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Abstract—Mobile crowdsensing recruits a massive group of
mobile workers to cooperatively finish a sensing task through
their smart devices (mobile phones, ipads, efc.). In this paper,
the communication in social network for delivering the sensing
data of mobile crowdsensing is considered, where some requesters
publish the sensing tasks to all the Point of Interests (Pols), and
the workers are recruited to take the sensing data in the Pol until
they could communicate with the requester through an offline
and online connection. We first use the semi-Markov model to
predict the offline encounter situation. Then, the worker’s utility
is decided by both the offline encounter and social connection
probabilities. The Worker Recruitment for Self-organized MSC
(WEQO) is further presented through recruiting a set of workers,
who have the maximum communication probability with the
requesters. We prove that the optimal recruitment problem is
NP-hard, and we introduce a practical greedy heuristic method
for this problem, the performance of the greedy method is also
tested. Two real-world traces, roma/taxi and epfl are tested in
our simulations, where WEQ always achieves the highest delivery
ratio of sensing tasks among different recruitment strategies.

Index Terms—Worker recruitment, Self-organized, Mobile so-
cial crowdsensing

I. INTRODUCTION

Recently, a popular sensing scheme, mobile crowdsensing
[1] has attracted the attention of researchers. This scheme re-
cruits some mobile workers to coordinately perform a complex
sensing task through their equipped devices. These devices are
widely embedded of a variety of sensors (e.g., temperature
sensing element, humidity sensing element, and acceleration
transducer) as well as a high level computing ability. In
addition to addressing the sensing data, some new-scheme
services are born as traffic predictions, finding parking spots,
air quality monitoring, etc [2, 3].

Recently, selecting suitable user set [4], [5], [6] and en-
couraging them to participate in MCS [7], [8], [9] are the
two main researching parts. The most important challenge in
terms of mobile crowdsensing is to decide a suitable set of
workers who can contribute most (data quality, sensing time,
etc.) to finish the sensing task. As a result, worker recruitment
is most discussed and also important topic. However, previous
works mainly focus on recruiting workers according to the of-
fline encounter among devices, while ignoring communication
through the online social network. This is not comprehensive
because online communication is also an efficient way to
exchange the stored data. Hence, we pay attention to a self-
organized MSC, where the sensing tasks are published in each
Pol, and the workers are recruited in the Pols, in order to take
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Fig. 1. Illustration of worker recruitment problem in mobile social crowd-
sensing.

the sensing data until they could communicate both online and
offline [10] with the requester. We use the Semi-Markov model
to calculate the encounter situation of the physical world and
regard the connection in two hops as the online communication
probability to measure the transmission ability. Then, we prove
that the worker recruiting problem is NP-hard. Subsequently,
a practical greedy heuristic solution is proposed in this paper
for solving the recruiting problem.

Fig. 1 illustrates the worker recruitment strategy in MSC, in
the double-layer network structure, a set of task requesters R
jointly launch some tasks for sensing the data in each Pol (e.g.,
the task is to test the air quality in each Pol area). Supposing
that a task is assigned to the Pols, and some workers move
among the Pols, our purpose is to select some workers to sense
the data (i.e, test air quality) and deliver the air quality data to
one of the requesters. The delivery could be achieved through
the following two ways: (1) the workers with the sensing data
accidentally encounter one of the requesters in the physical
world (e.g., Bluetooth, WiFi); or (2) the workers communicate
with the requesters through the social network (e.g., Wechat,
Twitter). The sensing task for a Pol is finished if and only if
any worker recruited by this Pol could communicate (online
or offline) with one of the requesters before the deadline of
the sensing task.

For solving the above recruiting problem, the important
thing is selecting a group of suitable workers for the task con-
sidering both the encounter probability in the offline physical
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world and connection probability in the online social network.
This problem is challenging because,

1) When recruiting the workers in a Pol we could not know
the detailed positions and friendships of the requesters; hence,
it is difficult for us to predict the communication probabilities
(online and offline) between the workers and requesters.

2) It is hard for us to decide which worker to be recruited
taking both the online and offline communication probabilities
into consideration.

