658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 5. MAY 1989

[7] E. Cohen and D. Jefferson, **Protection in the Hydra operating sys-
tem,”” in Proc. 5th Symp. Oper. Syst. Principles, vol. 9, no. 5, 1976.

18] R. M. Needham and M. D. Schroeder, **Using encryption for au-
thentication in large networks of computers,’” Commun. ACM, vol.
21, pp- 993-999, Dec. 1978.

[9] §. E. Donnelley and J. G. Fletcher, ‘‘Resources access control in a
network operating system,’’ presented at the ACM Pacific *80 Conf.,
Nov. 1980.

[10) iAPX-432 General Data Processor Architecture Reference Manual,
Intel Corp., 1981.

[11] S.J. Mullender and A. S. Tanenbaum, **Protection and resource con-
trol in distributed operating systems,’” Comput. Networks, vol. 8. pp.
421-432, Nov. 1984.

[12] S. Rivoira and A. Valenzano, ‘A distributed operating system for
object-based machines,”" in Proc. Int. Conf. Parallel Processing,
Bellaire, Aug. 1984, pp. 46-50.

{13} K. Ramamritham, D. Stemple, D. A. Briggs, and S. Vinter, **Privi-
lege transfer and revocation in a port-based system,”’ IEEE Trans.
Software Eng., vol. SE-12, pp. 635-648, May 1986.

[14] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,
and F. Pollack, “‘HYDRA: The kernel of a multiprocessor operating
system,”” Commun. ACM, vol. 17, pp. 337-345, June 1974.

{15) G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, *“The
Eden system: A technical review,”” IEEE Trans. Software Eng.. vol.
SE-11, pp. 43-59, Jan. 1985.

[16] D. R. Cheriton, **The V kernel: A software base for distributed sys-
tems.”" IEEE Software, vol. 1, pp. 19-42, Apr. 1984.

[17] A. S. Tanenbaum and R. Van Renesse, **Distributed operating sys-
tems,”” ACM Comput. Surveys, vol. 17, pp. 419-470, Dec. 1985.

A Simplification of a Conversation Design Scheme
Using Petri Nets

JIE WU anp EDUARDO B. FERNANDEZ

Abstract—The conversation scheme is a promising way of developing
fault-tolerant software and several mechanisms for its implementation
have been proposed. In an earlier paper Tyrrell and Holding used Petri
nets to design conversations. Their procedure, although correct, ap-
pears to be more complex than necessary. In this correspondence, a
simplified transition identification method is propesed. Using a robot
arm control program we show that the corresponding Petri net graph
is simpler than the one proposed by Tyrrell and Holding, but the com-
munication state change table is the same. It is also shown that these
two methods are equivalent.

Index Terms—Conversations, fault-tolerant software, Petri nets.

I. INTRODUCTION

The conversation scheme has been proposed as a promising way
of developing fault-tolerant software [1] and several mechanisms
for its implementation have been considered [2]. Tyrrell and Hold-
ing [3] use Petri nets to design conversations. Their procedure,
although correct, appears to be more complex than necessary.

In the design procedure, the definition of the state of the system
is one of the most important aspects. The question is how to iden-
tify transitions in Occam programs in order to express them as Petri
nets. In this correspondence, a simplified transition identification
method is proposed. Using their robot arm control program we show
that the corresponding Petri net graph is simpler than the one in

Manuscript received June 30, 1987; revised October 31, 1988.

The authors are with the Department of Electrical and Computer Engi-
neering, Florida Atlantic University, Boca Raton, FL 33431.

IEEE Log Number 8926737.

&

b

(b) ©)

Fig. 1. (a) PAR construct. (b) Meaning of initial state. (c) Meaning of

final state.
/& i
(a) ()
Fig. 2. (a) Meaning of initial state for ALT. (b) Meaning of final state for
ALT.

[31, but the communication state change table is the same. It is also
shown that these two methods are equivalent.

II. TRANSITION IDENTIFICATION

For convenience, we use a slightly modified representation for
Occam constructs. Three rules are needed to model Occam pro-
grams by Petri nets:

1) For communication and synchronization we use the scheme
of [3].

2) For PAR we define the constructs shown in Fig. 1.

3) For ALT we define constructs as shown in Fig. 2. We show
in this case the initial and final states separately since we never
need them together as in [3].

Note that this PAR model is equivalent to the one in [3], only
the representation has changed. This means here that only one to-
ken is needed in the starting place. Similarly for the ALT construct.
This notation allows to conveniently hide intraprocess communi-
cation transitions as shown later.

The essential part of a conversation is the boundary which is
used to prevent error propagation. The intraprocess communica-
tions are the main concern in building the scheme, while the intra-
process communications should be removed as early as possible.
It is advantageous to remove intraprocess communications before
forming the state change table rather than after forming this table
as it is done in [3].

The simplified identification method can be defined as follows:

1) Define as transition only those statements that indicate inter-
process transfers, e.g., X!a, X?a.

2) Define one state between every two transitions.

3) Define separately the initial and final states for each process.

In general, there will be fewer states in these Petri nets, but the
recovery points and test points that we can choose remain the same.

