),
Span in subgraphs (a), (b), (d), and (e), Rieck’s algorithm in

3

TABLE I

SIMULATION PARAMETERS

Parameter Value
Network Area �����������������
Transmission Range 250 �
Bandwidth 2 	�

���
Data Packet Size 64 bytes
Maximal IFQ Length 50
Simulation Time 100 �
Number of Trials 20
Confidence Level �����

subgraphs (a), (b), and (d), LENWB in subgraph (f), SBA in
subgraph (g), Stojmenović’s algorithm in subgraphs (a), (b),
and (g), and the coverage condition in all subgraphs.

III. PERFORMANCE ANALYSIS

This section presents results from the first part of our
simulation, i.e., the major threat to self-pruning protocols
under congestion and mobility. Techniques that handle the
threat are discussed in the next section. Unlike simulations in
[9], simulations in this paper focus on reliability rather than
efficiency, and are conducted on ns-2(�������) [12] and its CMU
wireless and mobility extension [13], using the IEEE 802.11
MAC layer, limited queue space in the link layer, random
waypoint mobility model [14], and two-ray ground reflection
radio propagation model with constant antenna heights. An ad
hoc network is a dynamic unit disk graph under this model.
A more realistic propagation model [15] may yield a higher
topology changes frequency and lower broadcast reliability.

Nine protocols are simulated, including blind flooding
(Flooding), Wu and Li’s algorithm (Rules 1&2), Dai and
Wu’s algorithm (Rule �), a variation of Span that ensures the
coverage (Span), Rieck’s algorithm (Rieck), LENWB, SBA,
Stojmenović’s algorithm (Stojmenović), and a new protocol
using the generic coverage condition (Generic). In order to
avoid excessive packet collisions, all protocols use a random
jitter between 0 and 1 millisecond before forwarding a re-
ceived packet. By default, all self-pruning protocols use 1
second “Hello” interval and collect 2-hop information. The
only exception is Stojmenović’s algorithm, which uses 1-hop
location information. Rules 1&2, Rule � and Generic use node
id as priority, LENWB and Stojmenović’s algorithm use node
degree, and Span uses neighborhood connectivity ratio (NCR),
defined as the ratio of pairs of directly connected neighbors to
pairs of any neighbors. Only SBA and Stojmenović’s algorithm
use a random backoff delay (around ���
 � , depending on local
topology). Other simulation parameters are listed in Table I.
Efficiency: Figure 2 exhibits the performance of nine protocols
under low traffic load (10 broadcast packets per second) and
low mobility (with average moving speed 1
�� �). Figure 2 (a)
shows the efficiency of self-pruning protocols. Rieck’s algo-
rithm is the most inefficient, because its conservative pruning
rule keeps all shortest paths. SBA is inefficient in dense
networks, partially due to the relatively small backoff delay.
Other protocols have similar efficiency; Generic is the most
efficient.

Note that the cost of a broadcasting includes not only
data packets sent by forward nodes, but also the overhead

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100 120 140 160

F
or

w
ar

d
N

od
es

 (
%

)

Number of Nodes in Network

Rieck
SBA

Rules 1&2
Span

Rules k
LENWB

Stojmenovic
Generic

(a) Percentage of froward nodes

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 B
ro

ad
ca

st
 C

os
t (

by
te

s)

Number of Nodes in Network

Flooding
Rieck
SBA

Rules 1&2
Span

Rules k
LENWB

Stojmenovic
Generic

(b) Normalized cost

5

10

15

20

20 40 60 80 100 120 140 160

P
ac

ke
ts

 R
ec

ei
ve

d
pe

r
N

od
e

Number of Nodes in Network

Flooding
Rieck
SBA

Rules 1&2
Span

Rules k
LENWB

Stojmenovic
Generic

(c) Broadcast redundancy

96

96.5

97

97.5

98

98.5

99

99.5

100

100.5

20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Number of Nodes in Network

(d) Delivery ratio

Fig. 2. Performance versus network size (������� , ���! � "�).