3) The optimization problem of recruiting a set of best workers
is NP-hard. We need to present a greedy algorithm for solving
this problem.

In order to overcome the above challenges, we try to
solve two problems: the first one is deciding a comprehensive
probability, in which Semi-Markov is used to calculate the
offline encounter probability between the recruiters and the re-
questers; then, we predict the social communication probabil-
ity of them through the two-hop social relationship. The other
problem is an NP-hard problem, where we attempt to recruit
a set of best workers who have the highest communication
probability with the requesters. Then, we introduce a practical
greedy heuristic method for the problem, the performance of
the greedy method is also tested. Finally, two reality traces,
roma/taxi and epfl are tested in our simulations, where WEO
always achieves the highest delivery ratio of sensing tasks
among different recruitment strategies.

The main contributions are briefly summarized as follows:

e In an offline mobile network, we use a Pols-based
prediction method that predicts the inter-worker contact
probability.

e We propose a calculation method for a worker’s utility,
which consists of online communication probability and
offline contact probability.

o Based on the worker’s utility, we propose a worker re-
cruitment strategy for self-organized mobile social crowd-
sensing, which adopts a practical greedy heuristic for
solving the NP-hard recruiting problem.

o Two real-world traces: roma/taxi and epfl are tested in our
simulations, where WEO always achieves the highest de-
livery ratio of sensing tasks among different recruitment
strategies.

The rest parts are organized as follows: The problem mod-
eling and formulating are presented in Section II. The online
social connecting probability and offline encounter probability
are described in Section III. The main proposed strategy WEO
is shown in Section IV, and the NP-hard problem is also solved
in this section. In Section V, we evaluate the delivery ratio
and delay of WEO. We review the related work in Section
VI, while Section VII summarizes this paper.

II. PROBLEM MODELING AND FORMULATING
A. Problem Model

A self-organized MSC is taken into consideration, which
includes a group of mobile workers W = {wy,wa, - ,wp}.
Some workers could jointly change to be requesters and
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Fig. 2. The physical world of self-organized MSC.

publish some tasks, then the workers are denoted by the
requester set R = {ry,79,- - ,rn}, m < n. Workers could be
regarded as the collectors of the sensing data. When they finish
collecting the sensing data, they could jointly compromise
the sensing data and upload them to the task requester. The
upload process could be done through both online and offline
networks, which are described in the previous section. In social
networks, each worker has some social friends, which are also
in W. In the physical world, some Pols: L = {1,2,---,1}
exist in the map. If a worker meets a requester in a Pol, the
worker can upload the stored data, then the sensing task is
successfully finished. Here, the data size for publishing the
sensing task is considered as an acceptable cost for a requester,
so they publish the task to each Pol through 4G. However, the
size for uploading sensing data is not an acceptable cost for
a worker; hence, they upload the data to a requester through
WiFi APs.

In this model, when two workers are in the same Pol or they
have a social relationship, they could be regarded as being in
contact. Two workers cannot communicate with each other
when one of them is not in a Pol. The self-organized physical
world network is shown in Fig. 2. There are three Pols in the
map and when a worker and a requester are in the same Pol,
the worker could finish the sensing task successfully. Due to
the reason that we pay attention to the connection condition,
the communication duration and bandwidth are assumed to
be enough for the workers and requesters. Moreover, Table I
shows the detailed explanations of symbolsr.

B. Problem Formulation

The above self-organized network model is considered
in this subsection. The requesters would like to publish a
task with the purpose to collect the following data: D =
di,ds,--- ,d; at time t. For all the sensing data, they have
an uploaded deadline 7};. In other words, all the sensing data
should be uploaded before the deadline. That is to say, the
sensing data must be received by one of the requesters before
time ¢ + Ty. Only the workers of Pols could be recruited to
choose one of them: (1) finish the sensing task through social
connection or (2) upload the collected data to a requester
through the encounter in the physical world (move into the
same Pol).
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Fig. 3. The problem description, which shows that it is relatively easier for
Worker 1 and Worker 2 to deliver the sensing data, which is in red color.

