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Abstract—In computing clouds, burstiness of a virtual machine (VM) workload widely exists in real applications, where spikes usually
occur aperiodically with low frequency and short duration. This could be effectively handled through dynamically scaling up/down in a
virtualization-based computing cloud; however, to minimize energy consumption, VMs are often highly consolidated with the minimum
number of physical machines (PMs) used. In this case, to meet the dynamic runtime resource demands of VMs in a PM, some VMs have
to be migrated to some other PMs, which may cause potential performance degradation. In this paper, we investigate the burstiness-
aware server consolidation problem from the perspective of resource reservation, i.e., reserving a certain amount of extra resources on
each PM to avoid live migrations, and propose a novel server consolidation algorithm, QUEUE. We first model the resource requirement
pattern of each VM as a two-state Markov chain to capture burstiness, then we design a resource reservation strategy for each PM
based on the stationary distribution of a Markov chain. Finally, we present QUEUE, a complete server consolidation algorithm with
a reasonable time complexity. We also show how to cope with heterogenous spikes and provide remarks on several extensions.
Simulation and testbed results show that, QUEUE improves the consolidation ratio by up to 45% with large spike size and around
30% with normal spike size compared with the strategy that provisions for peak workload, and achieves a better balance between
performance and energy consumption in comparison with other commonly-used consolidation algorithms.

Index Terms—Bursty workload, Markov chain, resource reservation, server consolidation, stationary distribution
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1 INTRODUCTION

C LOUD computing has been gaining more and more
traction in the past few years, and it is changing

the way we access and retrieve information [1]. The
recent emergence of virtual desktop [2] has further el-
evated the importance of computing clouds. As a cru-
cial technique in modern computing clouds, virtualiza-
tion enables one physical machine (PM) to host many
performance-isolated virtual machines (VMs). It greatly
benefits a computing cloud where VMs running various
applications are aggregated together to improve resource
utilization. It has been shown in previous work [3]
that, the cost of energy consumption, e.g., power supply,
and cooling, occupies a significant fraction of the total
operating costs in a cloud. Therefore, making optimal
utilization of underlying resources to reduce the energy
consumption is becoming an important issue [4], [5]. To
cut back the energy consumption in clouds, server con-
solidation is proposed to tightly pack VMs to reduce the
number of running PMs; however, VMs’ performance
may be seriously affected if VMs are not appropriately
placed, especially in a highly consolidated cloud.
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We observed that the variability and burstiness of VM
workload widely exists in modern computing clouds,
as evidenced in prior studies [4], [6], [7], [8], [9]. Take
a typical web server for example, burstiness may be
caused by flash crowed with bursty incoming requests.
We all know that VMs should be provisioned with
resources commensurate with their workload require-
ments [10], which becomes more complex when con-
sidering workload variation. As shown in Fig. 1, two
kinds of resource provisioning strategies are commonly
used to deal with workload burstiness—provisioning for
peak workload and provisioning for normal workload.
Provisioning for peak workload is favourable to VM
performance guarantee, but it undermines the advantage
of elasticity from virtualization and may lead to low
resource utilization [1], [8], [9].

In contrast, provisioning for normal workload makes
use of elasticity in cloud computing. In this case, to
meet the dynamic resource requirements of VMs, local
resizing and live migration are the two pervasively-used
methods. Local resizing adaptively adjusts VM configu-
ration according to the real-time resource requirement
with negligible time and computing overheads [11]. On
the other hand, live migration moves some VM(s) to a
relatively idle PM, when local resizing is not able to
allocate enough resources. However, in a highly con-
solidated computing cloud where resource contention
is generally prominent among VMs, live migration may
cause significant service downtime; furthermore, it also
incurs noticeable CPU usage on the host PM [12], which
probably degrades the co-located VMs’ performance.
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Fig. 1. An example of workload with bursty spikes.

In this paper, we propose to reserve some extra
resources on each PM to accommodate bursty work-
load [13]. In doing so, when a resource spike occurs,
VMs can be quickly reconfigured to the new level of
resource requirement through local resizing with mini-
mal overheads, instead of being migrated to some other
PMs. Hence, the number of live migrations could be
reduced considerably and the overall performance of a
computing cloud could be improved.

Specifically, we investigate the problem of minimizing
the amount of extra resources reserved on each PM
during server consolidation while the overall perfor-
mance is probabilistically guaranteed. By “probabilisti-
cally guaranteed”, we mean that, the fraction of time
within which the aggregated workloads of a PM exceed
its physical capacity is not larger than a threshold.
Imposing such a threshold rather than conducting live
migration upon PM’s capacity overflow is a way to
tolerate minor fluctuations of resource usage (like the
case of CPU usage) and to break the tradeoff between
utilization and performance. Then, our problem can be
formulated as an optimization, wherein the goal is to
minimize the amount of resource reserved on each PM,
and the constraint is that the capacity violation ratio of
every PM is not larger than a predetermined threshold.

We use a two-state Markov chain to capture the bursti-
ness of workload [7], and also shows how to learn the
chain parameters. Inspired by the serving windows in
queueing theory [14], we abstract the resources reserved
on each PM for workload spikes as blocks. Denoting
by θ(t) the number of busy blocks at time t on a PM,
we show that a sequence of θ(0), θ(1), θ(2), ... has the
Markov property, namely that, the next state only de-
pends on the current state and not on the past sequence
of states. Then we develop a novel server consolidation
algorithm, QUEUE, based on the stationary distribution
of this Markov chain. We also show how to further
improve the effectiveness of QUEUE with more careful
treatment of heterogenous workload spikes. Simulation
and testbed results show that, QUEUE improves the
consolidation ratio by up to 45% with large spike size
and around 30% with normal spike size compared with
the strategy that provisions for peak workload, and
achieves a better balance between performance and en-
ergy consumption in comparison with other commonly-
used consolidation algorithms. The contributions of our
paper are three-fold.

(1) To the best of our knowledge, we are the first
to quantify the amount of reserved resources with
consideration of workload burstiness. We propose
to use the two-state Markov chain model to capture
workload burstiness, and we present a formal prob-
lem description and its NP-completeness.

(2) We develop a novel algorithm, QUEUE, for
burstiness-aware resource reservation, based on the
stationary distribution of a Markov chain. We also
show how to cope with heterogeneous spikes to
further improve the performance of QUEUE.

(3) Extensive simulations and testbed experiments are
conducted to validate the effectiveness and advan-
tages of QUEUE.

We now continue by presenting related work in Sec-
tion 2 and our model in Section 3. Problem formulation is
provided in Section 4. We show the details of QUEUE in
Section 5. Heterogeneous spikes are handled in Section 6.
Evaluation results are presented in Section 7. Before
concluding the paper in Section 9, we discuss known
issues and extensions of QUEUE in Section 8.

2 RELATED WORK

Most of prior studies [3], [15], [16] on server consolida-
tion focused on minimizing the number of active PMs
from the perspective of bin packing. A heterogeneity-
aware resource management system for dynamic capac-
ity provisioning in clouds was developed in [17]. Stable
resource allocation in geographically-distributed clouds
was considered in [18]. Network-aware virtual machine
placement was considered in [19]. Scalable virtual net-
work models were designed in [8], [20] to allow cloud
tenants to explicitly specify computing and networking
requirements to achieve predictable performance.

