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Abstract

The postal network is an interconnection network that possesses many desirable

properties in network design and applications. It includes hypercubes and Fibonacci

cubes as its special cases. Basically, the postal network forms a series (with series

number �) that is based on the sequence N�(n) = N�(n� 1) +N�(n� �), where n is

the dimension and N�(n) represents the number of nodes in an n-dimensional postal

network in series �. In this paper, we study topological properties of postal networks

and relationships between di�erent postal networks. One application of postal networks

is also shown in implementing barrier synchronization using a special spanning tree

called a postal tree. The postal network can also be considered as a 
exible version of

the hypercube by relaxing the restriction on the number of nodes, and hence, makes it

possible to construct multicomputers with arbitrary sizes.

Index terms { Barrier synchronization, embeddings, Fibonacci cubes, hypercubes,

interconnection networks, multicomputers, postal model, routing algorithms.
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1 Introduction

The use of undirected graphs as interconnection topologies for large multicomputer systems

has been an active research area in the past decades. Many graph structures have emerged as

attractive interconnection topologies. The hypercube has been a popular topology because

of its strong connectivity, regularity, symmetry, and ability to embed many other topolo-

gies. Numerous research projects have been undertaken related to hypercube design and

applications.

Unfortunately, the number of nodes 2n in an n-dimensional hypercube grows rapidly as

n increases. This limits considerably the choice of the number of nodes in the graph. The

Fibonacci cube (FC) proposed by Hsu [6] is a special subcube of a hypercube based on

Fibonacci numbers [5]. It has been shown that the Fibonacci cube can e�ciently emulate

many hypercube algorithms. Fibonacci cubes use fewer links than comparable hypercubes

and their size does not increase as fast as hypercubes. The structural analysis of the Fibonacci

cube has been extensively studied in [2], its applications in [3], and its extensions in [11]. A

Fibonacci cube can also be viewed as resulting from a complete hypercube after some nodes

become faulty and the system is recon�gured.

In this paper, we propose a series of network topologies called postal networks with their

names coming from the postal model [1] of communication. Postal networks include both

hypercubes and Fibonacci cubes as special cases. Basically, the n-dimensional postal network

in series �, PN�(n), is based on the generalized Fibonacci sequence N�(n) = N�(n � 1) +

N�(n � �). The postal network series can also be considered as a 
exible version of the

hypercube by relaxing the restriction on the number of nodes, and hence, makes it possible

to construct multicomputers with arbitrary sizes. Like Fibonacci cubes, postal networks can

also be viewed as resulting from a hypercube after some nodes become faulty. Therefore,

the postal network not only allows the construction of multicomputers of arbitrary sizes but

also exposes the nature of hypercubes operating in a gracefully degraded mode.

We show that the postal network series still maintains many desirable properties of hy-

percubes, such as existence of a Hamming distance path between any two nodes and a

simple routing algorithm. Moreover, postal networks support e�cient collective communi-

cation using the postal model [1] which can �ne tune the communication structure based on

network latency in the underlying system. A similar architecture-dependent model called

parameterized communication model has been studied in [10] to achieve optimal multicas-

ting. A message-length-dependent model called packetization can be modeled in a similar
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way. In this model, long messages are packetized (partitioned into packages) and transmit-

ted. Speci�cally, the postal model incorporates a latency parameter � measuring the reverse

of the ratio between the time it takes an originator of a message to send it and the time

that passes until the recipient of the message receives it. If N�(n) represents the maximum

number of nodes that can be reached in time n on a one-port model exhibiting �. Then the

following equation holds:

N�(n) =

8<
: N�(n� 1) +N�(n� �); if n � �

1; otherwise

Therefore, if � in the postal network is selected based on the given latency parameter

in the underlying network, e�cient broadcast and gather operations can be carried out,

i.e., a broadcast (gather) operation can be done in a minimum number of steps. Note that

both operations are important collective communication primitives and they can be used to

implement other collective communications, such as barrier synchronization.

The main features of the postal network can be summarized as follows:

� The series of postal networks allows more choices in constructing systems of di�erent

sizes.

� Postal networks can e�ciently embed other popular topologies, for example, postal

networks contain both hypercubes and Fibonacci cubes as its special cases.

� Nodes in postal networks can be addressed in a simple way (like in hypercubes) such

that e�cient routing can be supported.

� The series number � can be carefully selected to match the latency parameter in the

underlying communication network to support e�cient collective communication.

Our study focuses on topological properties and communication aspects of the postal

network. Relationships between di�erent postal networks are also studied. The purpose

of this study is not just to propose a \new" interconnection network, but to extend the

existing ones such as hypercubes and Fibonacci cubes. We try to gain some insights on these

networks, operated under certain relaxed conditions and/or degraded modes, by studying

their topological properties, routing capability, and the ability of simulating other structures

through embedding.

This paper is organized as follows: Section 2 de�nes the postal network series PN�(n).