of “Hello” messages. We measure the overall broadcast cost
of a protocol in terms of the normalized broadcast cost, i.e.,
average number of bytes sent per node per broadcasting. As
shown in Figure 2 (b), Flooding has the highest cost, followed
by Rieck’s algorithm and SBA, which have relatively large
forward node sets. LENWB and Span, which use node degree
and NCR as priorities, have higher cost than the three id-based
protocols, where no extra bytes are used to store neighbor
priority values. Stojmenović’s algorithm has the least overall
cost, because it uses 1-hop location information, which has a
small fixed packet size.
Tolerance to collision: We measure reliability of broadcast
protocols in terms of the delivery ratio, i.e., the percentage
of nodes that received the broadcast packet. Low reliability
may be caused by collision, contention, or mobility. Note that
packet collision is different from contention. In a collision,
several nodes send packets simultaneously and packets are lost
due to interference. In a contention, a node backs off when
the channel is occupied, which may cause extra delay and IFQ
queue overflow. Redundancy can compensate for the effects
of collision and mobility, but not for those of contention.
Our focus is to identify the main threat to the reliability of
a protocol under various environments. Figure 2 (c) shows the
broadcast redundancy, which is defined as the average number
of duplicated packets received at each node. Four groups are
observed: (1) Flooding, which has the highest redundancy, (2)
Rieck’s algorithm and SBA, which have lower redundancy
than Flooding, but much higher than the others, (3) Rules
1&2, Stojmenović’s algorithm, Span, and LENWB, which
have moderate redundancy, and (4) Rule � and Generic, which
have the lowest redundancy. Although high redundancy means
low efficiency, moderate redundancy is critical for reliability.

In a low traffic and low mobility environment, the dom-
inating effect is collision. Figure 2 (d) shows that collision
is not a real threat to reliability in this case. High delivery
ratio (#%$"&(') is observed for all protocols. Both Rule � and
Generic have very low redundancy, but both have high delivery

4

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100 120 140 160 180 200

D
el

iv
er

y
R

at
io

 (
%

)

Traffic Load (pkt/s)

(a) Delivery ratio

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

E
nd

-t
o-

E
nd

 D
el

ay
 (

s)

Traffic Load (pkt/s)

Flooding
Rieck
SBA

Rules 1&2
Span

Rules k
LENWB

Stojmenovic
Generic

(b) End-to-end delay

Fig. 3. Performance versus traffic load (100 nodes, �������).

60

65

70

75

80

85

90

95

100

105

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Average moving speed (m/s)

Flooding
Rieck
SBA

Rules 1&2
Span

Rules k
LENWB

Stojmenovic
Generic

(a) Varying average speed

55

60

65

70

75

80

85

90

95

100

0.01 0.1 1 10

D
el

iv
er

y
R

at
io

 (
%

)

Hello Interval (s)

1 m/s
20 m/s
40 m/s
80 m/s

168 m/s

(b) Varying “Hello” interval

Fig. 4. Delivery ratio in mobile networks (100 nodes, ���! � (�).

ratio (# $ � '). The only exception is in very sparse (30 nodes)
networks, where network partition occurs. Five protocols with
high or moderate broadcast redundancy are more reliable than
other protocols; these include Flooding, Rieck’s algorithm,
SBA, Rules 1&2, and Stojmenović’s algorithm.
Tolerance to congestion: In a congested network, low re-
liability is caused by either collision or contention. In the
latter case, broadcast packets are dropped from the sender’s
queue (a queue length of 50 at each node is used in the
simulation) when the network bandwidth is exhausted by the
heavy traffic. Efficient protocols like Generic and Rule �
are more vulnerable to collision, while protocols with high
redundancy, such as Flooding, Rieck’s algorithm, and SBA,
suffer mainly from contention. When there is high contention,
an increased average end-to-end delay will be observed. As
shown in Figure 3, Flooding collapses (i.e., has lower than
$ �(' delivery ratio) when the number of broadcast packets
issued per second (��� �) reaches 40, and Rieck’s algorithm and
SBA collapse at 60. In the mean time, obvious increases of
end-to-end delay are observed. For the remaining protocols,
Generic and Rule � are more tolerant to congestion than other
special cases. Since there is no significant increase in their
end-to-end delays, packet collision is the dominating factor.
Resilience to mobility: Figure 4 (a) shows the scenario under
low traffic load (��� ��� ���) and varying mobility level. The
general rule is that protocols with high broadcast redundancy
(i.e., low pruning efficiency) have high delivery ratio. For
example, Flooding and SBA have almost 100% delivery ratio.
Rieck’s algorithm and Rules 1&2 also have a very high (#
$"&"') delivery ratio. The delivery ratio of Generic, the protocol
with the least redundancy, drops under 90% when the average
node speed is above �"�
�� � . This rule has two exceptions.
First, Stojmenović’s algorithm maintains a high delivery ratio
under a high moving speed (�	� �
 � �), i.e., location-based
protocols are more resilient to network mobility. Second, Span

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

 �
�

 �

 �
 �

� �
� �

� �

� �

 ����
 �

�

� �

� �

��

� �

����

 �

���
�

� �

(a) A broadcast failure

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

� �
�

� �

� � � �

� �
���

� �

���

� � � �� �
���

� �

� �

� �
�

� �

����

� �

� �
� �

� �

(b) 2 seconds ago

Fig. 5. A broadcast failure due to outdated neighborhood information.

and LENWB have higher redundancy but lower delivery ratio
than Generic, suggesting that node degree and NCR are less
resilient to mobility than node id.

