
Towards the Partitioning Problem in
Software-Defined IoT Networks for Urban Sensing

Chao Song∗†, Jie Wu‡, Xu Chen∗, Lei Shi∗†, Ming Liu∗†
∗School of Computer Science and Engineering, University of Electronic Science and Technology of China

†Big Data Research Center, University of Electronic Science and Technology of China
‡Department of Computer and Information Sciences, Temple University

Email: {chaosong, csmliu}@uestc.edu.cn, jiewu@temple.edu

Abstract—Software Defined Networks (SDN) have been pro-
posed for use in applications of the Internet of Things (IoT),
termed as software-defined IoT (SD-IoT) network, because of
the popularity and capability of mobile devices being used
for networking in relatively large areas. However, a single
controller in SDN has a limited request-processing capability, so
a distributed control plane with multiple physical controllers has
been used to achieve scalability and reliability for supporting
the IoT applications. Accordingly, the data plane of an SDN
is partitioned into multiple domains, and each controller just
takes over one. When considering both delays and loads of
requests to the controllers, a partitioning problem arises. It is
required to consider the distributions of flow paths, since inter-
domain flow paths will create an extra load of requests to the
controllers. In this paper, we investigate the partitioning problem
in SD-IoT networks. Since uploading sensing data through the
IoT gateways are non-uniform, we utilize a hypergraph to model
the relationship between the spatial events and the gateways in
IoT for urban sensing. We propose a Partitioning Algorithm
for Software-defined IoT Network (PASIN) to partition the SDN
by considering both delays and loads of requests from the flow
paths. Our extensional simulations verify the effectiveness of our
proposed approach.

I. INTRODUCTION

As the Internet of Things (IoT) is fundamental to realizing
urban sensing, it should be flexible enough to support vari-
ous application requirements and the convenient management
of infrastructure [1]. Consequently, a Software-Defined IoT
(SD-IoT) network has been proposed for smart urban sensing
[1], [2], and has received a growing amount of attention from
both academic research communities and industrial companies.
Recently, the applications of IoT is developing rapidly, and
its scale is also growing. For example, Mobike is the worlds
first and largest smart bike-sharing company. The company
officially launched its service in Shanghai in April 2016 and
in less than a year since then has expanded the service to over
80 cities across China and internationally, operating nearly
4.5 million smart Mobikes. In 2017, Qualcomm announced
that they plans to support Mobikes Internet of Things (IoT)
applications by MDM9206 global multimode LTE modem [3].
This IoT device is designed to help Mobike customers accu-
rately identify an available bike, accelerate the unlock process
of the smart lock and assist with real-time management, all
while providing Mobike with continuous monitoring of the
bikes status. Thus, one important challenge of such large-scale

Switch 1 Switch 3Switch 2

Controller 1 Controller 2

Data server

Domain 1 Domain 2

Send request Push flow rule Flow path

IoT Device

Fig. 1. An illustration of inter-domain flow path scenario.

IoT network is the large amount of the asynchronous data
transmission among these IoT devices.

However, an SDN with a single controller cannot cope with
such large-scale IoT system that provides vast amounts of
data flows, even under multiple IoT applications. Deploying
multiple controllers is a general approach to provide scalability
and reliability, as more physical devices and applications are
added to the network [1], [2], [4]. In an SDN with multiple
controllers, each controller directly handles all the switches in
a given domain, as shown in Figure 1. A new data transmission
will send a request to the controller for establishing a flow
path. Then, the controller will calculate the flow path and
push the flow rules to the flow tables of the switches along
the path. Thus, the switch-to-controller delays are crucial, and
many studies [2], [5] propose to minimize them for partitioning
the data plane of SDN into multiple domains. However, such
solutions prefer employing more controllers to limit the scope
of each domain, because a small-scale domain has both lower
total delay and load of requests to its controller. Thus, they
make the flow paths in SDN running through more domains,
which can increase the load of requests in the whole network.
This is because a flow path of data transmissions through two
or more domains will send a request to the controller of each
domain, and create an extra load of requests to the controllers
of these domains. In Figure 1, the data transmission from the
host to a data server is through two domains, and therefore
will send a total of two requests to these controllers. Therefore,
partitioning an SDN should minimize the total load and delay
of the requests by considering the distributions of these flow
paths.

In this paper, we investigate the partitioning problem in
software-defined IoT networks over multiple flow paths. The
network traffic along these flow paths is generated by urban

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-5386-3224-6/18/$31.00 ©2018 IEEE 190

sensing applications that detect spatial events. In such appli-
cations, sensor nodes (such as vehicles and pedestrians) with
IoT devices sense spatial events on the roads (such as potholes
[6]) in a pre-defined time and in a pre-defined area. Then,
the sensor nodes upload the sensing data to gateways which
request to build flow paths to remote data servers in the SDN.
The relationship between the spatial events and the uploading
gateways is influenced by their spatial locations and the
distribution of mobile sensor nodes. We model this relationship
as a hypergraph to analyze the non-uniform distribution of
input data to SDN. According to the model, we propose
a Partitioning Algorithm for Software-defined IoT Network
(PASIN) to achieve the minimum total load of requests with
the constraint of total switches-to-controller delays in each
domain. Therefore, we focus on the partitioning problem for
urban sensing applications in an SDN with multiple controllers
and we make the following three main contributions:

• We discuss the load of the requests on each controller
caused by the flow paths. We take an urban sensing
system supported by an SDN to illustrate the data trans-
missions over the flow paths;

• We model the relationship between spatial events and
gateways using a hypergraph. We propose a Partitioning
Algorithm for Software-defined IoT Network (PASIN) to
partition SDN by considering the flow paths for the urban
sensing applications;

• We verify the performance of PASIN using the scalable
testbed we developed for SDN simulation.