Section 3 studies topological properties of the postal network and its embedability. Section 4
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studies routing capabilities and proposes an adaptive and minimal unicasting algorithm for

the postal network. A tree-based implementation of barrier synchronization is also shown.

Section 5 discusses the relationships between postal networks, hypercubes, and Fibonacci

cubes through embedding. Section 6 considers one application using a special spanning

tree called a postal tree to implement barrier synchronization. The selection of � based on

network latency is also discussed. Finally, in Section 7, we present conclusions and discuss

possible future work.

2 Postal Networks

Normally, a graph model is used to represent a point-to-point multicomputer topology. We

use graph G = (V;E) to represent an interconnection network, where V is a vertex set with

each element representing a processor (also called a node) and E is an edge set with each

element corresponding to a communication link connecting two nodes. Let b(m) represent

m consecutive bits of b; for example, 0(4) = 0000, and symbol k denote a concatenation

operation; for example, 01kf0; 1g = f010; 011g and 0(2)1kf01; 10g = f00101; 00110g.

De�nition 1: Assume that graphs PN�(n) = (V�(n); E�(n)), PN�(n � 1) = (V�(n �
1); E�(n � 1)), and PN�(n � �) = (V�(n � �); E�(n � �)). Then V�(n) = 0kV�(n � 1) [
10(��1)kV�(n � �) for n > �. As initial conditions for recursion, V�(n) = f0(n); 0(n�1)1; :::;
010(n�2); 10(n�1)g, 1 � n � �. Two nodes in PN�(n) are connected by an edge in E�(n) if

and only if their labels di�er in exactly one bit position.

A PN�(n) is called a postal network with dimension n and series number �. The number

of bits in a node address is the same as its dimension. Figure 1 shows examples of PN3(n)

for n = 1; 2; 3; 4; 5. A PN3 of dimension n consists of one PN3 of dimension n� 1 and one

PN3 of dimension n� 3. Figure 2 shows examples of PN4(n) for n = 1; 2; 3; 4; 5; 6.

3 Topological Properties

In this section, we study topological properties of postal networks and focus on properties

that are related to hypercubes and Fibonacci cubes.

Theorem 1: A PN1(n) is an n-dimensional hypercube Q(n) and a PN2(n) is an n-

dimensional Fibonacci cube FC(n).
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Figure 1: Postal network PN3: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5.
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Proof: When � = 1, V1(n) = 0kV1(n � 1) [ 1kV1(n � 1). Therefore, PN1(n) matches

exactly the de�nition of the n-dimensional hypercube Q(n). Similarly, when � = 2, V2(n) =

0kV2(n� 1)[ 10kV2(n� 2). Recall that the Fibonacci cube is de�ned as follows [6]: Assume

that graphs FC(n) = (V (n); E(n)), FC(n � 1) = (V (n � 1); E(n � 1)), and FC(n � 2) =

(V (n � 2); E(n � 2)). Then V (n) = 0kV (n � 1) [ 10kV (n � 2). Two nodes in FC(n) are

connected by an edge in E(n) if and only if their labels di�er in exactly one bit position. As

initial conditions for recursion, V (2) = fg, V (3) = f0; 1g. Therefore, PN2(n) also matches

the de�nition of the n-dimensional Fibonacci cube FC(n).

Despite its asymmetric structure, the postal network still maintains many desirable prop-

erties from the hypercube network. Based on the de�nition of the postal network, the vertex

set V�(k) of PN�(k) can be partitioned into 10(��1)kV�(k��) and 0kV�(k�1). The following

lemma shows the relationship between these two vertex sets.

Lemma: For each node in 10(��1)kV�(k � �) there is exactly one neighbor in 0kV�(k � 1),

i.e., the addresses of these two nodes di�er in exactly one bit.

Proof: Randomly pick a node in 10(��1)kV�(k��). This node comes from a node in V�(k��)
with 10(��1) attached in front. Based on the recursive de�nition of the postal network,

0(��1)kV�(k � �) is a subset of V�(k � 1) and it always appears as the �rst term of the

recursive de�nition of V�(k�1) until V�(k�1) is resolved into V�(k��). Therefore, there is

at least one node in 0kV�(k�1) that is the neighbor of the selected node in 10(��1)kV�(k��).
In addition, each node in 10(��1)kV�(k��) has exactly one neighbor in 0kV�(k�1), because

the address of each node in 10(��1)kV�(k � �) starts with 1 while the one in 0kV�(k � 1)

starts with 0.

The above lemma can be easily veri�ed through examples. In Figure 1 (e), the vertex set

of V3(5) can be partitioned into 0kV3(4) (the �rst term) and 100kV3(2) (the second term).

For each node in the second term, there is exactly one neighbor in the �rst term.

Theorem 2: There exists a Hamming distance path for any two nodes in PN�(n).