In a computing cloud, burstiness of workload widely
exists in real applications, which becomes an inevitable
characteristic in server consolidation [1], [4], [6], [7], [21].
Some recent works [22], [23] used stochastic bin-packing
(SBP) techniques to deal with variable workloads, where
workload is modeled as random variable. Some other re-
search [10], [24], [25] studied the SBP problem assuming
VM workload follows normal distribution. Several other
studies [26], [27] focused on workload prediction while
the application runs. Different from them, in our model a
lower limit of provisioning is set at the normal workload
level which effectively prevents VM interference caused
by unpredictable behaviors from co-located VMs.

Markov chain was used to inject burstiness into a
traditional benchmark in [7]. Several works [5], [28], [29]
studied modeling and dynamic provisioning of bursty
workload in cloud computing. A previous study [30]
proposed to reserve a constant level of hardware re-
source on each PM to tolerate workload fluctuation; but
how much resource should be reserved was not given.
To the best of our knowledge, we are the first to quantify
the amount of reserved resources with consideration on
various, but distinct, workload burstiness.
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Fig. 2. Two-state Markov chain. The “ON” state repre-
sents peak workload (Rp) while the “OFF” state repre-
sents normal workload (Rb). pon and poff are the state
switch probabilities.

3 MODELING VIRTUAL MACHINE WORKLOAD

3.1 Two-state Markov Chain
It has been well recognized in previous studies [4], [6],
[7] that VM workload is time-varying with bursty spikes,
as shown in Fig. 1. Several works [9], [10], [22], [23],
[24], [25] modeled the workload of a VM as a random
variable, which follows the Bernoulli distribution in [9]
or normal distribution in [10], [24], [25]. Different from
these works, we model the workload of a VM as a two-
state Markov chain, which takes the additional dimen-
sion of time into consideration, and thus describes the
characteristics of spikes more precisely.

Fig. 2 shows an example. We denote the resource
requirements of peak workload, normal workload, and
workload spike by Rp, Rb, and Re, respectively, where
Re = Rp − Rb as demonstrated in Fig. 1. The “ON”
state represents peak workload while the “OFF” state
represents normal workload. We use pon and poff to
denote the state switch probabilities. More specifically,
if a VM is in the ON state, then the probability of it
switching to OFF at the next time is poff , and remaining
ON is 1 − poff . Similarly if a VM is in the OFF state,
then the probability of it switching to ON at next time
is pon and remaining ON is 1− pon. We emphasize that
this model is able to describe the characteristics of spikes
precisely—intuitively, Re denotes the size of a spike, and
pon denotes the frequency of spike occurrence. Thus,
each VM can be described by a four-tuple

Vi = (pion, p
i
off , R

i
b, R

i
e), ∀1 ≤ i ≤ n, (1)

where n is the number of VMs.

3.2 Learning Model Parameters
This subsection provides a simple strategy for cloud
tenants to generate model parameters for their VM
workload. It consists of two phases.

First, a cloud tenant must have the workload traces
and guarantees that they will be consistent with the
realistic deployment in computing clouds. This could be
achieved by tentatively deploying VMs in a cloud for
a relatively short period; the cloud system collects the
resource usage traces and feeds them back to tenants.

Second, given a VM workload trace, a cloud tenant
generates a four-tuple. We use Fig. 3 as an illustration,

Time
Workload

Workload Profile ON-OFF ModelSpike (Re)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Peak Workload (Rp)NormalWorkload (Rb)
Fig. 3. Given the predetermined Rb and Re, we conser-
vatively round the solid black curve up to the dashed red
curve, based on which we can calculate pon and poff .

where the solid black curve represents the workload
over time. Given the predetermined Rb and Re, we
conservatively round the solid black curve up to the
dashed red curve. Denote by W (t) the workload at time t
in the dashed red curve, e.g., W (4) = Rp, and W (7) = Rb.

Denote by SFF the number of switches from state
“OFF” to state “OFF” in two consecutive time slots
during the time period of interest; denote by SFN the
number of switches from state “OFF” to state “ON” in
two consecutive time slots during the time period of
interest, e.g., SFF = 5 and SFN = 2 in Fig. 3. Similarly,
we can define SNN and SNF , which are equal to 5 and
2, respectively, in the figure. It is then easy to see that

pon =
SFN

SFN + SFF
, and poff =

SNF

SNF + SNN
.

3.3 Potential Benefits
The 2-state Markov chain model allows cloud tenants to
flexibly control the tradeoff between VM performance
and deployment cost through adjusting Rb and Re.

When a tenant wants to maximize VM performance, the
tenant should choose a large Rb and a small Re. As we will
show later in this paper, there may be multiple work-
load spikes that share some common physical resources.
Thus, when the aggregated amount of workload spikes
that simultaneously occur is larger than the amount of
the shared common resources, capacity overflow hap-
pens and VM performance is probably affected.

When a tenant wants to minimize deployment cost, the
tenant should choose a small Rb and a large Re. By ”deploy-
ment cost”, we mean the fee which is paid by a cloud
tenant to a cloud provider. Since physical resources
are opportunistically shared among multiple workload
spikes, the charge for workload spike should be smaller
than that for normal workload [9]. Therefore, decreasing
Rb helps tenants to reduce the deployment cost.

Our model is also a tradeoff between modeling com-
plexity and precision. We could model time-varying
workload by 3-state or even more states of Markov chain,
which should capture the workload bustiness more
precisely; however, the complexity in learning model
parameters and allocating physical resources increases
as well, which may complicate the interactions between
cloud providers and tenants.
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Symbol Meaning
n the number of VMs
Vi the i-th VM
Ri

b the normal workload size of Vi

Ri
e the spiky workload size of Vi

Ri
p the peak workload size of Vi, and Ri

p = Ri
b +Ri

e

pion the probability of Vi switching from OFF to ON
pioff the probability of Vi switching from ON to OFF
m the number of PMs
Hj the j-th PM
Cj the physical capacity of Hj

xij the variable indicating whether VMi is placed on PMj

Φj the capacity overflow ratio of PM PMj

ρ the threshold of capacity overflow ratio

Fig. 4. Main notations for quick reference.

4 PROBLEM FORMULATION

We consider a computing cloud with 1-dimensional re-
source; for scenarios with multi-dimensional resources,
we provide a few remarks in Section 8. There are m
physical machines in the computing cloud, and each PM
is described by its physical capacity

Hj = (Cj), ∀1 ≤ j ≤ m. (2)

We use a binary matrix X = [xij ]n×m to represent
the results of placing n VMs on m PMs: xij = 1, if Vi

is placed on Hj , and 0 otherwise. We assume that the
workloads of VMs are mutually independent. Let Wi(t)
be the resource requirements of Vi at time t. According
the Markov chain model, we have

Wi(t) =

Ri
b if Vi is in the “OFF” state at time t,

Ri
p if Vi is in the “ON” state at time t.

Then, the aggregated resource requirement of VMs on
PM Hj is

∑n
i=1 xijWi(t).

Let COt
j indicate whether the capacity overflow hap-

pens on PM Hj at time t, i.e.,

COt
j =


1 if

n∑
i=1

xijWi(t) > Cj ,

0 otherwise.