The remainder of this paper is organized as follows: section
II discusses the cost of flow path and introduces the urban
sensing system with SDN; section III investigates the parti-
tioning problem in SDN; section IV evaluates the performance
of the proposed approach; section V surveys the related work;
and the last section concludes this paper and contains our plans
for future work.

II. FLOW PATHS IN SD-IOT

In this section, we first discuss the influences of flow
paths on the controllers. Then, we introduce the framework
of an urban sensing system for detecting spatial events that is
supported by an SDN with multiple controllers.

A. Overview of Software-Defined IoT System

With an increase in the number of mobile applications,
many of the applications are getting a lot of attention from
both academic researchers and industries [7]. Many cities have
deployed sensor platforms to support urban sensing [1]. In
addition to dedicated sensor platforms, smart phones equipped
with a rich set of sensors (like cameras, digital compasses,
GPS, etc.) can also be exploited to realize urban sensing. This
is referred to as mobile crowd-sensing (MCS) [8]. Mobile
crowdsensing for detecting spatial events, such as pothole
detection [6], is a typical and popular urban sensing appli-
cation. The ubiquity of smartphones has led to the emergence
of mobile crowdsensing tasks that make use of the way that
smartphone users move around in their daily lives [9]. In a

Controller 1

Data server

Truth discovery

Controller 2

Domain 1 Domain 2

Gateway 1 Gateway 2

IoT

(Sensing data)

SDN

(Transmitting data)

Cloud server

(Processing data)

Pothole

(Spatial event)

Fig. 2. The framework of a SD-IoT system.

typical urban sensing application, the system is comprised of
a central platform and a collection of IoT devices.

Figure 2 demonstrates the typical framework of a software-
defined IoT (SD-IoT) system for urban sensing applications.
The system can be logically divided into three subsystems: IoT
for sensing data, SDN for transmitting data, and cloud server
for processing data. In this example, the IoT devices in the by-
passing vehicles sense the spatial events on the roads. When
a mobile device senses an event, it generates sensing data to
describe it. Then, the sensing data is required to be uploaded to
the data server for further aggregation or to find the truth of the
event. Usually, the IoT device in a vehicle first transmits the
data to a gateway which then transmits the data to the remote
server through the networks. The IoT devices can immediately
communicate with a gateway via the cellular network (3G/4G);
otherwise, it can transmit the report delayed offloading through
an access point act as gateway [10]. Therefore, a large number
of data flows is transmitted through the gateways.

SDN in such a system takes responsibility for transmitting
the sensing data from the gateways to the data servers. It
separates the network into a control plane with a collection of
network-attached servers and a data plane with programmable
and packet-flow switches. The control plane makes decisions
about how traffic is managed based on a global, logically-
centralized network view. The data plane actually forwards
the data traffic to the desired destinations, and the flow paths
are handled by the SDN controller. Each gateway or data
server directly connects a switch in the data plane. The sensing
data is uploaded from the gateways to the data servers and
is forwarded in the data plane. The data plane of SDN is
partitioned into several domains, and each controller takes
control of a domain. Because the switches have limited buffers
and the static flow entries cannot adapt the dynamic networks,
the switches cannot store all the possible flow rules for the
paths between the gateways and the server. The data server
harvests all the sensing data and processes them according to
the algorithm of truth discovery [9]. In this paper, we focus
on the problem of data transmission in such urban sensing
applications. The issues of sensing data [6] and processing
data [9] are not within the scope of this paper.

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

191

s1 s2 s3h1 h2s4

Domain 1
Request Flow rule

c1

Flow path

(a) One intra-domain path (single controller)

s1 s2 s3h1 h4s4

Domain 1 Domain 2

c1 c2

h2 h3

Request Flow rule Flow path

(b) Two intra-domain paths (double controllers)

s1 s2 s3h1 h2s4

Domain 1 Domain 2

c1 c2

Request Flow rule Flow path

(c) One inter-domain path (double controllers)

Fig. 3. The influences of flow paths on the controllers.

B. Cost of Flow Path

In SDN, the load on the controller is caused by the request
of each data transmission. As illustrated in Figure 3(a), the
network contains a single controller c1, and four switches (s1,
s2, s3, and s4). The host h1 sends a data packet to another
host h2. When the first switch s1 receives the data packet, it
will check its flow table. If it misses, i.e there is no entry for
flow the data packet from h1 to h2, the switch s1 will send
a request to its controller c1. Many reasons result in missing
the requested entries on the flow table, such as the timeout
of an old entry or the limited buffer of a switch. Then, the
controller calculates the flow path, and sends the flow rules to
the switches along the path in order to update their flow tables.
This flow path is called an intra-domain path since both its
source and destination directly connect to the same domain
and its data transmission is also in this domain.

However, the request-processing capability of a single con-
troller is limited [2], and in a large-scale network, the number
of requests can exceed the limitation of a single controller. The
request-processing capability of a single controller is limited;
for example, NOX can process about 30K requests per second
[2]. We utilized CBench [11] to test the request-processing
capability of the controller FloodLight [12] which runs on the
physical server has the CPU of Intel i5-6500 3.20GHz with
4 cores and 12 GB memory. CBench simulates the specified
number of OF switches which connect to the controller to test
its request-processing capability. Our experiments included
two modes: in local mode CBench runs on the same physical
server with the controller, and in remote mode CBench runs
another computer which connects to the controller through
a 100 Mbps Ethernet link. As shown in Figure 4(a), while
increasing the number of connected switches, the amount of
the processed requests by the controller first increases when
less than a certain number of switches, and then the amount
of the processed requests decreases. Under the local mode, the
amount deceases when the number of the connected switches
is more than 4. Under the remote mode, the amount deceases
when the number of the connected switches is more than 16,
because of the bandwidth of the link between the controller
and CBench. When the number of switches is 32, the amount
of the requests reduce the lowest under both of the two modes.
As shown in Figure 4(b), while the number of connected
switches is increasing, the average number of responses re-
ceived by each switch is decreasing under both of local mode

1 2 4 8 16 32
0

0.5

1

1.5

2

2.5
x 10

5

Number of switches

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e

s
 p

e
r

s
e

c

Local

Remote

(a) Total responses of all switches

1 2 4 8 16 32
0

2

4

6

8

10
x 10

4

Number of switches

N
u

m
b

e
r

o
f

re
s
p

o
n

s
e

s
 p

e
r

s
e

c

Local

Remote

(b) Average responses per switch

Fig. 4. The responses from a controller by CBench.

and remote mode. This implies that the capability of providing
service to each switch by the controller is decreasing while
increase the number of connected switches.

