
Scalable Opportunistic Forwarding Algorithms in
Delay Tolerant Networks using Similarity Hashing

Cong Liu†, Yan Pan†, Ai Chen‡, Kaigui Bian], and Jie Wu�
†Sun Yat-sen University, §Shenzhen Institutes of Advanced Technology CAS,

]Peking University, �Temple University
Email: liucong3@mail.sysu.edu.cn, panyan5@mail.sysu.edu.cn, ai.chen@siat.ac.cn,

bkg@pku.edu.cn, jiewu@temple.edu

Abstract—Due to intermittent connectivity and uncertain node
mobility, opportunistic message forwarding algorithms have been
widely adopted in delay tolerant networks (DTNs). While existing
work proposes practical forwarding algorithms in terms of
increasing the delivery rate and decreasing data overhead, little
attention has been drawn to the control overhead induced by
the algorithms. The control overhead could, however, make the
forwarding algorithms infeasible when the network size scales. In
this paper, we are interested in increasing scalability by reducing
control overhead, while retaining the state-of-the-art forwarding
performances. The basic idea is to use locality-sensitive hashing
to map each node as a hash-code, and use these hash-codes
to compute the pair-wise similarity that guides the forwarding
decisions. The proposed SOFA algorithms have reduced control
overhead and competitive forwarding performance, which are
verified by extensive real trace-driven simulations.1

Index Terms—Delay Tolerant Networks, Opportunistic For-
warding, Scalability, Similarity, Simulation.

I. INTRODUCTION

Delay tolerant networks (DTNs) [1] are sparse mobile net-
works, where connectivity amongst the nodes is intermittent.
A contemporarily connected source-destination path may not
exist between any pair of source and destination nodes at any
time. Designing forwarding (routing) algorithms in DTNs is
challenging, since traditional connection-based routing is not
applicable, and messages need to be delivered in a store-carry-
forward paradigm. Examples of DTNs include mobile social
software [2], pocket switch networks [3], vehicle and pedes-
trian networks [4], low duty cycle sensor networks [5], deep
space satellite networks, underwater acoustic buoy networks,
and many dedicated networks for developing regions.

Due to uncertainty in node mobility, a multi-copy oppor-
tunistic scheme is usually adopted: each DTN node oppor-
tunistically spawns copies, while identical copies are simul-
taneously kept by multiple nodes [4], [6]. The message is
delivered if one of these nodes encounters the destination. In
these algorithms, the two contradictory objectives are:

1) High forwarding performance. Forwarding algorithms
seek to improve the percentage of generated messages being
sent to their destinations within their time-to-lives. Different

1This work was funded in part by National Science Foundation of
China (grant No. 61370021, 61003045, 61003296, 61201245, 61003241),
Natural Science Foundation of Guangdong Province, China (grant No.
S2013010011905), Shenzhen Overseas High-level Talents Innovation and
Entrepreneurship Funds under Grant No. KQC201109050097A, NSF grants
ECCS 1231461, ECCS 1128209, CNS 1138963, CNS 1065444, and CCF
1028167.

0

50

100

S
iz

e
 (

K
B

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

data overhead

control overhead

Fig. 1. Data overhead versus control overhead (in terms of the contact
frequency information exchanged among the nodes). Assuming that each
message is 1KB, and 10 copies are spawned for each message. A 4 bytes
contact frequency regarding each destination needed to be obtained from each
encountered node. The time-to-live of the messages span the entire trace. The
average per node contacts in the above traces are around 307, 561, 688, 2323,
770, and 603, respectively. Refer to Section VI for details about the trace.

forwarding metrics are proposed, e.g., the frequency that each
node encounters the destination, to select forwarding nodes.

2) Low overhead. DTN nodes are typically power-
constrained devices. Power is consumed when a forwarding
algorithm computes forwarding decisions, and stores and for-
wards messages. Algorithms that make thrifty forwarding deci-
sions and that require low computation and storage complexity
are desired.

An enormous amount of research work has been devoted
to opportunistic forwarding algorithms, e.g., [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], which reduces data overhead,
in terms the average number of copies (or forwarding times)
per message, while retaining a high routing performance, in
terms of delivery rate or delay. However, methods used to com-
bat the control overhead are rarely discussed in the literature,
due to the intuition that data overhead always dominates.

