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Abstract

Allocating limited computational resources to different clients is always a challenging problem

to a web service provider (WSP). Profit density based greedy knapsack algorithm is one simple

approach that can ensure near-optimal profit. However, profit gain is sometimes not the only

factor concerned in making important management decisions. Other factors, such as the number

of clients that a WSP can serve and the number of un-used resources that remain, are also

important. By assuming that (a) the pricing curves of the buyer are all identical and their

marginal utility (i.e. ∆Price/∆Size) is decreasing, (b) the resource is divisible, (c) the resource

quantity each client requests follows uniform distribution U [0, 1]; and (d) the available resource

is constrained by k̄; equations for the expected number of clients who can get the resource,

denoted by 〈b〉, and the expected quantity of resource being allocated, denoted by 〈s〉, are

derived analytically. By observing the numerical plots of 〈b〉 and 〈s〉 against the number of

clients n, it is found that 〈b〉 ≈ n for n ≤ 2k̄ and 〈b〉 ≈ (−1 +
√

1 + 8nk̄)/2 for n ≥ 2k̄.

Comparing with another simple selling mechanism, we call it first-come-first-serve (FCFS), it

is found that resource allocation via greedy algorithm might not always be the best choice as

far as the number of units being sold and the number of clients being served are concerned.

Keywords: knapsack problem, order statistics, profit density greedy algorithm,

sum of random variables, uniform distribution



1 Introduction

Extended from the ideas of software reuse and component based development, web service is a

new paradigm and possibly a new direction for system development. A web services provider

(WSP) makes application components available on the web. System developers can thus in-

tegrate those components (URLs) together to develop an application system. Certainly, the

usage of these remote resources is usually not free. Allocating limited computational resources

to clients in order to maximize the profit is one, but not the only, issue that every WSP needs

to consider.

To solve this problem, one can apply an off-line allocation method. Let us consider a simple

but normally not quite realistic situation. For clarification, Table 1 summarizes the notations

appearing in the paper. Consider a WSP that has 20 servers available to support the service

and 8 clients are willing to pay for their services.

Client i B1 B2 B3 B4 B5 B6 B7 B8

Server ki 2 4 5 1 3 4 2 5

Price pi 10 30 35 6 15 18 12 35

As resource is limited, the WSP has to select the most profitable clients and sign the service

contracts. Obviously, this problem is essentially the 0/1 knapsack problem [4, 5] (or recently it

is called multi-units combinatorial auction problem [3]) that can be formulated by the following

constraint optimization problem :

Maximize 10s1 + 30s2 + 35s3 + 6s4 + 15s5 + 18s6 + 12s7 + 35s8

Subject to 2s1 + 4s2 + 5s3 + s4 + 3s5 + 4s6 + 2s7 + 5s8 ≤ 20

si ∈ {0, 1} ∀ i = 1, . . . , 8.

For this simple problem, the WSP can profit 133 by allocating all 20 servers to B2, B3, B4,

B5, B7 and B8. However, it is known that solving this constraint optimization problem will be

intractable if the number of clients is large. Profit density based greedy algorithm is a near-

optimal alternative [5], which profits 128, by allocating 19 servers to B1, B2, B3, B4, B7 and

B8. One server remains in the stock.
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Notation Description

n Number of customers

k̄ Resource available

(pi, ki) Offer that the ith customer gives

pi – price; ki ∼ Uniform[0, 1] – quantity

i Index of the customers according to their arrival sequence

i.e. offer given from the 1st customer

is earlier than the 2nd customer, and so on

(Used in FCFS analysis)

i : n Index of the customers according to their profit densities∗

i.e. pi:n/ki:n > pj:n/kj:n if i < j

(Used in greedy algorithm analysis)

Sr(w, n)
∑w

i=1 ki – sum of the quantities of the first w customers

(Used in FCFS analysis)

S(w, n)
∑w

i=1 ki:n – sum of the quantities of the first w customers

whose orders are sorted according to profit density

(Used in greedy algorithm analysis)

b Number of customers being served

〈b〉 Expected number of customers being served

s Quantity of resource being allocated

〈s〉 Expected qunatity of resource being allocated

∗ Suppose there are 3 customers, their offers are (3, 0.2), (7, 0.8), and (5, 0.4). (pi, ki) for

i = 1, 2, 3 will be (3, 0.2), (7, 0.8) and (5, 0.4) respectively. (pi:3, ki:3) for i = 1, 2, 3 will be

(3, 0.2), (5, 0.4) and (7, 0.8). Then Sr(2, 3) = 1.0 and S(2, 3) = 0.6.