Intuitively, the results of VM placement should guaran-
tee that the capacity constraint is satisfied on each PM
at the beginning of the time period of interest, i.e.,

CO0
j = 0, ∀1 ≤ j ≤ m.

We now can define our metric for probabilistic perfor-
mance guarantee—capacity overflow ratio (COR), which is
the fraction of time that the aggregated workloads of a
PM exceed its physical capacity. Denoting the capacity
overflow ratio of PM Hj as Φj , we have

Φj =

∑
1≤t≤T COt

j

T
,

where T is the length of the time period of interest.
It is easy to see that, a smaller Φj implies a better

performance of Hj . The performance of each PM should
be probabilistically guaranteed, so we have

Φj ≤ ρ,∀1 ≤ j ≤ m. (3)

Here, ρ is a predetermined value serving as the threshold
of COR. Main notations are summarized in Fig. 4 for
quick reference. Our problem can be stated as follows.

Problem 1: (Burtiness-Aware Server Consolidation,
BASC) Given a set of n VMs and a set of m PMs, find a
VM-to-PM mapping X to minimize the number of PMs
used while making sure that (1) the initial placement sat-
isfies capacity constraint, and (2) the capacity overflow
ratio of each PM is not larger than the threshold ρ. It can
be formally formulated as follows:

min |{j|
n∑

i=1

xij > 0, 1 ≤ j ≤ m}|

s.t. CO0
j = 0, ∀1 ≤ j ≤ m

Φj ≤ ρ, ∀1 ≤ j ≤ m

(4)

Here, |S| denotes the cardinality of set S. In the
following theorem, we can prove that, the BASC problem
is NP-complete.

Theorem 1: The BASC problem is NP-complete.
Proof: We prove this theorem by reduction from the

Bin Packing (BP) problem [31], which is NP-complete.
The decision version of the BP problem is as follows.
Given n items with sizes s1, s2, ..., sn ∈ (0, 1], can we
pack them in no more than k unit-sized bins?

Given an instance of the decision version of the BP
problem, we can construct an instance of the decision
version of our problem as follows: let Ri

b = Ri
p = si,

∀1 ≤ i ≤ n; let m = k; let Cj = 1, ∀1 ≤ j ≤ m; and let
ρ = 0, i.e., capacity overflow is not allowed.

It is not hard to see that the construction can be
finished in polynomial time; thus, we reduce solving
the NP-complete BP problem to solving a special case
of our problem, implying that our problem is NP-hard.
It is easy to verify that the BASC problem is also in NP;
the theorem follows immediately.

5 BURSTINESS-AWARE RESOURCE RESER-
VATION

In this section, we first present the main idea of our
solution to the BASC problem, then we design a resource
reservation strategy for a single PM, based on which
we develop QUEUE, a complete server consolidation
algorithm. In the end, we provide a concrete example
to help readers better understand our algorithm.

5.1 Overview of QUEUE
We propose reserving a certain amount of physical re-
sources on each PM to accommodate workload spikes.
The main idea is to abstract the reserved spaces as
blocks (i.e., serving windows in queueing theory). We
give an informal illustration of the evolution process of
our queueing system in Fig. 5.
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Fig. 5. An illustration of the evolution process. (a) The
original provisioning strategy for peak workload. (b) Gath-
ering all Re

′s together to form a queueing system. (c) Re-
ducing the number of blocks while still satisfying Equ. (3).

Initially, all VMs are provisioned by Rb+Re, and each
VM has its own block (denoted as Re in Fig. 5). A VM
uses only its Rb part during periods of normal workload,
however, when a workload spike occurs, the extra Re

part is put into use. We note that, the collected Re
′s

altogether form a queueing system—when a workload
spike occurs in a VM, the VM enters the queueing system
and occupies one of the idle blocks; when the spike
disappears, the corresponding VM leaves the queue-
ing system and releases the block. It is worth noting
that, there is no waiting space in the queueing system;
thus, the PM capacity constraint would be violated if a
workload spike occurs while all the blocks are occupied,
which never happens when the number of blocks equals
the number of co-located VMs (as shown in Fig. 5(b)).
However, we may find that a certain number of blocks
are idle for the majority of the time in Fig. 5(b), so we can
reduce the number of blocks while only incurring very
few capacity violations (as shown in Fig. 5(c)). Therefore,
our goal becomes reserving minimal number of blocks
on each PM while the performance constraint in Equ. (3)
is still satisfied.

5.2 Resource Reservation Strategy for a Single PM
In this subsection, We focus on resource reservation for
a single PM. For the sake of convenience, we set the size
of each block as the size of the maximum spike of all
co-located VMs on a PM. In Section 6, we will present
how to cope with heterogenous workload spikes in an
effort to further improve the performance of QUEUE.
We also assume that all VMs have the same state switch
probabilities, i.e., pion = pon and pioff = poff , for all 1 ≤
i ≤ n. In Section 8, we will show how to cluster VMs
when they have different state switch probabilities.

Suppose there are k VMs on the PM of interest and
initially each VM Vi occupies Ri

b resources. We initialize
the number of blocks reserved on this PM as k, and our
objective is to reduce the number of blocks to K (K < k),
while the capacity overflow ratio Φ does not exceed the
threshold ρ. Let θ(t) be the number of busy blocks at
time t, implying that, there are θ(t) VMs in the ON state
and (k − θ(t)) VMs in the OFF state. Let O(t) and I(t)
denote the number of VMs that switch state from ON to
OFF (i.e., VMs that leave the queueing system) and from

OFF to ON (i.e., VMs that enter the queueing system)
at time t, respectively. We use

(
x
y

)
to denote x!

y!(x−y)! , i.e.,
x choose y. Since the workloads of VMs are mutually
independent, we have

Pr{O(t) = x} =
(
θ(t)

x

)
pxoff (1− poff )

θ(t)−x,

and

Pr{I(t) = x} =
(
k − θ(t)

x

)
pxon(1− pon)

k−θ(t)−x,

which suggest that both O(t) and I(t) follow the bino-
mial distribution:{

O(t) ∼ B(θ(t), poff ),

I(t) ∼ B(k − θ(t), pon).
(5)

Without loss of generality, we assume that the switch
between two consecutive states of all VMs happens at
the end of each time interval. Then we have the recursive
relation of θ(t),

θ(t+ 1) = θ(t)−O(t) + I(t). (6)

Combining Equs. (5) and (6) together, we see that, the
next state θ(t + 1) only depends on the current state
θ(t) and not on the past sequence of states θ(t − 1),
θ(t − 2), ..., θ(0). Therefore, the stochastic process θ(0),
θ(1), ... of discrete time ({0, 1, 2, ...}) and discrete space
({0, 1, 2, ..., k}) is a Markov chain. The stochastic process
is said to be in state i (1 ≤ i ≤ k) if the number of busy
blocks is i. Fig. 6 shows the transition graph of the chain.