Thus, building a distributed control plane with multiple
physical controllers is necessary to a large-scale network. As
shown in Figure 3(b), two hosts h1 and h3 send their data
packets to hosts h2 and h4, respectively. When the switches s1
and s3 receive the data packets and miss their flow tables, both
will send requests to their controllers. If all the switches are in
the same domain with a single controller, the controller will
receive two requests from the two data transmissions. If the
data plane is partitioned into two domains, the switches s1 and
s2 are in the domain with the controller c1, and the switches s3
and s4 are in the domain with the controller c2. The two data
transmissions (h1 → h2 and h3 → h4) are intra-domain. Each
controller will receive only 1 request. This example implies
that partitioning the data plane can reduce the load of requests
for each controller.

Multiple controllers can reduce the total switch-to-controller
delay. Let T (ci, sj) denote the delay of a link between the con-
troller ci and the switch sj . The average delay in Figure 3(a)

can be calculated by
∑4

j=1 T (c1,sj)

4 , and the average delay in

Figure 3(c) can be calculated by
∑2

j=1 T (c1,sj)+
∑4

j=3 T (c2,sj)

4 .
We assume that the switches s1 and s2 are geographically
closer to the controller c1 and that the switches s3 and s4 are
closer geographically to the controller c2. Thus, the total delay
of links between the controller c2 and the two switches (s3
and s4), calculated by

∑4
j=3 T (c2, sj), is less than the total

delay between the controller c1 and the two switches s3 and
s4, calculated by

∑4
j=3 T (c1, sj).

We call the flow path of the data transmission running

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

192

h2

h5

h1
h3

h4

o1

o2

o3
o4

Path of offloading the reports

(a) Scenario of multiple events and APs

h1

d1

d2

d3

Data server

D

h2 h3

h2 h3

h3 h4

h4 h5

Traffic pattern

P

p1

p2

p3

p4

L(p1)

L(p2)

L(p3)

L(p4)

(b) Bipartite graph

p1

p2

p3

p4

h1 h2 h3 h4 h5

Gateway

vertex

Traffic pattern

hyperedge

(c) Hypergraph

Fig. 5. An example of uploading the sensing reports from the four events through the five gateways.

through two or more domains the inter-domain flow path. An
inter-domain flow path can result in an extra load of requests
in the whole network. As shown in Figure 3(c), the host h1

sends a data packet to the host h2. The data plane is partitioned
into two domains, i.e. the switches s1 and s2 are in the domain
with the controller c1, and the switches s3 and s4 are in the
domain with the controller c2. When the switch s1 receives
data packet that does not match with any entry in its flow
table, it will send a request to its controller c1. The controller
c1 only updates the flow tables of the two switches (s1 and
s2). Then, when the first switch s3 in another domain receives
the data packet, it will also send a request to its controller
c2. The controller c2 only updates the flow tables of the other
two switches, s3 and s4. Compared to the example in Figure
3(a), the total number of requests increases by 2. Therefore,
partitioning a flow path can reduce the average delay, but will
also increase the total load of requests in the network.

Therefore, we investigate the problem of partitioning SDN
with multiple controllers to minimize the total load of re-
quests, which considers the following factors: (1) the request-
processing capability of a controller (denoted by Lmax); (2)
load balance among the multiple controllers; (3) the extra loads
caused by the inter-domain flow paths; (4) the total switch-to-
controller delay. Among these factors, the flow paths in SDN
are the essential part, which are generated by uploading the
sensing data from the gateways to the data servers.

III. PARTITIONING ALGORITHM FOR SD-IOT NETWORK

In this section, we model the relationship between spatial
events and gateways to analyze the non-uniform data trans-
missions through the flow paths in SDN. Then, we propose
a Partitioning Algorithm for Software-defined IoT Network
(PASIN) to partition SDN by considering the flow paths.

A. Traffic Pattern

In the urban sensing applications, an event, denoted by
o, has a location marked by latitude and longitude. When a
vehicle moves through the location of event o, the vehicle’s
mobile device senses the event o and generates a report to
describe it. The probing vehicle first transmits the data to a

gateway (denoted by h), and then the gateway transmits data
to the remote server through the networks. The set of all the
gateways is denoted by H. We assume all the reports buffered
in the vehicle will be uploaded during one contact with a
gateway. For simplicity, the way of uploading sensing data
through cellular network is regarded as immediately offloading
the sensing data without delay. Therefore, once a spatial event
occurs, a large amount of data flow will arrive at the relative
gateways. As shown in Figure 5(a), four events (o1, o2, o3,
and o4) occur in such an area. The sensing reports from these
events will be carried by the vehicles in the area to offload
via the five gateways (h1, h2, h3, h4, and h5). The load of
requests generated by the data transmission from event oi to
gateway hj in a predefined time is denoted by L(oi, hj). We
assume that the system obtains the load of requests from each
event based on the statistics of historical sensing tasks near
their locations.