Table 1: Notations. Here ki ∼ Uniform[0, 1] means ki is random variable following uniform

distribution.
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To trade-off the computational complexity, another even simpler mechanism called first-

come-first-serve (FCFS) — allocating resource to the client whenever the number of servers is

available — can be used instead. In terms of profit gain, it is clear that profit density greedy

algorithm is a better allocation method as it will ensure near optimal profit for number of

customers is large. However, profit gain is sometimes not the only measure a company would

like to know. Other factors, such as the number of clients it serves and the number of un-used

resources remaining, are also important for making management decision.

In this paper, we assume that k̄ À 1 units of resource are available. Let the expected

number of clients who can get the resource be 〈b〉, and the expected quantity of resource being

allocated be 〈s〉, the purpose of the paper is to find out their relationships in terms of n and

k̄. The essential technique being used is a formula derived by H. Weisberg [6] for a linear

combination of order statistics and a formula derived by W. Feller (p.27 of [1]) for sum of

uniformly random variables. The next section will describe the basic assumptions on pi and ki.

The profit denisty greedy algorithm and the FCFS mechanism will be presented. The expected

number of customers 〈b〉 and the expected number of product being sold 〈s〉 for the mechanisms

will be derived in Section 3. A discussion comparing greedy algorithm against FCFS method

will be presented in Section 4. Then the conclusion will be presented in Section 5.

2 Greedy algorithm and FCFS

Without loss of generality, we assume that ki is a random variable from U(0, 1). Next, we assume

that the pricing function is marginal utility decreasing [2]. That is to say, a client would like to

have a larger discount for a larger purchase. Mathematically, (i) p′(ki) ≥ p′(kj) ∀0 ≤ ki ≤ kj ≤
1 and (ii) p(0) ≥ 0 and p′(0) > 1, where p′(ki) is the first derivative of the function p(k) at ki.

Two examplar functions satisfying the assumption are p(k) = αk+β and p(k) = α log(1+k)+β,

where k ∈ [0, 1], α and β are non-negative constant values. It should be noted that the pricing

function is a deterministic function depending solely on the quantity of resource requested. The

following lemma will be used for later analysis.
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Lemma 1 For any non-negative real-valued function f(x) that satisfies f ′(x) ≥ f ′(y) ≥ 0 for

all 0 ≤ x ≤ y and f(0) ≥ 0, then the following conditions hold : (i) f(x)
x
≥ f ′(x); (ii) f(x)

x
≥

f(y)
y

, for all 0 ≤ x ≤ y.

Proof: The proof of the first inequality is straightforward. Since f(x) = f(0) +
∫ x
0 f ′(u)du ≥

f(0) + xf ′(x), f(x)/x ≥ f ′(x). Using the fact that f(y) = f(x) +
∫ y
x f ′(u)du, then dividing

both sides by y and the condition, f ′(x) ≥ f ′(y), the following inequality can be obtained :

f(y)

y
≤ f(x)

x
+

(y − x)

y

[
f ′(x)− f(x)

x

]
.

Since f(x)
x
≥ f ′(x), for all y ≥ x ≥ 0, f(x)

x
≥ f(y)

y
and the proof is completed. Q.E.D.

2.1 Greedy algorithm

Suppose there are n clients whose prices and quantities are p1, . . . , pn and k1, . . . , kn respectively.

We call (pi, ki) for all i = 1, 2, · · · , n the offers the clients give. Once all the offers have been

collected, the WSP can apply the algorithm below to determine the allocation.

1: WAITFOR (pi, ki), i = 1, . . . , n;

2: SORT {pi

ki
} s.t. pi:n

ki:n
≥ pj:n

kj:n
∀ i ≤ j;

3: SET C = k̄;

4: SET P = 0;

5: SET j = 1;

6: WHILE(C − kj:n > 0 and j ≤ n)

C = C − kj:n;

P = P + pj:n;

j = j + 1;

END

First, their offers are ranked in descending order with respect to their profit density, i.e.

p1:n

k1:n

≥ p2:n

k2:n

≥ . . . ≥ pn:n

kn:n

. (1)
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Then, we allocate the resource to the first 1 : n, 2 : n, · · · , b : n clients, such that

b∑

i=1

ki:n ≤ k̄;
b+1∑

i=1

ki:n > k̄. (2)

In accordance with the condition Equation (1), the condition pi:n

ki:n
≥ pj:n

kj:n
implies that k1:n ≤

k2:n ≤ . . . ≤ kn:n whenever price p is a function of k and its margainal utility is decreasing.