Let pij be the transition probability from state i to state
j. That is to say, if θ(t) = i, then the probability that
θ(t + 1) = j is pij . For the sake of convenience, when
y > x or y ≤ x < 0, we let

(
x
y

)
be 0. Then, pij can be

derived as follows.

pij =Pr{θ(t+ 1) = j|θ(t) = i}

=

i∑
r=0

Pr{O(t) = r, I(t) = j − i+ r|θ(t) = i}

=
i∑

r=0

Pr{O(t) = r|θ(t) = i}

× Pr{I(t) = j − i+ r|θ(t) = i}

=
i∑

r=0

(
i

r

)
proff (1− poff )

i−r

×
(

k − i

j − i+ r

)
pj−i+r
on (1− pon)

k−j−r.

(7)

In the above formula, the first and second equations
are due to the definition of pij and the recursive relation
of θ(t), respectively. Observing that O(t) and I(t) are
independent of each other, we get the third equation.
The last equation can be obtained by replacing O(t) and
I(t) with their distributions.

The stochastic matrix P = [pij ](k+1)×(k+1) is called
the transition matrix of the Markov chain. We see
that, it does not depend on the time. Let π(t) =
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Fig. 6. The transition graph of the stochastic process
{θ(0), θ(1), ..., θ(t), ...}. The stochastic process is said to
be in state i (1 ≤ i ≤ k) if the number of busy blocks is i.
pij is the transition probability from state i to state j.

(π
(t)
0 , π

(t)
1 , ..., π

(t)
k ) be the distribution of the chain at time

t, i.e., π(t)
h = Pr{θ(t) = h}, ∀0 ≤ h ≤ k. For our chain,

which is finite, π(t) is a vector of k+1 nonnegative entries
such that

∑k
h=0 π

(t)
h = 1. In linear algebra, vectors of this

type are called stochastic vectors. Then, it holds that

π(t+1) = π(t)P.

Suppose π is a distribution over the state space
{0, 1, 2, ..., k} such that, if the chain starts with an initial
distribution π(0) that is equal to π, then after a transition,
the distribution of the chain is still π(1) = π. Then the
chain will stay in the distribution π forever:

π
P−→ π

P−→ π
P−→ · · · · · ·

Such π is called a stationary distribution. For our
chain, we have the following theorem.

Theorem 2: For the Markov chain defined in Fig. 6 and
Equ. (7), given an arbitrary initial distribution π(0), π(t)

will converge to the same distribution π, which satisify

π = πP, and lim
t→∞

(π(0)Pt)h = πh, ∀0 ≤ h ≤ k.

Proof: According to the Markov chain convergence
theorem [14], it is sufficient to prove that, our chain
is finite, aperiodic, and irreducible. Since the number
of VMs that a single PM can host is finite (in our
case, it is k), the state space of our chain is finite. As
shown in Equ. (7), pii > 0 for any state i, so all states
are aperiodic. Finally, from any state i, we can reach
any other state j, so the transition graph is strongly
connected, implying that our chain is irreducible. The
theorem follows immediately.

When the chain stays in the stationary distribution,
we see that πh is equivalent to the proportion of times
that the stochastic process is in state h. In our case, it
means that πh denotes the proportion of time wherein
the number of busy resource blocks is h.

We then can derive the minimum number of blocks
that keeps the capacity overflow ratio not larger than ρ.
Denote by K the minimum number of blocks; we argue
that K satisfies the following constraint:

K−1∑
h=0

πh < 1− ρ ≤
K∑

h=0

πh, (8)

Algorithm 1 Calculating Minimum Blocks (CalMinBlk)
Input: k, the number of co-located VMs on a PM;

pon, the switch probability from “OFF” to “ON”;
poff , the switch probability from “ON” to “OFF”;
ρ, capacity overflow ratio threshold

Output: K, the minimum number of blocks that should
be reserved on a PM

1: Calculate the transition matrix P using Equ. (7)
2: Prepare the coefficient matrix of the homogeneous

system of linear equations described in Equ. (9)
3: Solve the the homogeneous system via Gaussian

elimination and get the stationary distribution π
4: Calculate K from π using Equ. (8)
5: return K;

which suggests that K is the minimum number that
guarantees

∑K
h=0 πh ≥ 1− ρ.

This is because, when he number of reserved blocks on
PM Hj is reduced from k to K, if the queueing system is
in state h, which is larger than K, then capacity overflow
occurs, i.e., COt

j = 1, and vice versa. Thus we have

Φj =

∑
1≤t≤T COt

j

T
=

k∑
h=K+1

πh = 1−
K∑

h=0

πh ≤ ρ.

We now show how to calculate the stationary distri-
bution π. According to its definition, we have π = πP,
which is equivalent to the following homogeneous sys-
tem of linear equations that can be solved by Gaussian
elimination. 

k∑
h=0

πhph0 − π0 = 0

k∑
h=1

πhph1 − π1 = 0

......

k∑
h=k

πhphk − πk = 0

(9)

Alg. 1 summarizes the entire process of how to cal-
culate the minimum number of reserved blocks, given
parameters k, pon, poff , and ρ. Calculating the transition
matrix P requires O(k3) time; solving the linear equa-
tions using Gaussian elimination costs roughly O(k3)
time; finding K that satisfies Equ. (8) needs O(k) time.
Therefore, the time complexity of Alg. 1 is O(k3).

5.3 QUEUE
In this subsection, we present the complete server con-
solidation algorithm, QUEUE, which is to place a set of
n VMs onto a set of m PMs.

As we mentioned before, we conservatively set the
size of a single block as the size of the maximum spike
of all the VMs on each PM, which may result in low
utilization if the workload spikes of the co-located VMs
differ too much. Therefore, in QUEUE, we tend to place
VMs with similar Re

′s on the same PM in an effort to
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Algorithm 2 QUEUE
Input: V1, V2, ..., Vn, specifications of n VMs;

H1, H2, ..., Hm, specifications of m PMs;
pon, the switch probability from “OFF” to “ON”;
poff , the switch probability from “ON” to “OFF”;
ρ, capacity overflow ratio threshold;
d, the maximum number of VMs allowed on a PM;

Output: X, a VM-to-PM placement matrix
1: // Preprocessing phase
2: MinN ← an array of size d+ 1
3: MinN [0]← 0
4: for each k ∈ [1, d] do
5: MinN [k]← CalMinBlk(k, pon, poff , ρ)
6: end for
7: // Sorting phase
8: Cluster VMs based on their Re

′s
9: Sort clusters in descending order of Re

10: In each cluster, sort VMs in descending order of Rb

11: Sort PMs in descending order of C
12: // FFD-based placement phase
13: X← [0]n×m

14: for each Vi in the sorted order do
15: place Vi on the first Hj (in the sorted order) that

satisfies Equ. (10), and set xij ← 1;
16: end for
17: return X;

reduce the average size of a single block. Alg. 2 shows
the details of QUEUE, which consists of three phases.

In the preprocessing phase (lines 1-6), we introduce
an array named MinN , which stores the information
about the minimum number of blocks that need to be
reserved on a PM, given k, pon, poff , and ρ. That is, if
there are k VMs placed on a PM, then we need to reserve
MinN [k] blocks to bound the capacity overflow ratio.
Without loss of generality, we assume that a single PM
can host up to d VMs, thus we can calculate the array
MinN [k] for all possible k ∈ [1, d] before VM placement.
We also let MinN [0] = 0 for compatibility. Fig. 7 shows
the array MinN given different settings of pon, poff , and
ρ. We notice that, for the same k, when the capacity
overflow ratio threshold ρ increases (from green circles
to red triangles), MinN [k] decreases; when pon increases
(from green circles to blue squares), MinN [k] increases.
These observations are consistent with our intuitions.