Assuming that the process of recruiting is done as the
following steps: requester publishes a sensing task, then the
workers accept the tasks, and try to finish them through both
online and offline opportunities.

The first question: which worker is the most suitable one in
the Pol. As shown in Fig. 3, workers 1 and 2 are both in Pol,
and each worker has a contact probability with the requester
in the physical world. However, at the same time, it also has a
communication probability in social network. Since we want
to recruit one worker, we have to decide which one is better
between them.

The second question: we want to recruit a set of the best
workers, (e.g., k workers), how can we design a suitable
recruitment strategy.

III. ONLINE AND OFFLINE COMMUNICATION
PROBABILITIES

In this section, we predict offline contact probabilities
by Semi-Markov model [11] and predict social connection
probabilities between workers and requesters through online
social relationship, respectively. Then, the worker’s utility is
decided through the total communication probability (online
and offline) [12].

A. Predicting Offline Encounter Probability

The ever-been Pols of worker k are stored as the set H* =
{1,2,3,--- 1}, if a worker is being in a Pol, then its status
could be regarded as one item in H. There are totally [ places
in H, and the ny, ever-been Pol of worker £ is Hfj The
beginning time/entering time of worker k for the n;, place is
Tk.

A semi-Markov [13] could be used to model the mobility
pattern in this paper, a two-tuple (H¥,T%) is the main part
of the semi-Markov model. The reason of using this model is
that the probability of a worker k changing from status HY to
status HY_ | is independent of status H”_,. Random holding
time DF = T% , — T is formulated.

The main part of proposed semi-Markov is in Eq. 1, Afj(t)
is the probability of worker k changing from Pol ¢ to Pol j.

TABLE I
MAIN SYMBOLS
Symbol  Meaning
Ty task deadline
l Pol number
Dﬁ time for worker k to stay in m;j, status
Wll;( ) change probability of worker k from status ¢

to status j, and also the time is ¢
Pk change probability from status 7 to status j

VZI; (t)  change probability of worker k from status 4
to status j, and the change time is less than ¢
V[ (t)  leave probability of worker k from status i,
and the leave time is less than ¢
U; the utility of worker ¢

Obviously, HY_; has a tight relationship with HY, but has no
concern with HF_,.

A (1) = P(Hy = j, Dy S HHg - Hy Ty 1)

n? n

= P(HE,, =4, D <t|HF =) (1)

n

Then, Eq. 2 shows the changing probability from Pol i
to Pol 7, numéf is the number of changes out of Pol i, no
matter where is the destination, and sum?. is used to record

i
the number of changing times.

Pl = P(H), | = jlH\ = i) = sum};/sum} (2

n

Then, V;%(t) is the probability of worker k leaving i for j,
and the entering time to j is less than t.

VE@) =P(D} <t|H} =i Hy  =j)
t
=> P(DE=ux|H =i, H},, =j5) 3

=1

And V() is the probability of worker k leaving the Pol 4,
and the leaving time is less than ¢ as follows:

VED). @

l
)

V) = P(Dy <tlHy =i)= )
j=1j#i

For simultaneous Eqgs. 1- 4, we could achieve the semi-

Markov main part W}, which is shown as Eq. 5.

Wi(t) = P(Hy g = j, Dy < t|HG - Hy T 1)

n n

= P(DZ < t|HT]f:i,HS+1:j)P(Hk+1:j|Hﬁ:i)

n

—VAOP) ©)

Rfj (t) shows the probability that the worker k& would be
7 after time t with the condition that now it is in Pol i.
Obviously, if we know Rfj (t), and the current place of worker,
we could predict the future location of this worker after time .
In order to achieve Rfj(t), we consider a special case: worker



k keeps staying in the beginning Pol ¢ until time ¢. It does not
change to any other Pol:

P(Df > t|Hy =) =1 -V} (t) (6)

Then, another case is taken into consideration: worker k£ has
more than one change before time ¢, and the change occurs at
Pol r, time x:

P(HF = j|H} =i and at more than one change to r)
t

= Z Z(Wﬁo(m) - Wz]i‘(m - 1))R]:j(t — ),

r=1z=1

(N

where (W} (z) — Wk (z — 1)) means that the first change
occurs at Pol r, time x.