So, p1:n

k1:n
≥ p2:n

k2:n
≥ . . . ≥ pn:n

kn:n
implies that k1:n ≤ k2:n ≤ . . . ≤ kn:n and their offers can be

ranked in accordance with ki. Again, the k̄ units are allocated to the first b bidders according

to conditions in Equation (2).

2.2 First-come-first-serve

FCFS method is similar to selling products in a flea market. Once a customer has walked in

and given an offer, the seller will check with the stock. The customer gets the product as long

as there is available stock. One advantage of this FCFS method apart from its simplicity is that

the customers do not have to wait. Besides, the seller has no need to anticipate the number n.

In web service provision, the WSP simply denies the service request whenever the available

resource is not large enough to support the service. The FCFS method can be described by the

following algorithm.

1: SET C = k̄;

2: SET P = 0;

3: SET j = 1;

4: WHILE(C − kj > 0 and j ≤ n)

C = C − kj;

P = P + pj;

j = j + 1;

END

Here, the index i = 1, 2, · · · represent the sequence of the offers made by the clients. In other

words, the index i = 1, 2, 3, · · · indicates their timing of visit. The ith client makes an offer
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earlier than the jth client if i < j. In this method, the WSP has no need to wait until all

the offers have been collected. The decision is simply made by investigating the number of

resources remaining. The resource is allocated to the first 1, 2, · · · , b clients

b∑

i=1

ki ≤ k̄;
b+1∑

i=1

ki > k̄. (3)

If the resource remaining is larger than the quantity requested by the walk-in client, the resource

will be allocated accordingly.

3 Analysis

For the sake of analysis, let S(w, n) =
∑w

i=1 ki:n be the sum of units being sold to the {1 :

n}, {2 : n}, · · · , {b : n} customers based on the profit density greedy algorithm. Similarly, we

let Sr(w, n) =
∑w

i=1 ki be the sum of units being sold to the 1, 2, · · · , b customers based on the

FCFS method.

3.1 Greedy algorithm

Since ki is a random variable drawn from uniform distribution for all i = 1, 2, · · · , n, ki:n (after

being sorted by profit density) is also a random variable drawn from uniform distribution for

all i = 1, 2, · · · , n.

S(w, n) =
n∑

i=1

di ki:n (4)

di =





1 ∀i = 1, . . . , w

0 ∀i = w + 1, . . . , n.
(5)

The cumulative probability distribution Pr{S(w, n) ≤ k̄} can be evaluated by a formula derived

by H. Weisberg in [6] (see Appendix),

Pr{S(w, n) ≤ k̄} = 1−
r∑

j=1

(cj − k̄)n

cj
∏

j 6=i(cj − ci)
(6)

ci =





w − i + 1 ∀i = 1, . . . , w

0 ∀i = w + 1, . . . , n.
(7)
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Unfortunately, this formula (as well as another formula from W. Feller [1]) cannot be reduced

to a simple close form. To obtain the solution, one needs to do it numerically.

For the case that exactly w customers are allocated with resources, it is equivalent to the

case

{S(w, n) ≤ k̄ and S(w + 1, n) > k̄},

Consider the following events,

E1 = {S(w, n) ≤ k̄ and S(w + 1, n) ≤ k̄};
E2 = {S(w, n) ≤ k̄ and S(w + 1, n) > k̄};
E3 = {S(w, n) > k̄ and S(w + 1, n) ≤ k̄};
E4 = {S(w, n) > k̄ and S(w + 1, n) > k̄},

and the facts that (i) Pr{E1} + Pr{E2} + Pr{E3} + Pr{E4} = 1 and (ii) E3 = φ the empty

set, the probabilities for the events can readily be determined as follows :

Pr{E1} = Pr{S(w + 1, n) ≤ k̄}
Pr{E2} = Pr{S(w, n) ≤ k̄} − Pr{S(w + 1, n) ≤ k̄}
Pr{E3} = 0

Pr{E4} = 1− Pr{S(w, n) ≤ k̄}.