During the sorting phase (lines 7-11), we first cluster
all VMs so that VMs with similar Re

′s are in the same
cluster1, and then sort these clusters in the descending
order of Re. In each cluster, we sort VMs in the descend-
ing order of Rb. We also sorted PMs in the descending
order of the physical capacity C. This is a cluster-level
heuristic to let co-located VMs have similar Re

′s, thus to

1. We first use linear time to find the maximum, maxR, and mini-
mum, minR, of n Re

′s, then partition all Re
′s into c clusters, where

the i-th cluster contains those Re
′s that satisfy minR+ i−1

c
(maxR−

minR) ≤ Re < minR+ i
c
(maxR−minR), for i = 1, 2, ..., c.

 0
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 0  4  8  12  16  20  24  28  32  36  40  44  48  52
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k, the number of co-located VMs on a PM

pon=0.1,poff=0.5,ρ=0.10
pon=0.1,poff=0.5,ρ=0.05
pon=0.2,poff=0.5,ρ=0.05

Fig. 7. The minimum number, MinN [k], of blocks that
should be reserved on a PM, given different settings of
pon, poff and ρ.

minimize the average size of blocks on all PMs.
In the third phase (lines 12-16), we adopt the First Fit

Decrease (FFD) [31] heuristic to place VMs on PMs. For
each Vi in the sorted order, we place Vi on the first PM
Hj that satisfies the following constraint:

max{Ri
e,max{Rs

e|s ∈ Tj}} ×MinN [|Tj |+ 1]

+Ri
b +

∑
s∈Tj

Rs
b ≤ Cj , (10)

where Tj denotes the set of indices of VMs that have
already been placed on Hj , and Cj is the capacity of Hj .
We note that, the size of the reserved resources is the
block size multiplying the number of blocks, where block
size is conservatively set to the maximum Re among all
co-located VMs. Therefore, this constraint indicates that,
VM Vi can be placed on Hj if and only if the sum of the
new size of the queueing system and the new total size
of Rb

′s does not exceed the physical capacity of Hj . If
Equ. (10) holds, we set xij be 1. At the end of QUEUE,
we return the VM-to-PM mapping result, i.e., X.

Finally, we present the complexity analysis of QUEUE.
In the preprocessing phase, Alg. 1 is invoked at most
d+1 times. Remember that the time complexity of Alg. 1
is O(k3), thus, this phase costs O(d4) time. The sim-
ple clustering phase takes O(n) time. More developed
clustering techniques are out of the scope of this paper.
The sorting phase takes O(n log n) time. The FFD-based
placement phase takes O(mn) time. Overall, the time
complexity of the complete consolidation algorithm is
O(d4 + n logn+mn).

5.4 A Concrete Example
In this subsection, we provide a concrete example to
better explain the details of QUEUE. In our example,
there are n = 8 VMs and m = 3 PMs with the following
parameters (see Equs. (1) and (2)):

V1 = (0.1, 0.5, 15, 13), V2 = (0.1, 0.5, 15, 13),

V3 = (0.1, 0.5, 20, 15), V4 = (0.1, 0.5, 20, 10),

V5 = (0.1, 0.5, 25, 15), V6 = (0.1, 0.5, 10, 9),

V7 = (0.1, 0.5, 15, 10), V8 = (0.1, 0.5, 10, 9),

and
H1 = H2 = H3 = (100).
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As we mentioned in Section 5.2, we assume that
all VMs have the same state switch probabilities. The
threshold ρ of capacity overflow ratio is set to 0.05. The
maximum number d of VMs allowed on a single PM is
4. We now present the details of running QUEUE.

In the preprocessing phase, we are to generate the
array MinN . Taking k = 4 for example, according to
Equ. (7), we can obtain the transition matrix P:

P =



0.6561 0.2916 0.0486 0.0036 0.0001

0.3645 0.4860 0.1350 0.0140 0.0005

0.2025 0.4500 0.2950 0.0500 0.0025

0.1125 0.3500 0.3750 0.1500 0.0125

0.0625 0.2500 0.3750 0.2500 0.0625


By solving π = πP, we have the stationary distribution:

π = (0.4823, 0.3858, 0.1157, 0.0154, 0.0008).

Since π0 + π1 < 1 − ρ ≤ π0 + π1 + π2 , we have K = 2,
which is also the value of MinN [4]. Similarly, we can
find that, MinN [0] = 0, MinN [1] = MinN [2] = 1, and
MinN [3] = 2 (see the green circles in Fig. 7).

In the clustering phase, these 8 VMs are first clustered
into two groups, i.e., V1, V2, V3, and V5 are the first group,
and the rest is the second group. In each cluster, we sort
VMs to be in the descending order of their Rb

′s. The
final order of VMs is V5, V3, V1, V2, V4, V7, V6, and V8.

In the third phase of QUEUE, we first try to place
V5 on H1. Since R5

b + R5
e < C1, it succeeds and we set

x51 = 1. We then try to place V3 on H1. According to
Equ. (10), we have

max{R3
e,max{R5

e}} ×MinN [|{3}|+ 1] +R3
b +R5

b < C1,

so we set x31 = 1. We then try to place V1 on C1, which
also succeeds and we set x11 = 1. Similarly, we then find
that, in the final placement, V5, V3, V1, and V6 are placed
on H1, and the rest is placed on H2.

Fig. 8 shows the final placement of our example using
QUEUE. Note that, we conservatively round the block
size up to the maximum spike size of all co-located VMs
on a PM, e.g., on PM H1, the size of each queueing block
is max{R5

e, R
3
e, R

1
e, R

6
e} = 15.

In contrast, without opportunistic resource sharing in
the queueing blocks, if resources are provisioned for
peak workload, then 3 PMs are needed to host these
8 VMs, i.e., V5, V3, and V6 are on H1; V1, V2, and V4 are
on H2; and the remaining two VMs are on H3.

6 COPING WITH HETEROGENOUS SPIKES

In this section, we present how to improve the consol-
idation performance of QUEUE through more careful
treatment of heterogenous workload spikes.

Remember that, in the last section, we conservatively
round the block size up to the maximum spike size of
all co-located VMs on each PM, as shown in Fig. 8. It is
easy to see that, this kind of rounding may waste some

PM H1 R5b = 25 R1b = 15 R6b = 10R3b = 20PM H2 R2b = 15 R7b = 15R8b = 10 R4b = 20 Queueing BlockNormal Workload
15 15

13 13
Fig. 8. The final placement of our example using QUEUE,
where only 2 PMs are needed. We conservatively round
the block size up to the maximum spike size of all co-
located VMs on a PM, e.g., on PM H1, the size of each
queueing block is max{R5

e, R
3
e, R

1
e, R

6
e} = 15.

physical resources. Let us take PM H1 in Fig. 8 for exam-
ple, by the current design of QUEUE, a total of 30 units
of physical resources need to be reserved for workload
spikes; however, instead of considering the four VMs
(i.e., V5, V3, V1, and V6) together, we can partition them
into two groups and consider each of them separately.
For instance, we choose to have V5 and V3 in the first
group, and have V1 and V6 in the second group. For
the former group, since MinN [2] = 1, we only have to
reserve one block with a size of max{R5

e, R
3
e} = 15; for

the latter group, we also have to reserve one block with
a size of max{R1

e, R
6
e} = 13. In doing so, a total of 28

units of resources are reserved, which is less than that
in the previous case.