Finally, we obtain RY;(t) as follows:

3 3 (Wh(s) = Whia — D)RY(c o),
R ()= { 1= VE(0)+
l
3 S W) WD) R o)
| )

By now, P;; can be calculated through Eq. 2. We assume
that the Pol list of HF is 2,3,2,5,2,4,5, and P}, = 1/3.
Obviously, sumfj < sum? and Pi’} < 1. By storing sumfj
and sumf, each worker can keep track of its P matrix.
Similarly, Eq. 3 could be used to calculate V/; For instance,
the time list of changing from Pol 7 to Pol jis 1,2,4,7,7,8,9,
then VZ’; (4)=3/7.

Next, we attempt to achieve the encounter probability be-
tween a worker and a requester. Vz’;(t) gives the probability
that, at time 0, the worker k in ¢, and it change to j at time
t. In general, the nearest status of worker a is [, at time
hg, and for requester b is status [, time hy. Therefore, the
encounter probability between worker a and requester b could
be calculated as follows:

to(h) = R i(h = ha) R} ;(h— hy),h >0, (9)

where h > h, > 0, and h > hy > 0. Then, the encounter
probability between worker a and requester b is

l
Cap(h) = Ciy(h),h > 0. (10)
=1

Next, the probability of the first encounter occurs before h
is defined as follows:

h—1

Eap(h) = Cap(h) [] (1 = Cas(t)),h > 0.

t=0

Y

Fig. 4. An illustration of a two hop theory model (worker-friend-requester).

The first encounter probability between worker a and re-
quester b before the deadline is:

Ta
Fap =Y Ea(h) (12)
h=1

Then, the probability that a worker ¢ with the sensing data
encounters a requester y is shown in Eq. 13.

Ta
FoIl =" By, (h) (13)
h=1

B. Predicting Online Connection Probability

Due to limited social network information, we use the two-
hop routing theory to predict the communication probability,
which uses local social network information (i.e., friends and
friends’ friends). Moreover, [3] shows that two-hop routing
achieves a high delivery ratio. In two-hop routing, each worker
records its two-hop friend information to obtain Worker-
Friend-Requester paths (denoted as W-F-R, in Fig. 4).

As shown in Fig. 4, A and p represent the social commu-
nication probability; then, for a worker i, its communication
probability with the requester y is defined as Eq. 14:

m

st?ry =1- H(l — Azptz)

z=1

(14)

According to Eq. 13 and Eq. 14, for a worker w;, the
probability of communicating with a requester (ry) is shown
in Eq. 15.

Fwwy = 1_(1_F51:Lry)(1_FOff)

WiTy

(15)

Therefore, we could obtain the utility of worker ¢, in the
follow equation, m represents the number of requesters.

Ui = Fura = Y Furr, (16)
y=1
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Fig. 5. There are many different recruitment strategies. In a Top 2 worker
recruitment strategy, if we just recruit the worker with highest utility, then,
workers 1 and 2 will be recruited. However, workers 1 and 3 are obviously a
better worker set than workers 1 and 2.

IV. WORKER RECRUITMENT STRATEGY

Here, we attempt to present a Worker Recruitment in MSC
(WEO) for solving the question: how can we recruit a set of
best k workers for maximizing the total delivery ratio of the
sensing data?

A. Top k Worker Recruitment (WEO)

Each worker has an utility (a comprehensive connecting
probability in both online and offline networks) for a requester.
We attempt to recruit the optimal k workers, who have the
highest total-utility so that the problem above could be turned
out to be NP-hard through the following theorem [14].

Theorem 1. The k workers selection problem is NP-hard.