Proof: We prove this theorem by induction on n for any �. We �rst show that this theorem

holds for n = 1; 2; :::; �. Since each of these networks is a two-level tree that contains n nodes:

0(n); 0(n�1)1; :::; 010(n�2); 10(n�1). Obviously, the root node 0(n) directly connects to all the

other nodes. Since any two leaf nodes di�er in two bits, they are two Hamming distance

apart and a Hamming distance path exists between any two leaf nodes, since each leaf node

can reach another leaf node via the root node.
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Figure 2: Postal network PN4: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5, (f)

n = 6.
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Assume that this theorem holds for all n < k (for k > �, since we have proved the theorem

for n = 1; 2; :::; �). When n = k, V�(k) = 0kV�(k � 1) [ 10(��1)kV�(k � �). Therefore, nodes

in V�(k) can be partitioned into 0kV�(k � 1) and 10(��1)kV�(k � �).

We randomly select two nodes, if both nodes belong to 0kV�(k�1) (or 10(��1)kV�(k��))

this theorem holds based on the induction assumption. We only need to consider cases when

one node is in 0kV�(k � 1) and the other is in 10(��1)kV�(k � �). Based on Lemma, for

each node in 10(��1)kV�(k � �) there is exactly one neighbor in 0kV�(k � 1). The Hamming

distance path can be constructed recursively based on the following two cases:

(1) If the source is in 10(��1)kV�(k � �), the �rst link in the path should connect the

source to its neighbor in 0kV�(k � 1). The remaining links in the path can be determined

recursively in 0kV�(k � 1).

(2) If the source is in 0kV�(k � 1), we �rst determine a Hamming distance path within

0kV�(k� 1) that connects the source to the neighbor of the destination in 0kV�(k� 1). The

last link connects the neighbor of the destination in 0kV�(k � 1) to the destination node

which is in 10(��1)kV�(k � �).

Note that the above proof does not provide a constructive routing procedure unless the

source and intermediate nodes both belong to the second term 10(��1)kV�(k � �) of the

recursive expression.

Theorem 3: The diameter of PN�(n) is the following:

d(PN�(n)) =

8>><
>>:

n � = 1

2dn
�
e � 1 � 6= 1 and (n� 1 mod �) = 0

2dn
�
e � 6= 1 and (n� 1 mod �) 6= 0

Proof: When � = 1, PN�(n) is a hypercube Q(n) which has a diameter of n. We only need

to consider cases when � 6= 1, i.e., there are no adjacent 1 bits in a node address. Based

on the recursive de�nition of the postal network, the maximum number of 1 bits in a node

address increases by one when n increases by �, i.e., the distance between two 1 bits is at

least � and there are at most dn
�
e 1 bits in a node address. In the extreme case, the positions

of 1 bits in two nodes are all di�erent. When (n � 1 mod �) 6= 0, it is possible that both

nodes have dn
�
e 1 bits. When (n � 1 mod �) = 0, only one node may have dn

�
e bits and

the other node may have at most dn
�
e � 1 1 bits at di�erent bit positions. The above two

situations correspond to two nodes that have the longest Hamming distance in the network,
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i.e., their distance corresponds to the diameter of the network.

Based on the above result, the diameter of a postal network is a fraction of its dimension

n. However, postal networks with a large � contain fewer nodes than the ones with a small

� under the same dimension condition. The number of nodes and links in a given postal

network is given in the following theorem.

Theorem 4: Let N�(n) and L�(n) be the number of nodes and links in PN�(n), respectively,

then

N�(n) =

8<
: n+ 1 n � �

N�(n� 1) +N�(n� �) n > �

and

L�(n) =

8<
: n n � �

L�(n� 1) + L�(n� �) +N�(n� �) n > �

Proof: The expression for N�(n) is straightforward from the de�nition of the postal network.

The number of links L�(n) in PN�(n) is the summation of the number of links L�(n� 1) in

PN�(n�1) and the number of links L�(n��) in PN�(n��). In addition, we should include

links that connect PN�(n�1) to PN�(n��). Based on Lemma, we know that for each node

in PN�(n� �) there exists exactly one neighbor in PN�(n� 1). That is, exactly N�(n� �)

links exist, each of which connects one node in PN�(n� 1) to one node in PN�(n� �).

Note that N�(n) belongs to a recurrence relation of form

f(n) = C0N(n) + C1N(n� 1) + C2N(n� 2) + � � �+ C�N(n� �)

where Ci's are constants. It is also called a linear recurrence relation with constant coe�-

cients. It is also known as a �th-order recurrence relation. Assume that ri's are distinct

roots of the characteristic equation

C0N
� + C1N

��1 + C2N
��2 + � � �+ C� = 0 (1)

Then

N(n) = A1r
n

1 + A2r
n

2 + A3r
n

3 + � � �+ A�r
n

�
(2)

where A1; A2; A3; :::; A� are constants which are to be determined by the boundary conditions,

i.e., the known values of N(i)'s. For example, when � = 2,

N2(n) = N2(n� 1) +N2(n� 2)
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Table 1: Number of nodes in Q = PN1, FC = PN2, PN3, and PN4.