3.1.1 Number of clients 〈b〉 being allocated with resources

The probability of exactly w clients being allocated with resources can be determined as follows :

Pr{w clients} =





Pr{S(w, n) ≤ k̄} − Pr{S(w + 1, n) ≤ k̄} if w < n

Pr{S(n, n) ≤ k̄} if w = n.
(8)

This equation applies for all w ≥ k̄ and the evaluation of the Pr{S(w, n) ≤ k̄} can be based

on Equation (6). Thus, the expected number of clients being allocated with resources, 〈b〉 can

be determined by the following formula.

〈b〉 =
n−1∑

w=1

w
(
Pr{S(w, n) ≤ k̄} − Pr{S(w + 1, n) ≤ k̄}

)
+ nPr{S(n, n) ≤ k̄}. (9)
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20

25

30

35
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45
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Number of customers n

〈 b
 〉

Figure 1: The expected number of clients being allocated with resource against the number of

customers for k̄ = 20 is shown by solid line with circles. The dotted line corresponds to 〈b〉 = n

and the dot-solid line corresponds to 〈b〉 =
−1+

√
1+8nk̄

2
.

Since Pr{b = w} = 1 for all w ≤ k̄, the summation can be started with w = k̄.

〈b〉 =
n−1∑

w=k̄

w
(
Pr{S(w, n) ≤ k̄} − Pr{S(w + 1, n) ≤ k̄}

)
+ nPr{S(n, n) ≤ k̄}. (10)

It is a function dependant on n and k̄. Once n and k̄ are known, 〈b〉 can be evaluated numerically.

Figure 1 illustrates the case when k̄ = 20. We have also plotted the curve for the cases when k̄

equals to 30 and 40 respectively. All of them show the same shape. It can be observed that for

n ≤ 2k̄ and n ≥ 2k̄, 〈b〉 can be approximated as follows :

〈b〉 ≈




n if n ≤ 2k̄

−1+
√

1+8nk̄

2
if n ≥ 2k̄.

(11)

The approximations are shown by dotted line and the dot-solid line respectively in Figure 1. A

derivation for the case when n À k̄ can be found in Appendix C.

8



3.1.2 Quantity of resource 〈S〉 being allocated

The expected quantity of resource 〈S〉 being allocated can thus be evaluated by using a similar

argument. First, let us consider the event {Exactly w clients will be allocated with resources

and x quantity of resource will be allocated}, i.e. {S(w, n) ≤ x and S(w + 1, n) ≥ k̄}.
Obviously, k̄ − 1 ≤ x ≤ k̄. Since {S(w, n) ≤ x} equals

{S(w, n) ≤ x and S(w + 1, n) ≤ k̄}⋃{S(w, n) ≤ x and S(w + 1, n) ≥ k̄},

and the first event is equivalent to {S(w + 1, n) ≤ k̄}, it is readily shown that

Pr{S(w, n) ≤ x and Exactly w clients being allocated}
= Pr{S(w, n) ≤ x and S(w + 1, n) ≥ k̄}
= Pr{S(w, n) ≤ x} − Pr{S(w + 1, n) ≤ k̄} (12)

for all x ∈ {y|Pr{S(w, n) ≤ y} − Pr{S(w + 1, n) ≤ k̄} ≥ 0}. Let

h(x|w, n, k̄) = Pr{S(w, n) = x| Exactly w clients being allocated}.

It can thus be evaluated as follows :

h(x|w, n, k̄) =
d

dx

{
Pr{S(w, n) ≤ x} − Pr{S(w + 1, n) ≤ k̄}
Pr{S(w, n) ≤ k̄} − Pr{S(w + 1, n) ≤ k̄}

}
if w < n (13)

h(x|w, n, k̄) =
d

dx

{
Pr{S(n, n) ≤ x}
Pr{S(n, n) ≤ k̄}

}
if w = n. (14)

for all x ∈ {y|Pr{S(w, n) ≤ y}−Pr{S(w+1, n) ≤ k̄} ≥ 0}. The expected quantity of resource

being allocated, 〈S〉, can thus be written as follows :

〈S〉 =
n−1∑

w=k̄

∫ k̄

xw

x d
(
Pr{S(w, n) ≤ x} − Pr{S(w + 1, n) ≤ k̄}

)
+

∫ k̄

0
xdPr{S(n, n) ≤ x}, (15)

for all n ≥ k̄ and xw satisfies the condition :

Pr{S(w, n) ≤ xw} = Pr{S(w + 1, n) ≤ k̄}.