Proof. Suppose that the utilities for all the workers are equal to
1, in this case, for every worker, it could surely communicate
with at least one requester before the deadline. In other words,
every worker could cover at least one requester. Obviously,
this special situation has no difference with the k set cover
problem. The worker is regarded as the set, and the requester
is considered as an item. Then we try to recruit a best group of
workers in order to cover as many as possible requesters. As
we know, the k set cover problem is NP-hard; then, the special
case of the general k£ worker recruitment must be NP-hard.
Hence, the top k& worker recruitment problem is more complex
than an NP-hard problem so that the theorem holds. O

It is worth noting that a lot of greedy algorithms could be
used to solve the above NP-hard problem. An easy solution
is that the worker with the highest utility could be recruited
in a higher priority. The same operation is repeated for k
times, then the k& workers recruiting problem could be solved.
However, the recruited set is not optimal with the example
shown in Fig. 5. If we just recruit the worker with the highest
utility, then workers 1 and 2 will be recruited, while the utility
of worker set 1 and 2 is 1 (1+0). However, a better strategy is
to recruit workers 1 and 3, because the utility of worker set 1
and 3 is 1.5 (1+0.5).

Algorithm 1 Greedy heuristic for WEO worker recruitment
Input:
Total set of workers in this Pol: N
Set of recruiters: W
W’ total utility: Uy,
Output:
Top k worker set: W
I We+— o, Uy =0
2: for i =1 to k do
3w ¢—arg wlenl\?icw Uwugwy

W =W U {w}; update Uy
5: return W

»

To optimize the delivery ratio, we should recruit a suitable
set of k workers. Focusing on the NP-hard problem, we pro-
pose a greedy heuristic algorithm: WEO, rather than recruiting
the highest worker’s utility, we pay attention to maximizing
the recruited worker set’s utility Uy, which is defined as the
communication probability between worker W and all the
requesters. As shown in Fig. 5 in WEO, we will select the
workers 1 and 3 (or 2 and 3), rather than workers 1 and 2.
Algorithm 1 shows the detail process of WEO.

B. Approximation Ratio

Theorem 2. Uy is a submodular function. For two work-
er sets Wi and Ws, if Wy C Ws, then Ywi, € N\W,
the submodular property holds, i.e., Uy, ufw,y — Uw, 2>
Uw,utwey — Uwse

Proof. A special case: |Wa| — |[Wy| = 1 is first considered,
we try to prove that Uy, Ugw,y — Uwy 2 Uw,yugw,y — Uns-
Then, a general case |Ws| — |[W7| = w > 1 is further proved.
First, we assume that [Wa|—|W1| = 1 and Wo\W; = {wy}
according to W C W,. To prove the submodular property of
Uw, we focus on the relationship between wy and one of
requesters Vr; € R, there are following three cases:

Case 1: wy has no communication probability (no matter
online or offline) with r;. Then, Py, ,, = 0. So we have
Uw,ufwry = Uwy, and Uw,uqw,y = Uw,. Consequently,
leu{wk} - UW1 = UWZU{wk} - UW2 =0.

Case 2: wy has a communication probability (online or
offline) with 7, but wy, has no communication probability with
rj. Then, Py, ., = 0. According to Eq.2, Uw, = Uw,u{w,} =
UWl, and UWQU{wk} = leu{wk}u{wh} = leu{wk}- So we
can get Uy, ufw,y — Uwy, = UwyUfwey — U,

Case 3: Both wy, and wy, have a communication probability
with 7;. Then for all the workers w; in W1, the communication
probability with r; is defined as Py;; similarly, for W5, the
communication probability with r; is defined as Py;. It is not
difficult to find that, P; < P,j;, then UW1U{wk} —Uw, =
1-— (1 — P1J>(1 — ij) — Plj' Slmllarly, UWQU{wk} — UW2 =
1—(1— Py;)(1 — Py;) — P»;. Therefore, we have



TABLE 11
SIMULATION SETTINGS

Traces
epfl [ romaltaxi
300,400,500, - - ,900
0.02,0.03,0.04,- - -,0.08

Parameter

Task Deadline
Probability of Social Communication

Time Unit (s) 30 15
Pol Number 13 10
Pol Range (m) 80 200
Worker Number 368 158

Requester Number 45,6, --,10

(Uqu{'wk} - UWQ) - (leu{wk} - UWl)
= (1-(1=Py;) (1= Pyj)~ Poj)~ (1= (1= P1;) (1~ Py )~ P15)
= (Plj - ng)ij <0 (17