Reports of the same event can be uploaded to, at most, g
different gateways via either the cellular network (3G/4G) or
delayed offloading. Thus, each event oi has a traffic pattern
denoted by pi, which is the set of the gateways upload the
sensing reports from event oi. We denote the space of traffic
patterns by P = {H, ∅}g . The gateways in a practical system
actually fall in a subset of the space, denoted by P ⊂ P =
{H, ∅}g. As illustrated in Figure 5(a), the example shown has
four traffic patterns: p1 = {h1, h2, h3}, p2 = {h2, h3}, p3 =
{h3, h4}, and p4 = {h4, h5}.

We assume that sensing reports of the same event are
transmitted to the same data server (denoted by d) for pro-
cessing, i.e., a map from traffic pattern to data server: p → d.
The set of all the data servers is denoted by D. As shown
in Figure 5(b), we utilize a bipartite graph to illustrate the
relationship between the traffic patterns and the data servers.
In this bipartite graph, the traffic patterns and the data servers
are the two sets of vertices, and the edges between these two
sets are weighted by their loads of requests, denoted by L(p, d)
or L(p). The load of requests by the data transmission L(o, h)
can also be denoted as L(p, h). Then, the load of requests from
a pattern is equal to the sum of the load from all the gateways
in it, i.e., L(p, d) =

∑
h∈p L(p, h). We can calculate the total

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

193

F1,1

h1 h2 h3 h4 h5

F2,2

F 2
,2

F2,2 F3,2F4,2

F3,1 F4,2

F5,3

d1 d2 d3

s4
s5

s6

s1
s2

s3

F2,1

F 1
,1

F1,1 F2,1

F4,3

F2,2 F3,2F4,2 F5,3F4,3

F3,1 F3,2 F
4
,2

F
4
,3

F 5
,3

Data

plane

F 2
,1

F3,1

F3,1

(a) Multiple flow paths

s1 s2 s3

s4 s5 s6

d1 d2 d3

h1 h2 h3 h4 h5

F1,1

F1,1

F1,1

F2,1

F2,1

F2,2

F2,2

F3,1

F2,2 F3,2F4,2

F2,2 F3,2F4,2

F4,2

F3,1 F3,2
F4,2 F5,3

F4,3

F4,3 F5,3

F4,3 F5,3

Data

plane

F3,1

F3,1

F2,1

(b) Graph of data plane G

s1 s2 s3

s4 s5 s6

d1 d2 d3

h1 h2 h3 h4 h5

L4,2+L4,3

+L5,3

L3,1+L3,2+L4,2L1,1+L2,2

000Data

plane

Cut

G1' G2'

(c) Loads of switches after partitioning

Fig. 6. Partition data plane over multiple flow paths.

load of requests using the data transmission from the gateway
h to the data server d by

L(h, d) =
∑
p∈P

[L(p, h)1(h ∈ p)1(L(p, d) > 0)] (1)

where 1(h ∈ p) indicates whether h is a member of the traffic
pattern p, returning 1 if true or 0 otherwise. 1(L(p, d) > 0)
indicates whether there exists a load of requests using the data
transmission from traffic pattern p to data server d, returning
1 if true or 0 otherwise.

The partitioning problem for balancing the loads among
multiple controllers is modeled as a hypergraph k-partitioning
problem, where the objective function is to minimize the total
costs of cuts on the hypergraph. A hypergraph H(X,Y) is a
further generalization of a graph; the hypergraph allows each
of its hyperedges to involve multiple vertices while the edge
of an ordinary graph can only involve two vertices at most
[13]. Figure 5(c) shows a bus representation of a hypergraph
[14]. We set up the vertex set X with all the gateways, i.e.
X = {h | h ∈ H}. The hypergraph set Y contains all
the traffic patterns. Each traffic pattern hyperedge involves
multiple gateways, which is the main reason to introduce a
hypergraph. Formally, Y = {p | p ∈ P}.

Each hyperedge y ∈ Y is assigned a weight which is equal
to the load of the traffic pattern L(p). Since all the input data of
SDN come from the gateways, we consider that each gateway
h ∈ H sends the requests of input data to a unique controller
c ∈ C. Thus, the gateway-to-controller mapping function is
defined as M : h → c, which specifies the controller c
according to each gateway h. Fundamentally, our work focuses
on designing a partitioning scheme that provides a reasonable
solution to M. However, as discussed in Section II-B, both
the cutting cost and the load of each subgraph should consider
the flow paths in the data plane. Next, we discuss the problem
of partitioning the flow paths along the switches between the
gateways and the data servers.

B. Partitioning Algorithm for Software-defined IoT Network

In the data plane, reports are transmitted from the gateways
to the data servers by a specific openflow protocol. In this
paper, we take the shortest path as an example to illustrate

our partitioning scheme. Let Fi,j denote the flow path from the
gateway hi to the data server dj , and the number of requests
from the path is denoted by L(Fi,j). A flow path F is an
alternating sequence of switches and links, and F (i) represents
the ith switch in it. The set of all the flow paths is denoted
by F. Figure 6(a) shows the flow paths among the switches
for the previous example. We construct a graph G(V,E) for
such data plane (see in Figure 6(b)). The set of vertices V
represents the set of the switches as: V = {s | s ∈ S}. The
edge set E represents the set of the links among the switches
as: E = {ess′ | s, s′ ∈ S}.

Since each controller takes control of one domain, the data
plane of the network is required to be partitioned into k
domains for the k controllers in a set C = {c1, · · · , ck}.
We model the problem as a k-way graph partitioning problem
(GPP) on the graph G(V,E). The graph is partitioned into
k smaller subgraphs, which are denoted by G′

1, G
′
2, · · · , G′

k.
Each subgraph G′

i(V
′
i , E

′
i), with V ′

i vertices and E′
i edges, is

handled by the controller ci. The load of edge e is defined as
the total load of requested flow paths through it, as follows:

L(e) =
∑

Fi,j∈F

L(Fi,j)1(e ∈ Fi,j) (2)

where 1(e ∈ Fi,j) indicates whether the flow path Fi,j is
through the edge e, returning 1 if true or 0 otherwise.