k 1 2 3 4 5 6 7 8 9

N1(k) 2 4 8 16 32 64 128 256 512

N2(k) 2 3 5 8 13 21 34 55 89

N3(k) 2 3 4 6 9 13 19 28 41

N4(k) 2 3 4 5 7 10 14 19 26

The corresponding characteristic equation is which has the two distinct roots

r1 =
1 +

p
5

2
; r2 =

1�p
5

2

It follows that

N2(n) = A1

 
1 +

p
5

2

!n
+ A2

 
1�p

5

2

!n

is the solution, where A1 and A2 are to be determined from the boundary conditions N2(1) =

1 and N2(2) = 2. Note that if the characteristic equation (1) has multiple roots (i.e., not all

roots are distinct), N(n) is calculated di�erently. See [9] for other details.

There is no general procedure for determining the solution of a di�erence equation, es-

pecially for a high-order equation. That is, for a large value of �, a closed form expression

for either N�(n) or L�(n) is unlikely. Tables 1 and 2 show N�(n) and L�(n) for di�er-

ent �'s and n's. From these tables, we can see that when series number � increases, the

increasing rates for the numbers of nodes and links both reduce. To estimate N�(n), we

have N�(n) = N�(n � 1) + N�(n � �) � N�(n � 1) + N�(n � 1) � 2n. Also, we have

N�(n) = N�(n� 1)+N�(n��) � N�(n��)+N�(n��) � 2b
n

�
c. Combining the above two

conditions, we have

2b
n

�
c � N�(n) � 2n

Furthermore, we can obtain a tighter upper bound on N�(n) when � > 1 as given in

the following theorem. The theorem indicates that as � gets larger, the number of nodes in

a PN�(n), N�(n) = O
��

1 + 1p
��1

�n�1�
, becomes much smaller than that of a hypercube,

N1(n) = 2n.
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Table 2: Number of links in Q = PN1, FC = PN2, PN3, and PN4.

k 1 2 3 4 5 6 7 8 9

L1(k) 1 4 12 32 80 192 448 1024 2304

L2(k) 1 2 5 10 20 38 71 130 235

L3(k) 1 2 3 6 11 18 30 50 81

L4(k) 1 2 3 4 7 12 19 28 42

Theorem 5: When � > 1,

N�(n) � (�+ 1)

 
1 +

1p
�� 1

!n�1

Proof: We prove this theorem by induction on n for any given � > 1. First, for 1 � n � �,

we have

N�(n) = n+ 1 � �+ 1 � (�+ 1)

 
1 +

1p
�� 1

!n�1

Now, suppose the upper bound holds for n = k� 1; k� 2; : : : ; k� � (k > �). We prove that

it also holds for n = k. Note that

N�(k) = N�(k � 1) +N�(k � �) � (�+ 1)
��
1 + 1p

��1
�k�2

+
�
1 + 1p

��1
�k���1�

= (�+ 1)
�
1 + 1p

��1
�k���1 ��

1 + 1p
��1

���1
+ 1

�

only need to show that

 
1 +

1p
�� 1

!��1
+ 1 �

 
1 +

1p
�� 1

!�

Or equivalently,  
1 +

1p
�� 1

!�
�
 
1 +

1p
�� 1

!��1
� 1 (3)

In fact, from the left hand side of (3), we have

 
1 +

1p
�� 1

!��1  
1p
�� 1

!
�
 
1 +

�� 1p
�� 1

!
1p
�� 1

� 1
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Thus, Theorem 5 holds.

Similarly, we can estimate L�(n). The following theorem gives the relationship between

L�(n) and N�(n) and an upper bound on L�(n).

Theorem 6: When � > 1,

L�(n) <
�
n� 2

� + 1
+ 1

�
N�(n) � (n+ �� 1)

 
1 +

1p
�� 1

!n�1

Proof: We prove this theorem by induction on n for any given n > 1. First, when n = 1,

L�(1) = 1 and N�(1) = 2. Clearly, L�(n) < (n�2
�+1

+ 1)N�(n) given � > 1. When 2 � n � �,

we have

L�(n) = N�(n)� 1 <
�
n� 2

� + 1
+ 1

�
N�(n)

Now, suppose the upper bound holds for n = k � 1; k � 2; : : : ; k � � (k > �), we will prove

that it also holds for n = k. Note that

L�(k) = L�(k � 1) + L�(k � �) +N�(k � �)

<

"
(k � 1)� 2

�+ 1
+ 1

#
N�(k � 1) +

"
(k � �)� 2

�+ 1
+ 1

#
N�(k � �) +N�(k � �)

=

 
k � 2

�+ 1
+ 1

!
[N�(k � 1) +N�(k � �)]� 1

�+ 1
[N�(k � 1) +N�(k � �)]

<

 
k � 2

�+ 1
+ 1

!
[N�(k � 1) +N�(k � �)]

=

 
k � 2

�+ 1
+ 1

!
N�(k)

Thus, we have

L�(n) <
�
n� 2

�+ 1
+ 1

�
N�(n)

Moreover, by Theorem 5, we obtain an upper bound on L�(n):

L�(n) <
�
n� 2

�+ 1
+ 1

�
(�+ 1)

 
1 +

1p
�� 1

!n�1
= (n+ �� 1)

 
1 +

1p
�� 1

!n�1
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4 Routing

In this section, we study routing algorithms for the postal network. E�cient interprocessor

communication is a key to the performance of a point-to-point multicomputer system. We

consider here unicasting, which is a one-to-one communication between a source and a des-

tination. Although the postal network is asymmetric, a simple routing algorithm can still

be constructed based on the following result that determines whether a given bit sequence

belongs to a node address in a postal network.