0098-5589/89/0500-0658$01.00 © 1989 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 5. MAY 1989 659

Robot Example. OCC

PROC operator (..)=
VAR ...
SEQ
WHILE
SEQ
» send ! x -(12)
send!y
send !z
receive? ANY -3y
¥
SEQ
PAR ...
stoplil ' ANY -(15,116,122,128)
TRUE
PAR. ..
goliltANY: --118,t18,124,130)
PROC motor .. .) =
VAR ...
SEQ
WHILE ...
SEQ
motion ? step --(110,119,125)
motion ? direction
finished ! ANY A(t13,121,427)
ALT
stopi ? ANY -(t16,122,t28)
g0i7ANY
SKIP:
PROC control (.. .) =
VAR. . .:
SEQ
WHILE
SEQ
receive ? xnew --(t2)
receive ? ynew
receive ? znew
PAR
SEQ
motivn{i| ! stepii| At1,119,125)
motion [i)!direction [i]
WHILE
ALT
finished [i]? ANY —-113,421,127)
sendiANY 131
ALT
stop1? ANY --115)
gui‘?;\.\'Y -18)
SKip
PAR
PAR i={0for 3|
motor(...)
Controti..)
Operator (..)

Fig. 3. Occam program for 3-axis robot arm controller.

III. RoBot CoNTROL EXAMPLE

We use the proposed method to identify transitions in the robot
control example. In order to make a comparison we use the same
labels in the statements as in the example of [3]. Fig. 3 shows this
Occam program. Some irrelevant details of the control program
have been omitted and we emphasize only the statements that con-
tain transitions.

The Petri net model of this program is shown in Fig. 4. To com-
pare it to the method in [3], we number the states as the states just

- 'L_Qﬂwérjl/i-pn
|

|
1
i
}
|

Fig. 4. Petri net graph of robot arm controller.

2 9 19 25 31
| e
3 11 19 25 31

1 110, t19, t25

3 14 21 27 33
113,121,127
3 15 22 28 34
l @
4 16 22 28 34

18,118, 124,30 t5,116, 122,128

2 9" 19° 25 31’ 6 17 23 29 35

Fig. 5. Reachability tree of the graph of Fig. 4.

Transitions 1 . E
t2 2,9 3,11
t10,t19,425 11,19,25,31 14,21,27,33
13,121,027 14,21,27,33 15,22,28,34
t3 3,15 4,16
8,18, 4,16,22, 2',9'19 5,116, 4,16,22, 6,17,23,
124,130 28,34 25’31’ 122,128 28,34 29,35

Fig. 6. State change table of Fig. 5.

before transitions in Fig. 1 of [3]. Note that this results in slight
changes in some state numbers, e.g., P|, now becomes P3.

The reachability tree of the Petri net can be formed from the set
of all next state functions and is shown in Fig. 5.

The state-change table lists the state changes for each transition
in the reachability tree. The elements of the state-change table can
be identified as in [3]. The state-change table is shown in Fig. 6.

660 IEEE

The state change table here is equal to the communication state
change table in [3] (remember that 2! 1’ in the original paper).
In fact, in Fig. 6 for # there exist pl and p2 where:

pl,p2elj or pl,p2 €E and
pl € PROCgq; p2 € PROCr(q # r),

so there is no intraprocess communication.

IV. SUMMARY

We have suggested a simplification to the method proposed by
Tyrrell and Holding in [3] for the design of conversations for re-
liable software. Our method considers only interprocess commu-
nication and results in a change state table that also contains all the
information of the communication state table. The resulting con-
versation is equivalent to the previous case with respect to recovery
points and test points. Since Petri nets for real programs are com-
plex, we believe this simplification can be of practical value for
fault-tolerant software design.

As pointed out by one of the reviewers, this simplification does
lose some of the state information. If a conversation is required to

TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. I5. NO. 5. MAY 1989

start or finish at a state which is not a communieation, this method
will only provide an approximate boundary. This is also true for
approaches such as the refinement method of Reisig [4], where a
single place is replaced by a net of arbitrary size. In fact, the reach-
ability tree for the Petri net representation of [3] gives only one
possible execution order of the net, and as such it also loses infor-
mation. A study of this aspect is currently being performed [51.

REFERENCES

[1] B. Randell, ‘‘System structure for software fault tolerance,”” IEEE
Trans. Software Eng., vol. SE-1, no. 3, pp. 221-232, June 1975.

K. H. Kim, **Approaches to mechanization of the conversation scheme
based on monitors,”’ IEEE Trans. Software Eng., vol. SE-8, no. 3,
pp. 189-197, May 1982.

A. M. Tyrrell and D. J. Holding, *‘Design of reliable software in dis-
tributed systems using the conversation scheme,”” IEEE Trans. Soft-
ware Eng., vol. SE-12, no. 9, pp. 921-928, Sept. 1986.

W. Reisig, ‘‘Petri nets in software engineering,”” in Petri Nets: Appli-
cations and Relationships to Other Models of Concurrency (Lecture
Notes in Computer Science vol. 255). New York: Springer-Verlag,
1987.

[5] J. Wu and E. B. Fernandez, paper in preparation.

21

131

4

—