The load of a vertex s is defined as the total load of requests
from the flow paths through it, as follows:

L(s) =
∑

Fi,j∈F

L(Fi,j)1(s ∈ Fi,j) (3)

where 1(s ∈ Fi,j) indicates whether the flow path Fi,j runs
through the switch s, returning 1 if true or 0 otherwise.

The total delays of the links between switches and their
controller in a subgraph G′

i is calculated by the load and the
delay of each vertex in the subgraph as follows:

T (G′
i) =

∑
s∈G′

i

T (s, ci)L(s) (4)

Initially, we assume all switches connect to a single con-
troller (denoted by c0) in set C, which has the minimum total
delay to all the switches. Thus, the initial delay of a vertex si

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

194

41.88 41.9 41.92 41.94
12.45

12.47

12.49

12.51

12.53

Latitude

L
o
n
g
it
u
d
e

74

20

1

8

0

2

12

6

0

(a) Northeast event

41.88 41.9 41.92 41.94
12.45

12.47

12.49

12.51

12.53

Latitude

L
o
n
g
it
u
d
e

52

4

0

32

1

4

14

26

0

(b) Southeast event

41.88 41.9 41.92 41.94
12.45

12.47

12.49

12.51

12.53

Latitude

L
o
n
g
it
u
d
e

165

20

1

93

1

10

47

11

0

(c) Southwest event

41.88 41.9 41.92 41.94
12.45

12.47

12.49

12.51

12.53

Latitude

L
o
n
g
it
u
d
e

34

2

2

5

0

7

19

2

0

(d) Northwest event

Fig. 7. Offloading data reports from the events at different places.

to its controller is defined as the function of T (si, c0). After
partitioning, the vertex si is connected to a new controller cj .
Compared with c0, the difference between the two delays can
be calculated by the function:

∆T (si, cj , c0) = T (si, cj)− T (si, c0) (5)

In order to combine the load of the controller and the delay
to the controller from a vertex as one metric, we transform
the transmission delay into the number of requests to the
controllers. We regard the transmission delay as the queuing
delay on the controller. We take a simple D/D/1 queuing model
as an example, and the queuing delay of each request at a
controller is equal to q. Thus, the difference in transmission
delay is transformed to the number of requests as follows:

∆n(si, cj) =
∆T (si, cj , c0)

q
· L(si) (6)

A cut cut = (V1, V2) is defined as a partition of V of a
graph G = (V,E) into two subsets V1 and V2, as shown in
Figure 6(c). The set of all the cuts is denoted by CUT . The cut
cut is the set {euv ∈ E | u ∈ V1, v ∈ V2} of edges that have
one endpoint in V1 and the other endpoint in V2. According
to the extra load of inter-domain flow paths and the delays of
links between the switches and their controllers, the cost of
cut is defined as follows:

cost(cut) =
∑

euv∈cut

L(euv)+
∑
u∈V1

∆n(u, c1)+
∑
v∈V2

∆n(v, c2)

(7)
A flow path Fi,j is partitioned into m segments, denoted by

f1
i,j , · · · , fm

i,j , and each segment has a head vertex and a tail
vertex. Each segment belongs to a subgraph and has the same
load Li,j on that domain. A vertex has the load Li,j only if it is
the head of a segment that belongs to the flow path Fi,j in such
a subgraph. In Figure 6(c), the flow path F4,2 is partitioned by
the cut, and the vertices s2 and s3 become the heads in both
of the partitions. Therefore, they both have the load L4,2. As a
result, the weights of vertices s1, s2, and s3 can be calculated
by [L(F1,1) + L(F2,2)], [L(F3,1) + L(F3,2) + L(F4,2)], and
[L(F4,2)+L(F4,3)+L(F5,3)], respectively. Since the vertices
s4, s5, and s6 are not the head of any flow paths in their
subgraphs, their weights are all equal to zero. Therefore, the
total load of switch s to controller c is:

L(s, c) =
∑

Fi,j∈F

L(Fi,j)1(s = F
(1)
i,j) (8)

where 1(s = F
(1)
i,j) indicates whether the switch s is the head

of the flow path denoted by F
(1)
i,j , returning 1 if true or 0

otherwise.
Thus, we define the load of a subgraph G′

i as the sum of
the loads of all the vertices in it as follows:

L(G′
i) =

∑
s∈G′

i

L(s, ci) (9)

A 2-way graph partitioning problem can be formulated as
a minimum cut optimization problem as follows:

min
CUT

∑
cut∈CUT

cost(cut)

s.t. | L(G′
1)− L(G′

2) |≤ ε,

L(G′
1), L(G

′
2) ≤ Lmax,

T (G′
1), T (G

′
2) ≤ Tmax.

(10)

where ε is an imbalanced parameter that satisfies ε ∈ R≥0.
Lmax and Tmax denote the maximum load and the maximum
delay of a subgraph, respectively. The graph-partitioning prob-
lem is proved to be NP-hard as shown in [13]. We adopt the
Kernighan-Lin algorithm , with a computation complexity of
between O(| V |2) and O(| V |2 log | V |), to solve it.

The k-way partitioning problem is most frequently solved
by recursive bisection [15]. That is, after obtaining a 2-way
partitioning of V , we recursively obtain a 2-way partitioning
of each resulting partition. After log k phases, graph G is
partitioned into k disjoint subgraphs. Thus, the problem of
performing a k-way partitioning is reduced to that of perform-
ing a sequence of bisections. A multilevel recursive bisection
(MLRB) algorithm has emerged as a highly effective method
for computing a k-way partitioning of a graph. The complexity
of the MLRB for producing a k-way partitioning of a graph
G = (V,E) is O(|E| log k) [16].