Theorem 7: An n-bit sequence is the address of a node in PN�(n) if and only if any two 1

bits (if any) are separated by at least � bit positions.

Proof: Let's consider a systematic way of generating all the possible n-bit sequences such

that any two 1 bits (if any) are separated by at least � bit positions. Assume that we have

constructed S�(i)'s for all i < n, where S�(i) stands for all the possible i-bit sequences such

that any two 1 bits (if any) are separated by at least � bit positions. Let's consider the

leftmost bit (the 1st bit) of the nodes in S�(n): If it is 0, then the number of di�erent

arrangements for the rest of n�1 bits should all be in S�(n�1). If it is 1, then based on the

constraint that any two 1 bits must be separated by at least � bit positions, the next �� 1

bits must be all 0's. The number of di�erent arrangements for the rest of n� � bits should

all be in S�(n� �). Based on the above observation, it is clear that PN�(n) and S�(n) are

the same.

The above result provides a simple way of de�ning a postal network, and more impor-

tantly, it o�ers a simple way of generating all the nodes in a postal network. For exam-

ple, nodes in PN4(6) are 000000, 000001, 000010, 000100, 001000, 010000, 100000, 010001,

100001, 100010. Among these nodes, the node addresses have two 1 bits or less that are

separated by at least 4 bit positions. Consider PN2(6) as another example. PN2(6) includes

all the nodes of PN4(6). In addition, it has 000101, 001001, 001010, 010010, 010100, 100100,

101000, 010101, 100101, 101001, 101010. We use distance1(node) to represent minimum

distance between 1 bits in a given node address. When there is at most one 1 bit in a node

address, the distance1 of the corresponding node is1. For example, distance1(000100) =1,

distance1(010001) = 4, and distance1(100101) = 2.

We consider here adaptive and minimal routing. An adaptive routing algorithm allows

all messages to use any minimal paths. The challenge is to exploit all the possible routes

while still keeping routing distance minimum. Since the postal network can be considered

13



as an incomplete hypercube with several missing nodes, the traditional dimension-ordered

routing is no longer applicable here. For example, consider two nodes 01000 (the source

s) and 10010 (the destination d), the exclusive-or of their addresses is 01000 � 10010 =

11010. If the dimensions are resolved following an increasing order of dimensions: 1, 2 and

4, an illegal intermediate node 11000 (with two neighboring 1 bits) will be generated in the

corresponding path: 01000 ! 11000 ! 10000 ! 10010. Similarly an illegal intermediate

node will be generated using a decreasing order of dimensions: 4, 2, and 1.

In order to avoid generating illegal intermediate nodes, we should ensure that each inter-

mediate node is legal. That is, the distance between two 1 bits (if any) in the node address

should be at least �. To make the routing algorithm adaptive, no additional constraint is

added, i.e., a dimension can be randomly selected as long as it meets the above requirement.

Consider a unicasting from s to d in PN�(n). Let s
i denote complementing the ith bit of

s, for example 100102 = 11010, and r(i) denote the ith bit of r. The adaptive and minimal

routing algorithm for the postal network is the following:

For source node s with message m:

1. r := s� d; /* calculate relative address r between s and d */

2. randomly select i such that r(i) = 1 and distance1(s
i) � �; /* select a neighbor */

3. send (m; ri) to si.

/* send message m together with the updated relative address to the selected neighbor */

For all intermediate nodes t (including destination d):

1. receive (m; r); /* receive message m together with relative address r */

2. if r = 0 then node t is the destination and stop;

3. randomly select i such that r(i) = 1 and distance1(t
i) � �;

4. send (m; ri) to ti.