Therefore, Uy, Ufwiy — Uwy 2 Uwpufw,y — Uws-

Above all, Uw,ufw,y — Uwy, 2 Uw,ufw,y — Uw, holds
for Vr; € R in all cases. So, the following case is tak-
en into consideration: |Ws| — |[Wi| = w > 1. We as-
sume that Wo\W7 = {wp, Whi1, -, Whtw—1}. Then, we
have Uw,u(w,y — Uwy 2 Uwyufwitofwny — UwyUfws )
Uw,ufwiyufwn}ufwie ) = Umoquiyufwnny 2 0
Uw, 0w ufwn Ju-Ufwnto—1} — UWaU{wn Ue-Ufwn w1}
Uw,Utwiy — Uw,

Therefore, Uy, is a submodular function. Theorem 2 is
proved.

v IV

O

Theorem 3. For a positive submodular function f, we attempt
to select a set of k items: W by selecting an item that provides
the maximize value improvement for an continuous k times. Let
W* be optimal performance. Then f(W) > (1—1/e)- f(Wx).

Proof. Submodular functions have a desirable attribute, which
is shown as follows: if we have a nonnegative function f that is
submodular, and it does not decrease when we add an element
e to the set: f(W U{e}) > f(W) for all elements e and sets
W. The purpose is to select a k-item set .S, which maximizes
f(W). This is obviously a well-known set-covering problem,
and also an NP-hard optimization problem, [15] proves that a
factor of 1 — 1/e exists for the above problem. Obviously, the
top k user recruiting problem matches all the requirements of
the above submudular property, hence, Theorem 3 is proved.

O

Therefore, the proposed top k recruiting strategy in this
paper could achieve a (1 —1/e)- approximation of the optimal
recruiting strategy.

V. PERFORMANCE EVALUATION
A. The Traces Used and Settings

Two real-word datasets are used in this paper to test the
performances of WEO: roma/taxi trace set [16] and epfl trace
set [17]. There are 320 taxi drivers who work in the city area
of Rome, Italy, in roma/taxi trace set. The locations of the
taxis are recorded in a periodic way through uploading the

(b) epfl

Fig. 6. The Pol locations in Baidu map.

GPS position to the server by the taxi drivers. In the epfl trace
set, 500 taxis’ locations are collected and recorded in about
one month of San Francisco Bay Area [11], it also includes
GPS coordinates of the drivers. The above two traces are both
collected by taxi drivers, they could communicate with each
other through short-distance communication protocol (Blue-
tooth or Wifi), and also they could disseminate messages to
each other by online social network. Hence, the two datasets
could be used to test our proposed recruitment strategies.

First of all, we filter out some discrete traces and also
move out the worker trace, which is far away from the area
most workers are. Then, by using Baidu map, we embed the
traces into the actual map. With the help of JavaScript API
in Baidu map, a thermodynamic chart is formulated. The red
area represents that it is covered more than 400 times by
the workers’ traces, and we also find the associate Pols in
each data set (Fig. 6). Some workers are randomly selected
as the requesters, and the other users as the workers. The
relationship among all the users are generated randomly and
will not change during the whole simulation. The simulation
settings in this paper are shown in Table II, where time unit
means the minimal collecting period; in other words, time unit
is the interval time for reporting GPS data. For example, if the
simulation time of epfl is 100 periods, then the actual time is
100 time units. This equals 3000s, this is because the time
unit in epfl is 30s.



B. Algorithms Performances

For testing the performances of WEO, simulations are done
in the above two reality traces. Two performances are mainly
concerned in this paper: (1) the accuracy for the worker’s
utility and (2) the delivery performance of sensing data for
WEO.