As illustrated by the comparison between the two types
of overhead in Figure 1, the overhead of control messages is
significant and should not be overlooked. For example, assume
that 10 copies of a 1KB data message are spawned to 10
forwarding nodes. Each of these nodes encounters 1,000 other
nodes during the time-to-live of the message. The forwarding
algorithm is required to obtain a 4 bytes contact frequency
from each encountered node. Then, the per message data
overhead is only 10KB in total, but the per message control
overhead, in terms of the contact frequencies exchanged alone,
is 40KB!

In this paper, we take the first step in making DTN
opportunistic forwarding algorithms more scalable through

2

reducing the control overhead, while retaining competitive
forwarding performances. Specifically, we are interested in
reducing the control overhead by compressing the amount of
routing information exchanged among the nodes. We make the
following efforts to realize this goal:

1) We propose using locality-sensitive hashing (LSH) to
generate a hash-code for each node, such that the pair-wise
similarities can be computed among these hash-codes.

2) We investigate different ways to generate LSH hash-
codes, assuming different levels of knowledge about the net-
work, from global to strictly local.

3) We address several practical implementation issues
related to the forwarding algorithms that use LSH hash-codes.

4) We conduct an extensive simulation study with multiple
contact traces to evaluate the feasibility and necessity of the
proposed SOFA forwarding algorithms.

We will first review some preliminaries on DTN oppor-
tunistic forwarding algorithms and LSH algorithms in Sec-
tion II. Then, in Sections III and IV, the proposed scalable
opportunistic forwarding algorithm (SOFA) will be presented,
and different LSH algorithms that preserve pair-wise similarity
as well as several related implementation issues will be dis-
cussed. Lastly, extensive simulations and their results will be
presented and analyzed in Section VI.

II. PRELIMINARIES

A. DTN opportunistic forwarding algorithms

Opportunistic forwarding is usually applied in power con-
strained DTNs with nondeterministic node mobility. Flooding-
based algorithms [17] have large data forwarding overheads.
Opportunistic forwarding algorithms try to forward messages
to a small set of nodes with high delivery potential. In
multi-copy forwarding schemes, identical copies of the same
message are simultaneously kept by multiple nodes to combat
the uncertain mobility.

As an example, in the delegation forwarding [18] algo-
rithm, message copies are only allowed to be forwarded from
a node of a lower forwarding quality to a node with a higher
quality, as to avoid data overhead. To further reduce data
overhead, once a forwarding node has forwarded a copy to
another node of a higher forwarding quality, say q, it will
increase its threshold for the future forwardings to q. The
general concept of forwarding quality can be instantiated as
any forwarding metric, such as contact frequency [7].

B. Similarity metrics

Forwarding metrics can be generalized as similarity met-
rics, e.g., the similarity between a node and the destination.
Similarities can be divided into two categories: pair-wise
similarity and social similarity. A pair-wise similarity describes
the relationship between a pair of nodes, such as encounter
frequency [7], time elapsed since last encounter [4], [19], and
boolean pair-wise similarity [11]. A social similarity describes
one or more well-defined social features of a node, such as
social betweenness [11], community label [12], centrality rank
[12], geometric similarity [13], location similarity [14], and
vectorized features [20].

For message forwarding algorithms, pair-wise similarity
metrics are more direct and precise, but they are more expen-
sive to maintain. For instance, an encounter frequency-based
forwarding algorithm may need to store and exchange a full
vector of encounter frequencies of the current node and the
other nodes proactively or reactively. On the other hand, social
similarity metrics usually rely on centralized computation and
distribution, which might not always available. Moreover, they
relay on the assumption of correlated interaction [12]. In
sociology, the idea of correlated interaction is that a node of a
given community is more likely to interact with another node
within the same community than with a randomly chosen node.

Since DTNs and their applications display a wide range
of characteristics, there is no single best similarity metric for
all DTNs or application scenarios. Our similarity metrics, i.e.,
the hash-codes, generated by the proposed LSH algorithms
essentially belong to social similarity metrics, and inherit their
characteristics. However, the proposed LSH algorithms can use
any vectorized pair-wise similarity and social similarity metric
as their inputs, and a centralized computation is optional. For
instance, we will use a node’s vector of encounter frequencies
with all other nodes as the per-node input to our algorithm.
Encounter frequencies is widely used in literature and they can
be easily summarized in various trace data.