Figure 2 shows the case when k̄ equals to 20.
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For large n, an approximated equation for the expected quantity of resource being allocated

can be derived. Considering the residue, R(n, 〈b〉, k̄) = k̄ − ∑〈b〉
i=1

i
n

satisfies the following in-

equality : 0 ≤ R(n, 〈b〉, k̄) ≤ (〈b〉+ 1)/n and supposing that this residue is uniform distributed

on [0, (〈b〉 + 1)/n]. The expected residue, 〈R〉 can be written as follows : 〈R〉 = (〈b〉 + 1)/2n.

Substituting the approximation for 〈b〉 in Equation (11), the approximation of the expected

quantity of resource being allocated can be written as follows :

〈S〉 ≈ k̄

(√
1 + 8nk̄ − 3√
1 + 8nk̄ − 1

)
(16)

for n À k̄. Reader can also refer to Appendix C for a derivation of the above equation.

3.2 First-come-first-serve

For the case that the resource is allocated in a first-come-first-serve basis, we consider the

following equation : Sr(w, n) =
∑w

i=1 ki, for all k̄ ≤ w ≤ n. By replacing S(w, n) by Sr(w, n),

we can use the same argument used for greedy method to derive the equations for the expected

number of clients being allocated with resource 〈br〉 and the expected quantity of resource 〈Sr〉
being allocated.

3.2.1 Number of clients 〈br〉 being allocated with resource

The expected number of clients being allocated with resources 〈br〉 can be determined by the

following formula.

〈br〉 =
n−1∑

w=k̄

w
{
Pr{Sr(w, n) ≤ k̄} − Pr{Sr(w + 1, n) ≤ k̄}

}
+ nPr{Sr(n, n) ≤ k̄}. (17)

The experession for Pr{Sr(w, n) ≤ x} will be from Feller formula [1].

Pr{Sr(w, n) ≤ x} =
1

w!

w∑

i=0

(−1)iCw
i (x− i)w

+, (18)

where

x+ =
x + |x|

2
, and Cw

i =
w!

i!(w − i)!
.
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It should be noted that Pr{Sr(w, n) ≤ x} is independent of n. Figure 3 shows the expected

number of clients being allocated with resources against number of customers n for the case

that k̄ = 20.

3.2.2 Quantity of resource 〈Sr〉 being allocated

Using the same technique as for 〈S〉, the expected number of units being sold 〈Sr〉 can be

determined by the following equation.

〈Sr〉 =
n−1∑

w=k̄

∫ k̄

xw

xd
{
Pr{Sr(w, n) ≤ k̄} − Pr{Sr(w + 1, n) ≤ k̄}

}
+

∫ k̄

0
xdPr{Sr(n, n) ≤ x},

(19)

for all n ≥ k̄. xw satisfies the condition :

Pr{Sr(w, n) ≤ xw} = Pr{Sr(w + 1, n) ≤ k̄}.

Figure 4 shows the case when k̄ = 20. It should be noted that the expected quantity being

allocated by FCFS method is slightly larger than the expected quantity being allocated by

profit density based greedy algorithm, Figure 5.

4 Greedy algorithm versus FCFS

The results obtained in this section are summarized in Table 2. Without loss of generality, the

results obtain in this paper can be extended for the case when ki is uniformly distributed on

the range [0,M ] :

Maximize
∑n

i=1 pisi

Subject to
∑n

i=1 kisi ≤ N

si ∈ {0, 1} ∀i = 1, . . . , n.

Here N is the total number of resource available.

By comparing the number of clients being allocated with resources, it is found that there

is no difference between greedy algorithm or FCFS when the number of customers is less

than 2k̄. When n > 2k̄, greedy algorithm can allocate resource to more clients than FCFS
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Figure 2: The expected quantity of resource being allocated 〈S〉 against the number of customers

n for k̄ = 20.
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Figure 3: The expected number of clients being allocated 〈br〉 with resource against the number

of customers n for k̄ = 20.
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Figure 4: The expected quantity of resource being allocated 〈Sr〉 against the number of cus-

tomers n for k̄ = 20.
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Figure 5: Comparison between FCFS and the greedy method in terms of the expected quantity

of resource being allocated 〈S〉 (solid line with circles) and 〈Sr〉 (solid line with dots) for k̄ = 20.
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method. Obviously, the resources are allocated to those clients whose requested quantities are

comparatively small. On the other hand, by comparing the expected quantity of resources being

allocated, FCFS can allocate more resources than greedy algorithm, Figure 5, irrespective to

the number of customers n.