Simulation results in this section can be summarized as
follows:

1) Generic has higher efficiency than all existing self-
pruning protocols.

2) With a small forwarding jitter, all broadcast protocols
achieve high delivery ratio (# $��(') under light traffic
and low mobility. That is, collision alone cannot cause
serious damage on reliability.

3) Heavy contention is observed under heavy traffic, and is
the major cause of the unreliability in this case, which
can be relieved only with high efficiency.

4) High mobility can seriously damage the reliability of
several efficient protocols, including Rule � , Span,
LENWB, and Generic.

5) Using location information, Stojmenović’s algorithm is
both efficient and reliable under high mobility.

IV. OPTIMIZATION TECHNIQUES

We examine five implementation techniques that achieve
resilience to mobility in self-pruning protocols while main-
taining high efficiency. The first four techniques are derived
from existing protocols and have their limitations. We further
propose the fifth technique to overcome those limitations.

“Hello” interval: In a mobile environment, nodes may be
mistakenly pruned based on inaccurate neighborhood infor-
mation. As shown in Figure 5 (a), when node 49 broadcasts a
packet, none of its neighbors forward this packet. The reason
is that all its neighbors have the outdated information that
two high priority nodes, 50 and 57, are neighbors of node
49 and will forward the broadcast packet as in Figure 5 (b).
Suppose the interval between each “Hello” message is � � , and
a link failure is detected after missing two “Hello” messages,
it takes at most � to detect a topology change in a node’s
1-hop neighborhood.

One way to reduce the number of pruning mistakes is to
collect more accurate neighborhood information via more fre-
quent “Hello” messages. Figure 4 (b) shows that the delivery
ratio is very low when the “Hello” interval is very large (��� �),
and becomes higher with smaller “Hello” intervals. When
the “Hello” interval is around �"! � � , very high delivery ratio
(90-100%) can be achieved under very high moving speed

5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 40 60 80 100 120 140 160

F
or

w
ar

d
N

od
es

 (
%

)

Number of Nodes in Network

NCR
Degree

Id

(a) Efficiency (�������)

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Average moving speed (m/s)

NCR
Degree

Id

(b) Reliablity (100 nodes)

Fig. 6. Comparison of different priority types (���! � "�).

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Moving Speed (m/s)

Generic, non-GPS
Generic, GPS

Stojmenovic, non-GPS
Stojmenovic, GPS

(a) Delivery ratio

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 40 60 80 100 120 140 160

F
or

w
ar

d
N

od
es

 (
%

)

Moving Speed (m/s)

Generic, non-GPS
Generic, GPS

Stojmenovic, non-GPS
Stojmenovic, GPS

(b) Percentage of forward nodes

Fig. 7. Effects of using 1-hop location information (100 nodes, ���! � (�).

(� � �
�� �). On the other hand, the “Hello” interval cannot
be reduced without limit. When ��� � � ��� , using a “Hello”
interval of � ! � � has higher normalized broadcast cost than
blind flooding. Actually, the delivery ratio is lower with a
smaller “Hello” interval (�"! � � �), as many broadcast packets
are lost in collisions with “Hello” messages.
Priority type: Several previous literatures [8], [6], [9] sug-
gested using node degree instead of node id as priority to
improve the pruning efficiency, and NCR was proposed in [4]
to be more efficient than node degree. This was confirmed by
simulation results in [9]. On the other hand, using node id
has faster convergence than node degree and NCR. In mobile
networks, faster convergence means higher delivery ratio. It
seems that efficiency contradicts reliability in the selection of
priority types.

An interesting finding is that, although node id as priority
produces more forward nodes than node degree and NCR in
sparse networks (40 nodes), it is more efficient than node
degree in denser networks (60-80 nodes), and more efficient
than both node degree and NCR in very dense networks
(# ���"� nodes), as shown in Figure 6 (a). When node id is
used as priority, the forward nodes are evenly distributed to
the entire area; when node degree is used as priority, most
nodes are crowded in the center area and, therefore, cause
higher redundancy. This is partially caused by the random
waypoint mobility model we used in the simulation, where
the center area tends to have higher node density than the
border area. In very dense networks, only a few nodes with
the highest priorities become forward nodes. If high priority
nodes are evenly distributed, the entire network can be covered
by fewer nodes with less redundancy; otherwise, more nodes
will be forced to forward the broadcast packet. Node id also
achieves higher delivery ratio than node degree, which in turn,
has higher delivery ratio than NCR, as shown in Figure 6 (b).
Location information: Using 1-hop location information has