Furthermore, PASIN not only partitions the data plain into
multiple domains with minimum cost, but also provides a
reasonable map between the gateways and the controllers, i.e.,
M : h → c, discussed in previous subsection. As previously
discussed, the gateways that transmit the sensing reports from
the same event are grouped into a traffic pattern, and the
switches which connect the gateways also send the requests
of the flow paths with the data server act as destination. An
intra-domain flow path in a domain means that both the source
(gateway) and the destination (data server) connect to this

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

195

load1 load2h1 h2 h6

s2s1 s3 s4 s5 s6

c2c1

(a) Linear topology

3
2

7 6

1
4

5

1

2

3

3

4

6

5

2

1

4

(b) Campus of UESTC

Fig. 8. Scenarios of the experiments.

domain. By contrast, an inter-domain flow path in a domain
means that either the source (gateway) or the destination
(data server) is unconnected to this domain. None the flow
paths from a traffic pattern to its data server bring any extra
loads of requests if they are covered by one domain as intra-
domain flow paths. This should requires that all gateways in
the traffic pattern and the data server act as their destination
are connected to this domain. On the contrary, if some of the
flow paths from a traffic pattern to its data server are inter-
domain, they will result in an extra load of requests. That
means at least one of the gateways in the traffic pattern or the
data server does not connect to this domain.

IV. EVALUATION RESULTS

In this section, we demonstrate the relationship between the
spatial events and the gateways using a real dataset. Then, we
evaluate the limitation of the capability of the controller. At
last, we evaluate the performance of our proposed Partitioning
Algorithm for Software-defined IoT Network (PASIN).

We have developed a scalable framework of an SDN testbed
with multiple controllers [17]. The architecture of this testbed
contains five module components: control plane, data plane,
host, monitor, and analysis. Each component can coordinate
with other simulators to accomplish the simulation tasks. In
the simulations for this paper, the module data plane utilizes
Mininet [18], a popular SDN simulator with OpenFlow mod-
ule. The module of multiple controls is implemented through
a combination of Floodlight [12] and FlowVisor [19].

A. Offloading Data at APs

To evaluate the relationship between the spatial events and
the gateways, we do experiments on the Taxi-ROMA dataset
[20]. This dataset contains real mobility traces of taxi cabs
in Rome, Italy. It contains GPS coordinates of approximately
320 taxis collected over 30 days. We select a dataset containing
traces collected on Feb. 5, 2014, which contains information
from 172 taxis. The traces cover an area with a range of 66km
× 59km. Our experiment consists of 9 access points serving as
gateways (center, north, east, south, west, northeast, southeast,
southwest, and northwest) and 4 events (northeast, southeast,
southwest, and northwest) at different places.

Figure 7 depicts the number of reports offloaded at different
access points; each circle represents an access point with a
number of reports corresponding to their positions in the map.

We notice that the access points near the event can receive
more reports. For example, in Figure 7(a), the northeast access
point receives more reports from the northeast event than other
events. In Figure 7(b), both the south access point and the east
access point receive more reports from the southeast event than
other events. We notice that the center access point receives
the most reports overall (see in Figure 7(c)) since it has a
heavy vehicular traffic density. In contrast, an event that is far
from the center will offload fewer reports to the access points,
such as the northwest event in Figure 7(d). In consequence,
all the results imply that the distributions of data from events
to access points are non-uniform.

B. Limitation of Controllers

To verify the limitation of the capability of the controller,
we evaluate the performance of SDN with linear topology,
shown in Figure 8(a), where the data plane contains 6 switches
and the control plane contains 2 controllers. Each of the two
hosts (load1 and load2) connected to the switches s2 and
s5 generates a load of 50 UDP packets with unreachable
destinations per second, and these packets are flooded to the
whole network. The size of each UDP packet is 67 Bytes.
We test the RTT (round trip time) delay of two different
data transmissions (h1 → h6 and h1 → h2) to compare the
approaches of the single controller and the double controllers.
Under the single-controller approach, the controller connects
to all the switches. Under the double-controllers approach,
each controller connects to 3 switches.

Figure 9 shows the results of the data transmission from h1

to h6. Figure 9(a) shows delays when different requests are
received by the controller. We notice that when the number of
received requests is more than 4500, the RTT delay of data
transmissions obviously increases. In most cases, the delay
under the double controllers is less than under the single
controller. Figure 9(b) shows the loss ratio of data packets
with different requests received by the controller. We notice
that when the number of received requests is more than 4500,
the loss ratios increase. Moreover, the loss ratio under double
controllers is much less than under the single controller. Figure
10 shows the results of the data transmission from h1 to h2.
We notice that the delay of the intra-domain data transmission
(see Figure 10(a)) is less than that of h1 → h6, and the loss
ratio of intra-domain data transmission (see in Figure 10(b))
is also less than that of h1 → h6. Both the RTT delay and
the loss ratio under the double controllers are less than under
the single controller. This implies that multiple controllers can
improve the performance of the network by balancing loads
among controllers.

C. Partitioning

To verify the performance of PASIN, we compare it with
two other approaches: (1) Single: the whole network contains
only one controller and one domain for all the switches;
(2) UbiFlow [2]: multiple controllers are deployed to divide
the network into several partitions, which represent different
geographical areas. Our simulation is based on the UESTC

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

196

3.6 3.9 4.2 4.5 4.8 5.1 5.4
0

1000

2000

3000

4000

Number of received requests (× 10
3
)

R
T

T
 d

e
la

y
 (

m
s
)

Single controller

Double controllers

(a) RTT delay

3.6 3.9 4.2 4.5 4.8 5.1 5.4
0

0.2

0.4

0.6

0.8

1

Number of received requests (× 10
3
)

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Single controller

Double controllers

(b) Loss ratio

Fig. 9. Inter-domain data transmission (h1 → h6).