To carry out step 3 of the above procedure, we �rst select a neighbor. If the address of

this neighbor meets the condition in Theorem 7 (this can be done in constant time), it is

done; otherwise, another neighbor is selected. In the worst case, all the neighbors, except

the last one, fail the condition. That is, if the current node is k distance away from the

destination, it may need k�1 selection steps. Thus, step 3 may need O(n) time in the worst

case.
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Consider (s; d) = (100010; 000001) with r = 100011 in PN4(6). At the �rst step,

two legal neighbors (of s) are 100000 and 000010. 100011 is an illegal neighbor, since its

distance1(10001) = 1 which is less than � = 4. During the second step, at node 100000,

there are two choices of the next intermediate node: 100001 and 000000; at node 000010,

there is only one choice which is node 000000. Therefore, three minimal routing paths can

be generated:

100010! 100000! 100001! 000001

100010! 100000! 000000! 000001

100010! 000010! 000000! 000001

Note that if distance1(s � d = r) � �, there is no constraint on selecting intermediate

nodes. Routing will be the same as in a regular hypercube. For example, consider (s; d) =

(10000; 00001) in PN3(5), i.e., � = 3. Clearly, distance1(s � d = 10001) � 3. The e-cube

routing in hypercubes can be applied for this case. In fact, s and d are contained in 2-cube

�000�, where � is a don't care. �000� contains four nodes 00000, 00001, 10000, and 10001.

The following theorem shows a general case.

Theorem 8: In a PN�(n), if distance1(s� d) � � then s and d are two nodes in a k-cube,

where k � H(s; d).

The above theorem can be easily derived from the above observation. To determine

the smallest cube that contains s and d, assuming that distance1(s � d) � �, one simple

approach is to replace all the 1 bits in s� d by � and the remaining bits are replaced by the

corresponding bits in s (or d). For example, s � d = 11011� 01001 = 10010, the smallest

cube that contains s and d is �10 � 1.
In this section, we only focus on minimal routing. The approach can be easily extended

to other routing strategies including non-minimal routing. For example in non-minimal

routing, we can separate 1's (called preferred dimensions) from 0's (called spare dimensions)

in r = s � d. In minimal routing, only preferred dimensions are resolved by changing each

of them to 0. In non-minimal routing, spare dimensions can also be used which are changed

from 0's and 1's, but to reach the destination, these 1's still need to be changed back to 0's

in the relative address. At each step, the distance1 condition still needs to be enforced to

ensure that each intermediate node is legal.

Consider a unicasting from s =100000 to d =000000 in PN4, s � d = 100000, a non-

minimal routing that uses preferred dimension 1 and spare dimension 6 generates the fol-
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lowing path 100000! 100001! 000001! 000000.

5 Embedding

In this section, we study relationships between regular hypercubes, Fibonacci cubes, and

postal networks. E�cient embedding of a guest network G into a host networkH is important

in parallel/distributed processing, especially for a newly proposed network used as a host

network. Not only do embedding results demonstrate computational equivalence (or near-

equivalence) between networks of di�erent topology, but e�cient embeddings lead to e�cient

simulations of algorithms originally designed for G on host H.

Based on the de�nition of the postal network series, link connections follow the same

rule: Two nodes are connected if and only if their addresses di�er in exactly one bit position.

Therefore, to show that one postal network contains another postal network as its subgraph,

we only need to show that the vertex set of the former contains the vertex set of the latter.

Speci�cally, a graph H contains a graph G if one of the following two conditions holds:

1. V (H) contains V (G).

2. V
0

(H) contains V (G), where V
0

(H) is derived from V (H) by removing certain bit

positions of all the nodes in V (H).

For example, PN2(4) contains PN3(4) based on Condition 1, because V (PN2(4)) =

f0000; 0001; 0010; 0100; 0101; 1000; 1001; 1010g contains V (PN3(4)) = f0000; 0001; 0010;
0100; 1000; 1001g. Also, PN2(4) contains PN2(3) based on Condition 2, because V (PN2(3))

= f000; 001; 010; 100; 101g is derived by removing either the 1st or 4th bit of all the nodes

in V (PN2(4)).

The following theorem shows relationships between postal networks within the same

series.

Theorem 9: PN�1
(n1) contains PN�1

(n2) as its subgraph if and only if n1 > n2.

Proof: Based on the de�nition of the postal network, PN�1
(n1) contains PN��1(n1 � 1).

Clearly PN�1
(n1) also contains PN��1(n2), where n1 > n2.

Theorem 9 states that for two postal networks in the same series, the one with a higher

dimension contains the one with a lower dimension. For example, PN3(5) contains PN3(4)

16



as shown in Figure 1. The following theorem shows that for a given dimension n1, a network

with a smaller series number (with a smaller � value) contains a network with a larger series

number.

Theorem 10: PN�1
(n1) contains PN�2

(n1) as its subgraph if and only if �1 < �2.

Proof: We prove this theorem by induction. When n1 � �1, PN�1
(n1) = PN�2

(n1). When

�1 < n1 � �2, we can easily verify that PN�1
(n1) contains PN�2

(n1). When n1 > �2, based

on the recursive de�nition of both series and the induction assumption, PN�1
(n1) contains

PN�2
(n1).

Theorem 10 states that for two postal networks of the same dimension, the one with a

smaller series number contains the one with a larger series number. For example, PN3(5)

(shown in Figure 1) contains PN4(5) (shown in Figure 2). The following theorem shows that

under certain conditions a network with a larger series number contains a network with a

smaller series number.

Theorem 11: Given PN�1
(n1) and PN�2

(n2) and �1 > �2.