We, therefore, have the following intuition: on each
PM, we can try to partition the co-located VMs into
several groups and consider them separately, so as to
improve QUEUE by reducing the amount of resources
reserved for workload spikes.

A key problem in achieving our goal is how to par-
tition a set of k VMs into non-overlapped groups, i.e.,
how to partition an integer k, which is an interesting and
important problem in number theory [32]. A g-partition
of an integer k is a multi-set {x1, x2, . . . , xi, . . . , xg} with
xi ≥ 1 for every element xi and x1 + x2 + · · · + xg = k.
For example, {1, 2, 4} and {1, 3, 3} are two possible 3-
partitions of integer 7. Denote by pg(k) the number of
different g-partitions of an integer k, and by p(k) the
number of all possible partitions of an integer k. For
example, p3(7) = 4, p(7) = 15. According to [33], we
have the following recursive relations of pg(k):

pg(k) = pg−1(k − 1) + pg(k − g). (11)

Alg. 3 shows the main steps to find the optimal
ordered partition. Without loss of generality, we assume
that, R1

e , R2
e , ..., Rk

e are sorted in descending order of
their values. The array MinN is computed using Alg. 1.
Since the number of all possible partitions of an integer k
is very large (log p(k) = O(

√
k) [33]), enumerating them
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Algorithm 3 Finding Optimal Partition (FidOptPat)
Input: MinN , an array that stores the minimum num-

bers of blocks that need to be reserved on a PM, with
respect to k, pon, poff , and ρ;
R1

e , R2
e , ..., Rk

e , a set of workload spikes that are
sorted in the descending order of their values;
G, the maximum number of groups

Output: S, an ordered partition
1: S ← {k}
2: rmin ←MinN [k]×R1

e

3: Let x0 ← 0 for convenience
4: for g = 2 to G do
5: Generate all g-partitions of k (using Equ. (11))
6: for each g-partition {x1, ..., xg} do
7: for each permutation x′

1, ..., x
′
g of x1, ..., xg do

8: r ←
g∑

i=1

MinN [x′
i]×max{Rj

e|
i−1∑
h=0

x′
h < j ≤

i∑
h=0

x′
h}

9: if r < rmin then
10: rmin ← r, S ← {x′

1, ..., x
′
g}

11: end if
12: end for
13: end for
14: end for
15: return S;

would be time-consuming. So we use G to restrict the
maximum number of groups.

We use S to record the best partition so far (line 1),
and use rmin to record the amount of resources needed
by that partition S (line 2). For each integer g (2 ≤ g ≤
G), we first generate all possible g-partitions of k using
Equ. (11); then, for each permutation x′

1, ..., x
′
g of a g-

partition x1, ..., xg, we compute the amount of resources
needed by this ordered partition (line 8) and compare it
with rmin: if this ordered partition uses fewer resources
than S, we update S and rmin (lines 9-11). Finally, the
optimal ordered partition S is returned.

It takes O(p(k)) time to generate all possible partitions
of an integer k [34]. Since pg(k) ∼ kg−1

g!(g−1)! , generat-
ing all possible g-partitions (1 ≤ g ≤ G) requires
O(

∑G
g=1

kg−1

g!(g−1)! ) time. Taking G = 3 for example, since
p1(k) = O(1), p2(k) = O(k), and p3(k) = O(k2),
generating all possible g-partitions (1 ≤ g ≤ 3) requires
O(n2) time. For each possible permutation of a partition,
evaluating the amount of resources needed requires
O(k) time, thus, the total time complexity of Alg. 3 is
O(k

∑G
g=1

kg−1

(g−1)! ). In practice, we can choose a proper G
to achieve a balance between complexity and optimality.

We use PM H2 in Fig. 8 as an example, where the sizes
of the four spikes are 13, 10, 10, and 9. Without loss of
generality, we let R1

e = 13, R2
e = 10, R3

e = 10, and R4
e = 9.

We consider all ordered 1-partition, 2-partitions, and 3-
partitions of k = 4, i.e., G = 3. Fig. 9 shows the results,
where the optimal ordered partition is {2, 2}.

Ordered The amount of resources usedpartition
{4} MinN [4]× 13 = 26

{1, 3} MinN [1]× 13 +MinN [3]× 10 = 33
{3, 1} MinN [3]× 13 +MinN [1]× 9 = 35
{2, 2} MinN [2]× 13 +MinN [2]× 10 = 23

{1, 1, 2} MinN [1]× 13 +MinN [1]× 10 +MinN [2]× 10 = 33
{1, 2, 1} MinN [1]× 13 +MinN [2]× 10 +MinN [1]× 9 = 32
{2, 1, 1} MinN [2]× 13 +MinN [1]× 10 +MinN [2]× 9 = 32

Fig. 9. All possible ordered partitions on PM H2 in Fig. 8,
where the optimal ordered partition result is {2, 2}.
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Fig. 10. The computation cost of QUEUE with varying
d and n. The cost of the actual placement varies with
different physical configurations and thus is not included.

7 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations and
testbed experiments to evaluate the proposed algorithms
under different settings and reveal insights of the pro-
posed design performance.

7.1 Simulation Setup
Two commonly-used packing strategies are considered
here, which both use the First Fit Decrease heuristic for
VM placement. The first strategy is to provision VMs
for peak workload (FFD by Rp), while the second is
to provision VMs for normal workload (FFD by Rb).
Provisioning for peak workload is usually applied for
the initial VM placement [1], where cloud tenants choose
the peak workload as the fixed capacity of the VM to
guarantee application performance. On the other hand,
provisioning for normal workload is usually applied in
the consolidation process, since at runtime the majority
of VMs are in the OFF state, i.e., most of the VMs only
have normal workloads.

We consider both the situations without and with live
migration, where different metrics are used to evalu-
ate the runtime performance. For experiments without
live migration, where only local resizing is allowed to
dynamically provision resources, we use the capacity
overflow ratio (COR) defined in Section 4 as the perfor-
mance metric. Next, in our testbed experiments, we add
live migration to our system to simulate a more realistic
computing cluster, in which the number of migrations
reflects the quality of performance, and the number of
active PMs reflects the level of energy consumption.
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Fig. 11. Packing results. The common settings are: ρ = 0.01, d = 16, pon = 0.01, poff = 0.09, and Cj ∈ [80, 100]. (a)
Rb = Re, Rb and Re ∈ [2, 20]. (b) Rb > Re, Rb ∈ [12, 20], Re ∈ [2, 10]. (c) Rb < Re, Rb ∈ [2, 10], Re ∈ [12, 20].
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Fig. 12. Comparison results of QUEUE and RB with respect to capacity overflow ratio (COR).