Suppose only the client who can get resources will have to pay and the service charge is

defined as P0 + P1ki, P0, P1 > 0. The constant price P0 can be interpreted as a premier that

every client has to pay and P1 can be interpreted as the unit resource price. The expected

profit the WSP can gain by using greedy algorithm and FCFS respectively can be written as

follows :

G = P0〈b〉+ P1〈S〉. (20)

Gr = P0〈br〉+ P1〈Sr〉. (21)

With reference to the numerical results (Figure 5) obtained for n = 50 (i.e. n = 2.5k̄), it is

clear that the difference between 〈S〉 and 〈Sr〉 is about 0.013 × k̄ and the difference between

〈b〉 and 〈br〉 is about 0.2× k̄. Therefore, the difference between G and Gr can be expressed as

follows :

G−Gr = 0.2P0k̄ − 0.013P1k̄.

Accordingly, G > Gr if P0/P1 > 0.013/0.2. The profit gain by using greedy algorithm will be

more than using FCFS. If P0/P1 < 0.013/0.2. profit gain by using FCFS will be more.

Of course, this comparison is only valid if the service charge model is linear. For other service

charge models, a conclusion cannot easily be achieved. Numerical analysis will be needed.

5 Conclusion

In this paper, we have analyzed two properties of the profit density based greedy algorithm for

a resource allocation problem in web service. The allocation problem is essentially a well know

knapsack problem. In terms of profit making, greedy algorithm can ensure a near optimal

solution. However, profit making is sometimes not the only consideration in management
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decision. Other properties such as the number of clients being allocated with resources and

the quantity of resource being allocated are also important. In this regard, we have given a

numerical analysis on these properties with respect to the profit density based greedy algorithm

and the first-come-first-serve method.

The major tools that we used in the analysis are (i) the application of a formula derived by

H. Weisberg in [6] for a linear combination of order statistics to analyze the greedy algorithm

and (ii) the application of a formula derived by W. Feller in [1] for sum of uniform random

variables to analyze the FCFS method. In accordance with the numerical results obtained, it

is found that both profit density based greedy algorithm and FCFS method have very similar

properties when the number of customers is not large, i.e. n ≤ 2k̄. If n = 2.5k̄, greedy algorithm

has an advantage in letting more clients have resources allocated.

We have not concluded which algorithm is the best algorithm in resource allocation since

resource allocation is itself a complicated problem, in particular when other management de-

cisions are concerned. What we have presented here is simply additional remarks on profit

density based greedy algorithm.

A Weisberg formula – Linear combination of order sta-

tistics

To analyze the expected
∑b

i=1 ki:n, we apply the formula derived by H.Weisberg [6] for linear

combination of order statistics. Let

S(n) = d1U1:n + ... + dnUn:n, (22)

where Ui:n is the ith order statistic drawn from uniform distribution [0, 1] and di are real numbers.

The probability for event {S(n) ≤ x} is given by the following formulae.

Pr{S(n) ≤ x} = 1−
r∑

j=1

(cj − x)n

cj
∏

j 6=i(cj − ci)
(23)

where ci’s are given as follows:

cn+1 = 0; ck = ck+1 + dk. (24)
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Pr{S(n) < x} is defined for all 0 ≤ x ≤ d1 + d2 + · · ·+ dn and r is the largest integer such that

x ≤ cr.

Illustrative example: Suppose S(n) = U1:n + U2:n + U3:n. d1 = d2 = d3 = 1 and di = 0 for

all i = 4, . . . , n. Then all the cis will be given as follows :

c1 = 3 c2 = 2 c3 = 1 c4 = 0 . . . cn+1 = 0.

The cdf can be written as following equations.