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.001 0.01 0.1 1

F
or

w
ar

d
N

od
es

 (
%

)

Maximal Delay Coefficient (s)

SBA
Stojmenovic

Generic w. delay

(a) Efficiency versus delay (�������)

70

75

80

85

90

95

100

105

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Average moving speed (m/s)

SBA, delay=0.001
SBA, delay=0.01
SBA, delay=0.1

Generic

(b) Reliability versus mobility

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160

F
or

w
ar

d
N

od
es

 (
%

)

Average moving speed (m/s)

SBA, delay=0.001
SBA, delay=0.01

SBA, delay=0.1
Generic

(c) Efficiency versus mobility

Fig. 8. Effects of backoff delay (100 nodes, ���! � "�).

two benefits: lower overhead and fresher neighborhood infor-
mation. If a node knows the last locations of its neighbors, it
can detect link failure earlier. For example, in Figure 5, node
43 may determine that the link between nodes 49 and 57 is
broken, based on location information in their last “Hello”
messages, and forwards the broadcast packet. We believe the
high performance of Stojmenović’s algorithm is due to the
use of location information, and try to apply this technique to
other protocols. We simulate two variations of Stojmenović’s
algorithm, one with location information and the other without,
and two variations of Generic as well. Figure 7 (a) shows
that, when location information is available, both Generic and
Stojmenović’s algorithm achieve high delivery ratio (# $"&"')
under the highest mobility (�	�"�
�� �). On the other hand,
when location information is unavailable, the delivery ratio
of both protocols drops dramatically as the moving speed
increases. It is clear that this technique also applies to the
generic protocol. On the other hand, Generic is more efficient
than Stojmenović’s algorithm, as shown in Figure 7 (b).

Note that using location information has its drawbacks.
Location information providers, such as GPS devices, usually
cause higher cost and energy consumption, and the obtained
location information may be inaccurate. Furthermore, the
actual transmission range of mobile hosts varies in different
environments, and predicting the link existence among two
nodes may be unreliable, even with the accurate location
information.
Backoff delay: We can also improve the efficiency of a reliable
protocol while maintaining its reliability. Backoff delay is used
in SBA and Stojmenović’s algorithm to discover more black
nodes and further reduce the number of forward nodes. We first
examine the efficiency of SBA, Stojmenović’s algorithm and
Generic with the maximum backoff delay,

�������
, varying from

� ! � � � � to � � . As shown in Figure 8 (a), a relatively large
� �����

is essential to the efficiency of SBA, which performs poorly
with a small backoff delay (

� ���	� � � ! � � � �). Increasing� �����
improves the efficiency of SBA significantly, until

6

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Average moving speed (m/s)

expire after 1s
expire after 3s

(a) Delivery ratio

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160

D
el

iv
er

y
R

at
io

 (
%

)

Average moving speed (m/s)

expire after 1s
expire after 3s

(b) Percentage of forward nodes

Fig. 9. Effects of the enhanced link failure detection (100 nodes, ���! � "�).

� �����
reaches � ! � � . After this point, increasing

� �����
will

not improve efficiency significantly. Stojmenović’s algorithm
is less sensitive to

� �����
than SBA, and Generic is barely

affected by
� ���	�

.
An interesting observation is that the high reliability of

SBA is not compromised by the higher efficiency achieved
with larger

� �����
. As shown in Figure 8 (b), compared with

Generic, variations of SBA with different values of
� �����

have almost the same high delivery ratio (# $"&"'). With� ����� � � ! � � , SBA is almost as efficient as Generic, as show
in Figure 8 (c). In SBA, the number of forward nodes increases
automatically to balance the increased mobility level. In the
mean time, the number of forward nodes decreases in Generic,
as more broadcast packets are lost under higher mobility.
Unfortunately, this technique works only for SBA. Even with
a very large backoff delay (

������� � � �), SBA is still less
efficient than both Stojmenović’s algorithm and Generic with
backoff delay. Another problem is the significant increase in
end-to-end delay. With

� ����� � � ! � � , the overall end-to-end
delay of SBA is about �"! � � , while the typical end-to-end delay
of Generic without backoff delay is about � ! � � � .
Link failure detection: In our implementation of self-pruning
protocols, the link failure detection mechanism is designed to
tolerate two consecutive loss of “Hello” messages. That is,
node � considers node � as its neighbor if � has received a
“Hello” message from � within the last three “Hello” intervals.
This mechanism can reduce the number of false alerts caused
by collisions of “Hello” messages. However, it makes the
detection of a link failure very slow. On the other hand,
an aggressive failure detector may cause false alerts, which
leaves some neighbors uncovered and compromises the overall
coverage.