7.2 Simulation Results

We first evaluate the computation cost of our algorithm
briefly, and then quantify the reduction of the number
of running PMs, as well as compare the runtime perfor-
mance with two commonly-used packing strategies.

To investigate the performance of our algorithm in
various settings, three kinds of workload patterns are
used for each experiment: Rb = Re, Rb > Re and
Rb < Re, which denote workloads with normal spike
size, small spike size, and large spike size, respectively. It
will be observed later that, the workload pattern of VMs
does affect the packing result, number of active PMs, and
number of migrations.

According to the results in Section 5.3, the time com-
plexity of QUEUE is O(d4 + nlogn+mn). In Fig. 10, we
present the experimental computation cost of QUEUE
with reasonable d and n values. We see that, our algo-
rithm incurs very few overheads with moderate n and d
values. The cost variation with respect to n is not even
distinguishable in the millisecond-level.

To evaluate the consolidation performance of QUEUE
in different settings, we then choose Rb and Re uniform-
ly and randomly from a certain range for each VM. We
repeat the experiments multiple times for convergence.
The capacity overflow ratio (COR) is used here as the
metric of runtime performance. Since FFD by Rp never
incurs capacity violations, it is not included in the per-
formance assessment.

Figs. 11 and 12 show the packing results and COR
results, respectively. The common settings for three sub-
figures are as follows: ρ = 0.01, d = 16, pon = 0.01, poff =
0.09, and Cj ∈ [80, 100]. As we discussed in Section 3, pon

indicates the frequency of spike occurrence. For a bursty
workload, the spikes usually occur with low frequency
and short duration, therefore, we choose pon = 0.01 and
poff = 0.09. Workload patterns are distinguished via
setting different ranges for Rb and Re. For Figs. 11(a)
and 12(a), Rb = Re, Rb and Re ∈ [2, 20]; for Figs. 11(b)
and 12(b), Rb > Re, Rb ∈ [12, 20], Re ∈ [2, 10], and for
Figs. 11(c) and 12(c), Rb < Re, Rb ∈ [2, 10], Re ∈ [12, 20].

We see that QUEUE significantly reduces the number
of PMs used, as compared with FFD by Rp (denoted
as RP). When Rb < Re, the number of PMs used in
QUEUE is reduced by 45% compared with RP, where
the ratios for Rb = Re and Rb > Re are 30% and
18%, respectively. FFD by Rb (denoted as RB) uses even
fewer PMs, but the runtime performance is disastrous
according to Fig. 12. The COR of RB is unacceptably
high. With larger spike sizes (Rb < Re), the packing
result of QUEUE is better, because more PMs are saved
compared with RP, and fewer additional PMs (for live
migrations) are used compared with RB (see Fig. 11(c)).
Simultaneously, with larger spike sizes, the average COR
of QUEUE is slightly higher, but is still bounded by ρ
(see Fig. 12(c)). The case of smaller spike sizes shows the
opposite results.

We mention that, there are very few PMs with CORs
slightly higher than ρ in each experiment. This is be-
cause a Markov chain needs some time to enter into its
stationary distribution. Though we did not theoretically
evaluate whether the chain constructed in Section 5
is rapid-mixing, in our experiments, we find that the
time period before the chain enters into its stationary
distribution is very short.
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Fig. 13. The architecture of our testbed.

7.3 Testbed Experiment
We use Xen Cloud Platform (XCP) 1.3 [35] as our
testbed to enable live migration in our system. XCP is
an open-source cloud platform of its commercial coun-
terpart XenServer. Our proposed scheme can be easily
integrated into any existing enterprise-level computing
cloud since it simply computes the amount of reserved
resources on each PM. A total of 15 machines (Intel
Core i5 Processor with four 2.8 GHz cores and 4 GB
memory) are used. Ubuntu 12.04 LTS Server Edition
is installed both on the PMs and VMs. The resource
type in QUEUE can be any one-dimensional resource
such as CPU, memory, disk I/O, network bandwidth,
or any combination of them that can be mapped to
one dimension. For simplicity, memory is designated as
the resource type concerned in out testbed experiments.
Dynamic scheduling is integrated into our testbed, thus
to automatically scale up/down on-demand, as well as
to conduct live migration when local resizing is not
capable of allocating enough resources.

Fig. 13 shows the architecture of our testbed. We
developed three main modules: consolidation module,
performance monitor, and schedule module. QUEUE is
implemented in the consolidation module. To construct
the MinN array, QUEUE gets VM specifications from
cloud users and the predetermined system parameters
(e.g., ρ, and d) from XCP API. The MinN array can
be reused as long as all of k, pon, poff , and ρ remain
unchanged. The FidOptPat algorithm (Alg. 3) may be
time-consuming. To improve time-efficiency of QUEUE,
we can only invoke FidOptPat when a PM does not
have enough physical resources to accommodate another
VM. The second module is responsible for periodical-
ly retrieving performance statistics from XCP API and
forwarding them to the schedule module, which makes
decisions about local resizing and live migration, and
sends these decisions to XCP API.

We also develop programs in VMs to simulate web
servers dealing with computation-intensive user request-
s. When the number of users visiting the server is more
than usual, a workload spike occurs. Users send their
requests to the server from time to time, and the time
interval between two consecutive requests from the same
user follows negative exponential distribution with the
mean being 1. Since in reality this interval cannot be
infinitely small, we set a lower limit of 0.1. The workload
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Fig. 14. Sample of the synthetic workload used in our
testbed experiment.

Pattern Rb Re
Number of users
Normal Peak

Rb > Re
M S 800 1200
L M 1600 2400

Rb = Re

S S 400 800
M M 800 1600
L L 1600 3200

Rb < Re
S M 400 1200
M L 800 2400

Fig. 15. Various workload patterns in our experiments.

is quantified by the number of requests and each VM
generates its workload with its respective Rb and Re.
Fig. 14 shows a sample of the synthetic workload.

We are also interested in studying the effect of dif-
ferent workload patterns, thus, Rb and Re are classified
into three types: small (S), medium (M), and large (L). A
certain amount of users can be accommodated for each
size—400 for small, 800 for medium and 1600 for large.
Fig. 15 shows the details of various workload patterns
in our testbed experiments.

7.4 Testbed Experiment Results
The packing results in the testbed experiments are con-
sistent with those in Fig. 11, so we choose not to repeat
them. Allowing live migration in our testbed makes the
number of PMs used vary over time, so we record the
number of PMs used and the number of migrations
in the evaluation period. Generally speaking, if a web
server runs for a very long time, it probably will not
quit in the future, so we assume that the number of PMs
used and the number of migrations remain unchanged
after the evaluation period. Hence more PMs used at the
end of the evaluation period mean more overall energy
consumption. Therefore, we use them—the total number
of migrations and the number of active PMs at the end of
the evaluation period—as the performance metrics. We
update the measurements of these metrics every σ=30
seconds, and the length of the evaluation period is 100σ
seconds. In fact, we observe that, the system becomes
stable within about 10σ seconds.