∀x ≥ 3 Pr{S(n) ≤ x} = 1

∀2 ≤ x < 3 Pr{S(n) ≤ x} = 1− (3−x)n

3
∏

j 6=i
(3−ci)

∀1 ≤ x < 2 Pr{S(n) ≤ x} = 1− (3−x)n

3
∏

j 6=i
(3−ci)

− (2−x)n

2
∏

j 6=i
(2−ci)

∀0 ≤ x < 1 Pr{S(n) ≤ x} = 1− (3−x)n

3
∏

j 6=i
(3−ci)

− (2−x)n

2
∏

j 6=i
(2−ci)

− (1−x)n

1
∏

j 6=i
(1−ci)

∀x < 0 Pr{S(n) ≤ x} = 0

B Feller formula – Sum of n uniform random variables

To analyze the expected L of the case that the products are sold in first-come-first-serve basis,

we need the following formulae derived by W. Feller (p.27 of [1]). Let Sr(n) be the sum of

uniform random variables defined as follows :

Sr(n) = U1 + U2 + ... + Un. (25)

Noted that Ui’s are not ordered. For n = 1, 2, . . . and 0 ≤ x ≤ n,

Pr{Sr(n) ≤ x} =
1

n!

n∑

v=0

(−1)vCn
v (x− v)n

+, (26)

where

x+ =
x + |x|

2
, and Cn

v =
n!

v!(n− v)!
.

Note that for a point x between (k − 1) and k only k terms of the sum are different from zero.
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Illustrative example: Let Sr(3) = U1 + U2 + U3 and Uis are not in order, the cdf can be

written as following equations.

∀x ≥ 3 Pr{Sr(3) ≤ x} = 1

∀2 ≤ x < 3 Pr{Sr(3) ≤ x} =
C3

0x3−C3
1 (x−1)3+C3

2 (x−2)3

3!

∀1 ≤ x < 2 Pr{Sr(3) ≤ x} =
C3

0x3−C3
1 (x−1)3

3!

∀0 ≤ x < 1 Pr{Sr(3) ≤ x} =
C3

0x3

3!

∀x < 0 Pr{Sr(3) ≤ x} = 0

C Derivation of Equation (11) & Equation (16)

For n is large and n À k̄, we assume that the kis are distributed evenly on [0, 1]. Without loss

of generality, we futher assume ki < kj if i < j. So, the values of kis can be written as

ki =
i

n

for all i = 1, 2, · · · , n. As greedy allocation implies, the resource will be allocated to k1, k2 and

so on until futher allocation is not possible. Let 〈r〉 be the last one who can be allocated with

resource. It turns out that
〈b〉∑

i=1

ki ≈ k̄.

It is equivalent to that

〈b〉∑

i=1

i

n
≈ k̄

〈b〉2 + 〈b〉
2n

≈ k̄.

The solution of 〈b〉 is thus approximately equal to
−1+

√
1+8nk̄

2
. Since 〈R〉 = (〈b〉+ 1)/2n,

〈S〉 ≈ k̄ − 〈b〉+ 1

2n

= k̄ − 1 +
√

1 + 8nk̄

4n

= k̄

(
1− 1 +

√
1 + 8nk̄

4nk̄

)
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= k̄

(
1− 8nk̄

4nk̄(
√

1 + 8nk̄ − 1)

)

= k̄

(√
1 + 8nk̄ − 3√
1 + 8nk̄ − 1

)
.

Whenever n is large, 〈S〉 → k̄.
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(a) Greedy Algorithm FCFS

n ≤ 2k̄ 〈b〉 ≈ n 〈br〉 ≈ n

〈S〉 ≈ n/2 〈Sr〉 ≈ n/2

n À 2k̄ 〈b〉 =
(
−1 +

√
1 + 8nk̄

)
/2 〈br〉 ≈ k̄

〈S〉 ≈ k̄ 〈Sr〉 ≈ k̄

(b) Greedy Algorithm FCFS

n ≤ 2N/M 〈b〉 ≈ n 〈br〉 ≈ n

〈S〉 ≈ n/2 〈Sr〉 ≈ n/2

n À 2N/M 〈b〉 =
(
−1 +

√
1 + 8nN/M

)
/2 〈br〉 ≈ N/M

〈S〉 ≈ N 〈Sr〉 ≈ N

Table 2: (a) Summary on the expected number of customers and the expected number of units

being sold for both auction and FCFS. (b) N and M (> 1) correspond to the total number of

units for sale and the max{ki}.
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