1. If dn1
�1
e > dn2

�2
e then PN�1

(n1) contains PN�2
(n2) as its subgraph.

2. If dn1
�1
e = dn2

�2
e = c and n1�(c�1)�1 � n2�(c�1)�2 then PN�1

(n1) contains PN�2
(n2)

as its subgraph.

Proof: We reorganize postal networks in series � in groups, each of which contains � con-

secutive networks, i.e., the nth network in series � is in group dn
�
e. For example, in series

PN3(n), fPN3(1); PN3(2); PN3(3)g forms group 1, fPN3(4); PN3(5); PN3(6)g forms group

2, and so on. Therefore, each network in the series � has a group number dn
�
e and a rank-

ing number within the group n � (dn
�
e � 1)�. We can �rst prove the following: Consider

two networks, PN�1
(n1) and PN�2

(n2), from di�erent series (�1 and �2, with �1 > �2)

with the same group number ( dn1
�1
e = dn2

�2
e = c ) and the same number within the group

(n1 � (c � 1)�1 = n2 � (c � 1)�2), then PN�1
(n1) > PN�2

(n � 2). This can be proved by

induction from group to group using the following fact: The ith network in group j (j > 1) is

constructed from the network that just precedes it and the ith network in group j�1. Then

based on the fact that PN�1
(n1) contains PN�1

(n
0

1) as its subgraph if and only if n1 > n
0

1, we

can prove for the case that if dn1
�1
e = dn2

�2
e = c and n1�(c�1)�1 � n2�(c�1)�2 then PN�1

(n1)

contains PN�2
(n2) as its subgraph. We select PN�1

(n
0

1) such that dn1
�1
e = dn

0

1

�1
e = dn2

�2
e = c

and n1�(c�1)�1 � n
0

1�(c�1)�1 = n2�(c�1)�2. Clearly, PN�1
(n1) contains PN�1

(n
0

1) which
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in turn contains PN�2
(n2). We can use the same approach for the case of dn1

�1
e > dn2

�2
e, we just

need to �nd PN�1
(n

0

1) such that dn1
�1
e > dn

0

1

�1
e = dn2

�2
e = c and n

0

1� (c�1)�1 = n2� (c�1)�2.

The case 1 of Theorem 11 states that when both the series number (�) and group number

(dn
�
e) of a postal network PN are larger than the ones of another postal network PN

0

, PN

contains PN
0

. For example, the series number and group number for PN4(5) are 4 are 2,

respectively. The series number and group number for PN3(3) are 3 and 1, respectively.

Clearly, PN4(5) contains PN3(3) as shown in Figures 1 and 2. The case 2 of Theorem

11 states that when the group number of two postal networks are the same, the one with a

larger series number and a larger or equal ranking number within the group (n1�(dn
�
e�1)�)

contains the other one. For example, both PN4(5) and PN3(4) have the same group number

2. The series number and ranking number within the group for PN4(5) (PN3(4)) are 4 and

1 (3 and 1), respectively. Therefore, PN4(5) contains PN3(4) as shown in Figures 1 and 2.

Corollary: PN�(n1) contains the n2-dimensional hypercube Q(n2) as its subgraph if and

only if n1 + dn1
�1
e(1� �1) � n2.

This corollary is derived directly from Theorem 11 and can be used to derive the largest

hypercube as a subgraph of a given postal network. For example, for PN2(9) the largest

hypercube is an n2-cube such that 9 + d9
2
e(1� 2) � n2, i.e., n2 = 4.

We have the following simple process to determine all the largest subcubes in PN�(n1):

We start with an n1-bit of 0's and then replace n2 bits (which is determined from the above

Corollary) of 0's by �'s such that any two �'s are separated by at least �. For example, given

PN4(6), based on the above Corollary, the largest subcube is a 2-cube. All the possible

2-cubes in PN4(6) are �0000�, 0 � 000�, and �000 � 0. For example, 2-cube 0 � 000� (see

Figure 2) includes four nodes: 000000, 000001, 010000, 010001.

6 Application: Barrier Synchronization Using Postal

Trees

In this section, we �rst study postal tree, PT�(n), which is a special spanning tree of postal

network PN�(n). We then look at one of its applications in implementing barrier synchro-

nization, an important type of collective communication in a multicomputer system.
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Many numerical problems can be solved using iterative algorithms that successively com-

pute better approximations to an answer, terminating when either the �nal answer has been

computed or the �nal answer has converged. These algorithms normally require all the it-

erative processes to be synchronized at the end of each iteration. More speci�cally, these

processes, process(i), can be described by the following algorithm:

process(i):

do not converged !
code to implement process i

barrier (wait for all n processes to complete)

od

In the above algorithm, barrier represents a barrier synchronization point which waits

for all n processes to complete. This type of synchronization is called barrier synchronization

[7] because the delay point at the end of each iteration represents a barrier that all processes

have to arrive at before any of them is allowed to pass. There are many ways of implementing

barriers, among them tree barrier [12] is the widely used one. In this approach, two phases

are used. In the reduction phase, all participating processes engage in a reduction operation

by sending and/or receiving synchronization messages following a tree structure where the

root node eventually receives the reduced message and decides that all the processes have

arrived at the barrier. In the next phase which is called distribution phase, the root node

broadcasts a synchronization message following the same tree to inform all the processes to

proceed. Normally, the reduction phase is carried out by a collective communication called

gather and the distribution phase is implemented by another collective communication called

broadcast. Both of which use a spanning tree in the given network to collect and distribute

messages.