The purpose in terms of the first performance is to test
whether the worker’s utility is reasonable and accurate, we
compare the four 1-worker recruitment strategies: WEO,
WEO-on, WEO-off and RR. WEO is our strategy and recruits
only one worker with the highest utility in every Pol. WEO-
on recruits the worker with the highest online utility, while
WEO-off recruits the worker with the highest offline utility.
RR (Randomly Recruiting) just randomly selects a worker in
the available worker set.

Considering the second performance, our purpose is to
verify that whether WEO could get the highest delivery ratio
when we need to recruit £ workers in each POI, compared to
the RL and RR recruitment strategies. WEO is proposed in this
paper, which recruits a set of k workers, who have the highest
Uy with the requesters. RL (Recruitment Largest) recruits k
workers, whose utilities are the largest among the workers in
the Pol. RR (Recruitment Randomly) also randomly recruits
workers; however, in this group of simulations, RR recruits &
workers, while not one worker in the available worker set.

A lot of performances are tested in the simulations, while
we just take the most important performance metric into
consideration the delivery ratio of the sensing data. This is
the ratio of the sensing data number successfully uploaded to
the requesters over the total number of the generated sensing
data.

C. Simulation Results

1) Worker’s Utility: To test the accuracy of the worker’s
utility, we simulate the delivery ratios of the four 1-worker
recruitment strategies: WEO, WEO-on, WEO-off, and RR, in
the two reality traces: roma/taxi and epfl. Fig. 7 and Fig. 8
show the simulation results in terms of worker’s utility.

As described in Section V-B, we attempt to test the accuracy
of the proposed worker’s utility through recruiting only one
worker in each Pol. We compare the performance to draw
our conclusions. As shown in Fig. 7, in reality trace ro-
ma/taxi, we compare the four 1-worker recruitment strategies:
WEO, WEO-on, WEO-off, and RR. The results show that
WEO obtains the best performance compared with the other
recruitment strategies, which means that the worker’s utility
leads to a right guidance in terms of worker’s communication
ability with the requesters. In other words, the proposed
worker’s utility in this paper could represent the worker’s
communication ability with the requesters.

It is worth noting that the ranking of the above four recruit-
ment strategies is: WEO>WEO-on>WEO-off >RR, which
means that the online social communication probability plays
a more important role in the delivery of the sensing data,
compared with the offline encounter probability. RR recruits
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Fig. 7. The simulation results in terms of worker’s utility in the roma/taxi
data set.
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Fig. 8. The simulation results in terms of worker’s utility in the epfl data set.

a random worker in each Pol, which is why its delivery
performance is the lowest.

Moreover, we test the performances of the above four
worker selecting methods along with the growth of the re-
quester number and life time, respectively. As shown in Fig. §,
the performance of the sensing data appears to follow an
upward trend along with the growth of the requester number,
which is reasonable because more requesters results in more
communication opportunities between the workers and the
requesters, hence the delivery performance becomes higher.
Similarly, the delivery ratio of the sensing data also appears
an increasing trend with the increasing life time, because if we
have enough time, then a higher communication probability
between the recruited workers and the requesters will be
obtained. The performance results of Fig. 8 are similar with
that of Fig. 7.

2) Delivery Performance: In this subsection, to test the
delivery performances of WEO, two sets of simulations are
first done, they use two reality traces, roma/taxi and epfi,
respectively. Because we try to test the situation that the
sensing data are uploaded by WEO, we treat the workers
in WEO as sources and treat the requesters as destinations.
From sources to destinations, we attempt to recruit the best k
workers in each Pol, who are most valuable to assist in the
uploading process. For testing the performances of WEO, we
test the successfully delivered data number in two real-world
data sets. Fig. 9 and Fig. 10 give the detailed performances of
WEDO in terms of delivery ratio of sensing data.
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Fig. 10. Delivery ratio performance comparisons on the epfl trace set.

WEO recruits a set of & workers, who has the highest
Uw (calculated in Section IV) with the requesters, while
RL recruits the k workers with the highest utility, and RR
randomly recruits k£ workers in each Pol. Simulation results
in Fig. 9 show that WEO achieves the highest delivery ratio
of sensing data. This is because WEO considers the workers
as a set and measures the total utility of the set, rather than
considering an individual worker.