Our solution is to use two expiration timers. After node
� misses the first “Hello” message from node � , the failure
of link ����� �
	 is advertised to � ’s neighbors. However, � is
still viewed as a neighbor internally by � , until the loss of
three consecutive “Hello” messages. Figure 9 (a) shows that
the enhanced Generic achieves high delivery ratio. According
to Figure 9 (b), the enhanced protocol has similar efficiency
to the original protocol under low mobility, and the number
of forward nodes increases automatically to balance higher
mobility levels. In addition, this scheme does not use any
location information or cause extra end-to-end delay.

We summarize our findings as follows:

1) Using a smaller “Hello” interval is more resilient to mo-
bility. However, a very small (� � ! � �) “Hello” interval

has a negative effect on delivery ratio.
2) Using node id as priority is more efficient and more

reliable than node degree and NCR.
3) SBA achieves relatively high efficiency and high relia-

bility with a large (� ! � �) backoff delay.
4) Using accurate location information, self-pruning pro-

tocols are more resilient to mobility. However, location
information may be inaccurate and causes extra cost.

5) Both high efficiency and high reliability can be achieved
using the proposed fast link failure detection technique.

V. CONCLUSION

In the design of broadcast protocols, high reliability is as
important as high efficiency. Low reliability (i.e., low delivery
ratio) may be caused by contention, collision, or mobility.
High efficiency relieves contention, but makes a protocol
more vulnerable to collision and mobility. Our simulation
result suggest that mobility is the major threat to efficient
self-pruning protocols. We investigate several techniques that
enhance the reliability of those protocols, and show that both
high reliability and high efficiency in highly mobile networks.
Our future work includes simulating self-pruning protocols
under more realistic radio propagation models such as the
“shadowing” model in ns-2 and the real data set in [15].

REFERENCES

[1] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless Networks, vol. 8, no.
2/3, pp. 153–167, Mar.-May 2002.

[2] J. Wu and H. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks,” in Proc. of DiaLM, 1999, pp.
7–14.

[3] F. Dai and J. Wu, “Distributed dominant pruning in ad hoc wireless
networks,” in Proc. of ICC, May 2003, p. 353.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks,” in Proc. of MobiCom, July 2001, pp. 85–96.

[5] M. Q. Rieck, S. Pai, and S. Dhar, “Distributed routing algorithms for
wireless ad hoc networks using d-hop connected dominating sets,” in
Proc. of HPC-ASIA, Dec. 2002, pp. 443–450.

[6] J. Sucec and I. Marsic, “An efficient distributed network-wide broadcast
algorithm for mobile ad hoc networks,” CAIP Technical Report 248,
Rutgers University, Sep. 2000.

[7] W. Peng and X. Lu, “On the reduction of broadcast redundancy in
mobile ad hoc networks,” in Proc. of MobiHoc, 2000, pp. 129–130.

[8] I. Stojmenovi ć, M. Seddigh, and J. Zunic, “Dominating sets and neigh-
bor elimination based broadcasting algorithms in wireless networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 1,
pp. 14–25, Jan. 2002.

[9] J. Wu and F. Dai, “Broadcasting in ad hoc networks based on self-
pruning,” in Proc. of INFOCOM, Mar./Apr. 2003, pp. 2240–2250.

[10] B. Williams and T. Camp, “Comparison of broadcasting techniques for
mobile ad hoc networks,” in Proc. of MobiHoc, June 2002, pp. 194–205.

[11] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih, “Adaptive approaches to relieving
broadcast storms in a wireless multihop mobile ad hoc network,” IEEE
Transactions on Computers, vol. 52, no. 5, pp. 545–557, May 2003.

[12] K. Fall and K. Varadhan, “The ns manual,” The VINT Project,
http://www.isi.edu/nsnam/ns/doc/, Apr. 2002.

[13] D. B. Johnson, J. Broch, Y.-C. Hu, J. Jetcheva, and D. A. Maltz, “The
CMU Monarch projects wireless and mobility extensions to ns,” in Proc.
of 42nd Internet Engineering Task Force, Aug. 1998.

[14] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communication & Mobile
Computing (WCMC): Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, vol. 2, no. 5, pp. 483–502, 2002.

[15] D. Kotz, C. Newport, and C. Elliott, “The mistaken axioms of
wireless-network research,” Tech. Rep. TR2003-467, Dartmouth College
Computer Science, July 2003.