In order to determine an optimal spanning tree structure for tree barrier, we have to

look at the underlying communication mechanism. If communication delay is considered as

part of overall performance, the postal model [1] can be used which is based on a parameter

� = l=s, where s is the time it takes for a node to send the next message and l is the network

latency. For example, assume s = 2 and l = 4 then � = 2. If the source node sends a

message at time 0, it has to wait s = 2 time steps before sending the message to another

neighbor at time 2. The message sent at time 0 will reach the corresponding neighbor at

time l = 4. Similarly, the one sent at time 2 will reach another neighbor at time 6, etc.

Under the one-port model (in which each node can send and receive one message at a time),
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Figure 3: Postal trees: (a) PT3(3), (b) PT3(4), (c) PT3(5), and (d) PT3(6).

the binomial tree is optimal when � = 1. An optimal tree for a speci�c � is constructed

based on:

N�(n) =

8<
: N�(n� 1) +N�(n� �); if n � �

1; otherwise

where N�(n) represents the maximum number of nodes that can be reached in time n on

a one-port model exhibiting �. Note that before time n < �, only the source node has a

copy of the message, although several copies have been sent from the source node since time

0 and they are still in transit. Clearly, the parameter � in the postal model matches the

series number � in the postal network. It is easy to derive the corresponding optimal tree
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structure as: PT�(n) is constructed out of PT�(n� 1) and PT�(n� �), with the root node

of PT�(n � �) as the child of the root node of PT�(n � 1). As initial conditions, PT�(i)

(1 � i < �) consists of i + 1 nodes in a two-level tree. Clearly, PT�(n) is a spanning tree of

PN�(n). More formally, we have the following de�nition of a postal tree.

De�nition 2: A postal tree PT�(n) of PN�(n) is de�ned as follows:

� (Base) PT�(n) = PN�(n) for 1 � n � �.

� (Recursion) For � < n, a PT�(n) consists of PT�(n�1) and PT�(n��) by connecting

the root of PT�(n� �) as the child of the root of PT�(n� 1).

Figure 3 shows the structure of postal trees PT3(n) for n = 3; 4; 5; 6. Clearly, PT3(n) has

the same vertex set as PN3(n). Hence, PT3(n) is a spanning tree of PN3(n). Figure 4 shows

two di�erent spanning trees in a fully-connected network with eight nodes, when � = 6 with

s = 1 and l = 6. Clearly, the binomial tree implementation (Figure 4 (a)) requires 18 units

to complete a broadcast and it is no longer optimal. The optimal tree (Figure 4 (b)) needs

only 12 units to complete a broadcast. Note that this postal model can be applied to any

topology as long as it has su�cient connectivity.

Based on the above analysis, we can see that parameter � plays an important role in

selecting networks from di�erent series. Because � de�nes the ratio of the time it takes for a

node to send the next message to the communication latency, it should be carefully selected

to minimize communication delay especially for collective communication. For example, if we

are to select a network of eight nodes from a series and � = 1, PN1(3) is better than PN2(4).

Here we simplify the selection process without considering other factors. In designing an

actual multicomputer system, di�erent factors should be considered and weighted against

each other.

Note that when a message is relatively long, each node may not be able to forward a

copy of a message to a neighbor every s units of time. Because the only port may still be

occupied by the same copy of the long message (if this message takes more than s units of

times to pass through the port). In this case, our conclusion on the optimal tree structure

is no longer valid. In fact, the structure of an optimal tree varies depending on the length of

the message and the actual network interface implementing the one-port model (see [4] and

[8]).
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Figure 4: Comparison with � = 6: (a) binomial trees PT1(3) and (b) optimal spanning tree

PT6(6).

7 Conclusions

We have proposed a series of networks called postal networks that contain both hypercubes

and Fibonacci cubes as their special cases. We have shown that these networks still maintain

some desirable properties of hypercubes. Relationships between di�erent networks have also

been studied. Postal networks can be used to complement several existing network topologies

such as hypercubes and Fibonacci cubes. Because each postal network can also be considered

as an incomplete hypercube after some nodes become faulty, the study of postal networks

will also provide some insights on the behavior of the cube-based systems operated in a

degraded mode.

Our future work will focus on embedding other popular structures such as binary trees

in postal networks. Other applications o f postal networks will also be exploited. Another

interesting issue is to determine postal networks from a given faulty hypercube.
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