Moreover, we compare the delivery performances of the
three worker selection methods: WEO, RL and RR, along with
the growth of the requester number, social probability, TTL
and the number of the recruited workers, respectively. Figures
show that WEO always obtains a higher deliver performance
than that of RL, which proves theoretical results of Section I'V-
A. And we could notice that the delivery ratio of the sensing
data appears a growing trend with increasing requester number,
social probability, TTL and number of the recruited workers,
which is not difficult for us to understand. The simulation
results of Fig. 10 are almost same with that of Fig. 9, we do
not repeat the description.

In conclusion, in the two reality traces roma/taxi and epfi,
we first compare the accurate of utility calculation, and get the
conclusion that we could obtain a well-done utility. Then, we
test the deliver performance in terms of the three recruitment
strategies. The simulation results show that WEO achieves the
highest delivery performance.

VI. RELATED WORK

A. Incentive Mechanisms

Zheng et al. [18] analyzed the issue of maximizing the
weighted coverage in mobile crowdsensing and proposed an
incentive mechanism which is proved to be budget-friendly

and efficient for mobile crowdsensing. Yang et al. [19] pro-
posed different corresponding incentive mechanisms for a
crowdsourcer based and user based schemes. Chen et al. [20]
recognized network effects as internal incentives, analyzed
its effects on the composition of external incentives, then
proposed two external mechanisms to motivate more users
and increase the revenue of the crowdsourcer. Yang et al.
[21] provided an unsupervised learning method to recognize
the remaining process as a cooperative game, then proposed
an approach using Shapley value to get users remuneration.
Han et al. [22] focused on a Bayesian pricing problem to
motivate participants efficiently with enough data qualities to
get sensing robustness and changed the problem from a non-
submodular one into submodular. Feng et al. [23] studied the
situation of motivating users to join in crowdsensing tasks with
smartphones and proposed a reverse auction scheme to address
the interaction among users and requesters.

The above works encourage workers to take part in the
crowdsensing task through some suitable incentive mecha-
nisms. These are the element jobs of this paper and also an
important part in MSC. However, even though we have an
incentive mechanism to encourage workers for finishing the
sensing task, we still need to decide which workers are optimal
recruiters to finish the task most efficiently.

B. Recruitment Strategy

Xiao et al. [14] analyzed the Deadline based Recruitment
problem in the probabilistic cooperation mobile crowdsensing
and presented a user selection method considering induction
time and a greedy algorithm called DUR. Li et al. [24] consid-
ered a user selection strategy with sundry tasks for minimizing
the cost while maintaining high probability coverage. Then
they proposed an offline and online algorithm to get the



feasible solution. Yi et al. [25] provided an algorithm which is
for solving the VPR problem in order to recruit vehicle users.
Pu et al. [26] considered an online user selection scheme to
achieve the optimization of the total serving level and proposed
a method by using the dynamic planning. Karaliopoulos et
al. [27] predicted user’s location dynamically and minimized
the total cost using the deterministic and stochastic mobility
models, while achieving a good optimization goal in terms of
finishing the sensing data.

The above works pay attention to user recruitment strategy.
However, almost all the works do not consider utilizing the
social influence to assist in finishing the sensing tasks, and
also do not consider the propagation in online social network,
hence, both online and offline deliverings will increase the task
finishing propobility.

VII. CONCLUSION

We have looked into the problem of worker selection in
double-layer MCS campaigns drawing on opportunistic net-
working and social networking methods. First, we formulate
the sensing data transmission into two parts: online social
connection and offline mobile contact. Next, by using the
semi-Markov and the two-hop social network theory, we
propose WEO, where we recruit a set of best workers with
the highest communication probability (online and offline)
with the requesters. Moreover, we prove that the optimal
recruitment problem is NP-hard, and we introduce a practical
greedy heuristic method for this problem, the performance of
the greedy method is also tested. Two reality traces, roma/taxi
and epfl are tested in our simulations, where WEO always
achieves the highest delivery ratio of sensing tasks among
different recruitment strategies.
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