For each workload pattern, we compare the runtime
performance of three consolidation strategies—QUEUE,
RB, and a simple burstiness-aware algorithm (denoted
as RB-EX). RB-EX is simply to reserve at least δ percent
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Fig. 16. Bars show the average values, and the extend-
ed whiskers show the maximum and minimum values.
(ρ=0.01, pon=0.01, poff=0.09, σ = 30s, δ = 0.3 for
RB-EX, the length of evaluation period is 100σ, and VM
configurations are set based on Fig. 15.).

of all resources on each PM, which is an applicable
consolidation strategy when, in reality, nothing about the
workload pattern (except the existence of burstiness) is
known. In our experiments, we choose δ = 30%. The
result is averaged over 10 executions for convergence.
Fig. 16 shows the comparison results. At the end of
the evaluation period, on average, RB uses fewer PMs
than QUEUE, but it incurs many more migrations than
QUEUE; the performance of RB-EX is between RB and
QUEUE. These performance gaps attenuate in Rb > Re

and enlarge in Rb < Re.
We also investigate the time-order patterns of migra-

tion events. As shown in Fig. 17, in general, QUEUE
incurs very few migrations throughout the evaluation
period. At the beginning of the evaluation period, RB
and RB-EX incurs excessive migrations due to the over-
tight initial VM placement, and the number of PMs
used increases rapidly during this period. RB incurs
an unacceptably large number of migrations through-
out the evaluation period, while RB-EX either incurs
considerable number of migrations constantly, and uses
only slightly more PMs than RB, or incurs very few
migrations as QUEUE and uses more PMs than QUEUE
(sometimes uses the same number of PMs as QUEUE).

To explain this phenomenon, we introduce a term
idle deception to refer to the situation where a PM is
falsely reckoned idle. In a highly-consolidated cloud, idle
deception is very likely to happen, i.e., a busy PM is
likely to be selected as a migration target. As a result,

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Time

ig
ra

ti
o
n
s

 

 

QUEUE

RB

RB−EX

Fig. 17. Comparison of time-order patterns of migration
events during one of the experiments for Rb = Re. Similar
results are observed for Rb > Re and Rb < Re.

the over-provisioned PM tends to become the source PM
of migration later, which causes a vicious feedback circle
where migrations occur constantly inside the system,
while the number of PMs used keeps at a low level.
We call this phenomenon cycle migration. The results of
RB-EX are more subtle. As we have observed, two kinds
of results are possible for RB-EX depending on different
experiment settings: (1) RB-EX uses slightly more PMs
than RB, while cycle migration still exists like in RB; and
(2) in RB-EX, cycle migration disappears, but more PMs
are used than QUEUE. From this point of view, RB-EX
performs less efficiently than QUEUE.

7.5 Summary
Key observations are summarized as follows.
(1) QUEUE reduces the number of active PMs by up to

45% with large spike size (Rb < Re) and up to 30%
with normal spike size (Rb = Re) in comparison
with provisioning for peak workload.

(2) QUEUE incurs very few migrations, while both
RB and RB-EX incur excessive migrations at the
beginning of each experiment due to the over-tight
initial packing, and the number of PMs used in RB
or RB-EX increases rapidly during this period.

(3) Due to falsely picking migration targets, i.e., idle
deception, RB incurs an unacceptably large number
of migrations constantly throughout the experiment,
and the overall performance is seriously degraded.

(4) RB-EX performs less efficiently than QUEUE, while
either cycle migration exists or cycle migration dis-
appears, but more PMs are used than QUEUE.

8 DISCUSSIONS

Overhead of learning parameters. One limitation of the
2-state Markov chain model is that, learning parameters
requires computing clouds to provide tentative deploy-
ments, which may incur additional overhead to clouds.
However, this overhead can be drastically reduced if
tenants have to reserve resources for the same type of
VMs repeatedly and lastingly. For example, about 40% of
applications are recurring in Bing’s production data cen-
ters [36]. For the same type of VMs, the cloud provider
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only needs to offer one tentative deployment, and the
same results could be fed back to tenants who want to
deploy that type of VM. Thus, the tentative deployment
overhead for cloud providers would be greatly reduced.

Capacity overflow due to inaccurate workload model.
This happens when the model training phase is too
short to represent the actual workload pattern of a
VM. This kind of capacity overflow is not the main
problem we consider in the paper; instead, we assume
that it is the cloud user’s responsible to adjust its model
parameters to best fit its objective. When the cloud user
finds the requested resource is not enough to support
his/her application, the user may enlarge its model
parameters; otherwise, when the user finds that a part
of the requested resource is idle most of the time, the
user may reduce its model parameters. In this paper,
we are interested in bounding the ratio of the capacity
overflow due to insufficient queueing blocks, and we
use queueing theory to derive the minimal number of
queueing blocks that ensure probabilistic performance
guarantee on each PM.

Different pon
′s and poff

′s. In QUEUE, we assume
that all VMs have the same state switch probabili-
ties, because the problem becomes very challenging
when VMs have various pon

′s and poff
′s. It has been

proved in [22] that the bin packing problem becomes
#P-complete even when the sizes of items follow the
Bernoulli distribution—a simplified version of two-state
Markov chain. Therefore, it is extremely hard to have
approximate solutions for situations with different pon′s
and poff

′s. In practice, we can cluster VMs based on their
pon

′s and poff
′s (i.e., pion and pioff are the 2-D coordinates

of Vi in a plane) [37], and apply QUEUE to each cluster.
Online problem. We emphasize that QUEUE can easi-

ly adapt to the online situation. When a new VM arrives,
we place it on the first PM that satisfies the constraint
in Equ. (10), and recalculate the size of the queueing
system; When a VM leaves, we simply recalculate the
size of the queueing system on the PM; When a batch of
new VMs arrives, we use the same scheme as Alg. 2 to
place them. Additionally, if pon and poff varies among
VMs, we need to round them to uniform values. In
this situation, VM arrival and VM leave may affect the
accuracy of the rounded pon and poff values, which
requires periodical recalculation of pon and poff .

Multi-dimensional resource. The resource type in the
proposed algorithm is one-dimensional; here, we outline
how to transform it into a multi-dimensional version.
If each dimension of resources is correlated, we can
map them to one dimension and apply the proposed
algorithm without any major modifications. Otherwise,
Alg. 1 could be applied to each dimension and could be
used to quantify the amount of reserved resources for
each dimension independently. In the latter case, QUEUE
in Alg. 2 is not applicable, so we need to use another
heuristic such as First Fit to place VMs on PMs. The
multi-dimension issue with bursty workload is left as
part of future work.

9 CONCLUSION

In a highly consolidated computing cloud, the VM per-
formance is prone to degradation without an appropriate
VM placement strategy, if various and distinct burstiness
exists. To alleviate this problem, we have to activate
more PMs, leading to more energy consumption. To
balance the performance and energy consumption with
respect to bursty workload, we propose to reserve a
certain amount of resources on each PM that form a
queueing sytem to accommodate burstiness. To quantify
the amount of reserved resources is not a trivial problem.
In this paper, we propose a burstiness-aware server
consolidation algorithm based on the two-state Markov
chain. We use a probabilistic performance constraint and
show that the proposed algorithm is able to guarantee
this performance constraint. The simulation and testbed
results show that, QUEUE improves the consolidation
ratio by up to 45% with large spike size and around
30% with normal spike size, as compared to those pro-
visioning for peak workload, and a better balance of
performance and energy consumption is achieved in
comparison with other commonly-used schemes.
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