3.6 3.9 4.2 4.5 4.8 5.1 5.4
0

1000

2000

3000

4000

Number of received requests (× 10
3
)

R
T

T
 d

e
la

y
 (

m
s
)

Single controller

Double controllers

(a) RTT delay

3.6 3.9 4.2 4.5 4.8 5.1 5.4
0

0.2

0.4

0.6

0.8

1

Number of received requests (× 10
3
)

P
a

c
k
e

t
lo

s
s
 r

a
ti
o

Single controller

Double controllers

(b) Loss ratio

Fig. 10. Intra-domain data transmission (h1 → h2).

 ! " # $ % &''
(

)((

 %((

!#((

"!((

#(((

#)((

ID of source host

N
u

m
b

e
r

o
f

re
c
e

iv
e

d
 r

e
q

u
e

s
ts *+,-'.

/0+1'23

45*67

(a) Mean of each controller

 ! " # $ % &''
(

)((

 %((

!#((

"!((

#(((

#)((

ID of source host

N
u

m
b

e
r

o
f

re
c
e

iv
e

d
 r

e
q

u
e

s
ts *+,-'.

/0+1'23

45*67

(b) Total of whole control plane

Fig. 11. Average number of received requests under uniform data rate.

 ! " # $ % &''
(

)((

 %((

!#((

"!((

#(((

#)((

ID of source host

N
u

m
b

e
r

o
f

re
c
e

iv
e

d
 r

e
q

u
e

s
ts *+,-'.

/0+1'23

45*67

(a) Mean of each controller

 ! " # $ % &''
(

)((

 %((

!#((

"!((

#(((

#)((

ID of source host

N
u

m
b

e
r

o
f

re
c
e

iv
e

d
 r

e
q

u
e

s
ts *+,-'.

/0+1'23

45*67

(b) Total of whole control plane

Fig. 12. Average number of received requests under non-uniform data rate.

campus in China, as shown in Figure 8(b). The backbone
topology consists of 4 data servers (each Ethernet link between
a switch and a server has 1Gbps), 7 switches (each Ethernet
link between two switches has 1Gbps, and each switch is di-
rectly controlled by one controller), and 6 access points as the
gateways (each access point has one 100Mbps Ethernet link
to one switch). In our simulation, we set six data flows from
the access points to the data servers, and each access point
owns one path. Compared with the single-controller approach,
the network under both UbiFlow and PASIN contains two
controllers. We set the timeout of flow entries at the switches
as 50 ms, and the interval time for sending the data packets
from the hosts is no less than 100 ms. Under the uniform data
rate strategy, all the hosts have the same sending interval of
100 ms. In contrast, under the non-uniform data rate strategy,
the hosts have different sending intervals between 100 ms and
300 ms. We record the average number of received requests
by the controllers every 60 seconds.

Figure 11 shows the number of requests received under the
uniform data sending rate. We notice that the mean number
of received requests by the controllers under the single-
controller strategy is much higher than the mean of either
UbiFlow or PASIN, both of which have two controllers (see
in Figure 11(a)). PASIN has the lowest mean number of
received requests, since it balances the loads of intra-domain
flow paths. The total number of requests received by the hosts
under PASIN is much less than under UbiFlow or under the
single-controller approach (see in Figure 11(b)), since PASIN
reduces the extra loads by making use of inter-domain flow
paths. Figure 12 shows the number of requests received under
the non-uniform data sending rate. We notice that PASIN
also has the lowest mean number of requests received by the

controllers (see in Figure 12(a)), and has a much lower total
number of requests received from all the hosts than UbiFlow
(see in Figure 12(b)). The reason is that PASIN partitions the
network according to the distribution of data traffic to reduce
the total load of requests with a constraint of load balance
among domains. This implies that PASIN is better equipped
than UbiFlow to handle non-uniform data traffic.

V. RELATED WORK

Internet of Things: The advent of the Internet of Things
(IoT) has inspired a large variety of new applications that
can provide ubiquitous services to make the lives of existing
industrial systems and people more intelligent, e.g., industrial
automation, smart grids, intelligent transportation systems,
smart healthcare, smart home, etc [21]. The development
and management of IoT cloud systems and applications have
received a lot of attention lately. In [22], the authors mostly
deal with IoT infrastructure virtualization and its management
on cloud platforms. Large-scale network environments (e.g.
IoT applications in smart cities) have the potential to provide
vast amounts of data flows.

Mobile Crowdsensing: Zhou et al. in [23] investigate pre-
diction applications that reduce initial construction overheads,
applying their work to the prediction of bus arrival times.
Yang et al. in [24] design incentive schemes for mobile phone
sensing, with two system models: the platform-centric model,
in which the platform provides a reward to be shared by
participating users, and the user-centric model, in which users
have more control over the payment they will receive. He et
al. in [25] research the optimal task allocation and show that
the allocation problem is NP hard, and also discuss how to
decide fair prices of sensing tasks.

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

197

Software Defined Network: To cope with huge numbers
of data flows in a large-scale network, oponen et al. in [26]
propose a distributed SDN architecture, Onix, where the net-
work view is distributed among multiple controller instances.
Phemius et al. in [27] propose DISCO, a distributed SDN
Control plane to cope with the distributed and heterogeneous
nature of modern overlay networks. Hassas et al. in [28]
propose a control plane with two layers where the bottom
layer is a group of controllers with no interconnection, and
the top layer is a logically centralized controller that maintains
the network-wide state. Jang et al. in [29] propose an SDN-
based WLAN monitoring and management framework called
RFlow+, which considers the trade-off between measurement
accuracy and network overhead.

VI. CONCLUSION AND FUTURE WORK

Because of the limited request-processing capability of a
single controller, many researchers propose and study SDN
with multiple physical controllers to achieve scalability and
reliability in a network. However, a partitioning problem arises
when considering the limited capability of each controller and
the load balance among multiple controllers. In this paper, we
investigate the partitioning problem over multiple flow paths in
SDN, with the urban sensing applications for detecting spatial
events. The data flow is generated by mobile devices sensing
the spatial events and is uploaded via gateways to connect
to the data server. We analyze the non-uniform distribution
of sensing data from the events to the data server using
a hypergraph. Further, we propose a Partitioning Algorithm
for Software-defined IoT Network (PASIN) to achieve our
objective of minimum total load of requests, with the con-
straint of total switch-to-controller delays in each domain.
Our extensional simulations verify the effectiveness of our
proposed scheme. This paper only considers the influence of
the spatial distribution of events on partitions of the data plane;
we will investigate the events in a dynamic manner with a
spatio-temporal distribution in our future work.

ACKNOWLEDGMENT

This work is supported by NSFC grants No. 61370204,
61572113; the Fundamental Research Funds for the Cen-
tral Universities No. ZYGX2015J155, ZYGX2016J084,
ZYGX2016J195; and the Applied Basic Program of Sichuan
Province of China No. 2014JY0192.

REFERENCES

[1] J. Liu, Y. Li, M. Chen, and W. Dong, “Software-defined internet of things
for smart urban sensing,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 55–63, 2015.

[2] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow:
Mobility management in urban-scale software defined iot,” in Proc. of
IEEE INFOCOM, 2015.

[3] “Qualcomm, China Mobile Research Institute and
Mobike Plan to Commence First of its Kind LTE
IoT Multimode Field Trials in China.” [Online].
Available: https://www.qualcomm.com/news/releases/2017/05/22/
qualcomm-china-mobile-research-institute-and-mobike-plan-commence-first-its

[4] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed and
robust sdn control plane for transactional network updates,” in Proc. of
IEEE INFOCOM, 2015.

[5] B. Heller, R. Sherwood, and N. Mckeown, “The controller placement
problem,” in Proc. of ACM HotSDN, 2012.

[6] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-
ishnan, “The pothole patrol: using a mobile sensor network for road
surface monitoring,” in Proc. of ACM MobiSys, 2008.

[7] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B.
Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile social
networks: the design, implementation and evaluation of the cenceme
application,” in Proc. of ACM SenSys, 2008.

[8] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, 2014.

[9] R. W. Ouyang, M. Srivastava, A. Toniolo, and T. J. Norman, “Truth
discovery in crowdsourced detection of spatial events,” in Proc. of ACM
CIKM, 2014.

[10] F. Mehmeti and T. Spyropoulos, “Is it worth to be patient? analysis
and optimization of delayed mobile data offloading,” in Proc. of IEEE
INFOCOM, 2014.

[11] “Cbench.” [Online]. Available: https://sourceforge.net/projects/cbench
[12] “Floodlight.” [Online]. Available: http://www.projectfloodlight.org/

floodlight
[13] C. Bichot and P. Siarry, Eds., Graph Partitioning. Wiley, 2011.
[14] S. Q. Zheng and J. Wu, “Dual of a complete graph as an interconnection

network,” Journal of Parallel and Distributed Computing, vol. 60, no. 8,
pp. 1028–1046, 2000.

[15] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs,” Journal of Parallel and Distributed Computing,
vol. 48, no. 1, pp. 96–129, 1998.

[16] K. George and K. Vipin, “A fast and highly quality multilevel scheme
for partitioning irregular graphs,” Proc. of ICPP, 1999.

[17] X. Chen, C. Song, Y. Qi, X. Dai, and M. Liu, “A scalable framework
of testbed for sdn simulation with multiple controllers,” in in Proc. of
IEEE ISPA, 2017.

[18] “Mininet.” [Online]. Available: http://mininet.org/
[19] R. Sherwood, G. Gibb, K. K. Yap, G. Appenzeller, M. Casado, N. M-

ckeown, and G. Parulkar, “Can the production network be the testbed?”
in Proc. of OSDI, 2010.

[20] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,
“CRAWDAD data set roma/taxi (v. 2014-07-17),” Downloaded from
http://crawdad.org/roma/taxi/, Jul. 2014.

[21] A. Al-Fuqaha, M. Guizani, M. Mohammadi, and M. Aledhari, “Internet
of things: A survey on enabling technologies, protocols, and applica-
tions,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, p.
Fourthquarter 2015, 2015.

[22] S. Nastic, H. L. Truong, and S. Dustdar, “Sdg-pro: a programming
framework for software-defined iot cloud gateways,” Journal of Internet
Services and Applications, vol. 6, no. 1, pp. 1–17, 2015.

[23] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: predicting bus arrival
time with mobile phone based participatory sensing,” in Proc. of ACM
MobiSys, 2012.

[24] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing,” in Proc. of ACM
MobiCom, 2012.

[25] S. He, D.-H. Shin, J. Zhang, and J. Chen, “Toward optimal allocation of
location dependent tasks in crowdsensing,” in Proc. of IEEE INFOCOM,
2014.

[26] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, and T. Hama, “Onix: A distributed
control platform for large-scale production networks.” in Proc. of OSDI,
2010.

[27] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in in Proc. of IEEE NOMS, 2014.

[28] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in in Proc. of ACM
HotSDN, 2012.

[29] R. Jang, D. Cho, Y. Noh, and D. Nyang, “Rflow+: An sdn-based
wlan monitoring and management framework,” in in Proc. of IEEE
INFOCOM, 2017.

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

198