C. Locality-sensitive hashing (LSH)

LSH is a class of dimensionality reduction techniques,
which maps high-dimensional vectors to small-sized hash-
codes. A property of LSH is that similar input vectors have
similar or identical hash-codes, which is atypical of hash-
functions. Consider two vectors that differ in a single element.
Cryptographic hash-functions, such as SHA-1 and MD5, will
hash these two vectors into two completely different hash-
values. However, LSH will hash them into similar or identical
hash-values. LSH has been widely applied in nearest neighbor
search, near-duplicate detection, hierarchical clustering, etc.

As an example, the random projection [21] method of LSH
chooses k random hyperplanes ri (1 ≤ i ≤ k) at the outset,
and uses them to compute the hash-code of each input vector
v. The i-th bit in the hash-code of v depends on the sign of
v · ri, which in turn depends on which side of the hyperplane
ri vector v lies. For two vectors v1 and v2, the probability that
they lie on the same side of a hyperplane ri equals 1− θ(v1,v2)

π ,
where θ(v1, v2) is the angle between v1 and v2, and 1− θ(v1,v2)

π
is closely related to cos(θ(v1, v2)). When k is large enough,
the percentage of common 1s in the hash-codes of v1 and v2

provides a good estimation of cos(θ(v1, v2)), which can be
used to measure the similarity between v1 and v2.

III. SCALABLE OPPORTUNISTIC FORWARDING
ALGORITHM (SOFA)

A. Assumptions

SOFA is proposed for large and power constrained DTNs.
SOFA uses the hash-codes of the nodes to compute their pair-
wise similarities. The input of the proposed LSH algorithms is
a vector of features per node, which can be any vector of social
features, or any vectorized pair-wise similarities. For ease of
illustration and simulation, in this paper, we use the vector of
encounter frequencies.

3

Algorithm 1 SOFA
1: c← the current node
2: e← a node that c encounters
3: hc ← the hash-code of c
4: he ← the hash-code of e requested from e
5: for each message m carried by c
6: hm ← the hash-code of the destination of m
7: τ ← the forwarding threshold of m
8: if τ is not defined
9: τ ← s(hc, hm) // s is a similarity function

10: if τ < s(he, hm)
11: τ ← s(he, hm)
12: send a copy of m to e

Specifically, we assume that node IDs can be mapped to
consecutive indexes starting from 1, so that we can maintain
a vector per node of its contact frequencies with other nodes,
ordered by node indexes. In practice, such a mapping can be
implemented by hashing node IDs to integer indexes, with
conflicts solved arbitrarily.

Secondly, since SOFA needs the LSH hash-codes of a
forwarding node and a destination to derive their similarity,
we assume that each message is stamped with the hash-
code and the ID of its destination. Similar assumptions about
the hierarchical addresses, the locations, and the community
labels are widely made in hierarchical routing, location-based
routing, and community-based routing, respectively.

For a routing problem, we always assume that the source
knows some information, such as node ID, about the destina-
tion a priori. In the case that the hash-codes are not known
a priori or are constantly updated, we propose a destination
hash-code service in Section IV-A that allows the source to
look up the hash-codes of the destinations. This approach is
similar to the location service in location-based routing.

B. Problem statement

Our main task is to calculate an LSH hash-code for every
node, such that the pair-wise similarity between each pair of
nodes can be computed from their hash-codes.

Let Y be an n×m matrix, where n is the number of nodes
and m is the number of features. The i-th row of Y , denoted
by Yi, is the vector of features of the i-th node in the network.
One can measure the similarity between two feature vectors, Yi
and Yj , using their inner product, 〈Yi, Yj〉 =

∑
u Y

(u)
i ×Y (u)

j ,
where Y (u)

i is the u-th element in vector Yi. Geometrically, the
inner product of two vectors is the product of the magnitudes
of the two vectors and the cosine of the angle between them.
The similarity 〈Yi, Yj〉 is similar in spirit to the social similarity
in [11], which is calculated using a binary vectors, and the one
in [12], where two nodes are similar if they belong to same
k-clique communities.

Our objective is to compute n hash-codes x1, x2, · · · , xn,
such that, for any tuple of indexes i, j, and k, if 〈Yi, Yk〉 >
〈Yj , Yk〉, then s(xi, xk) > s(xj , xk) for some similarity
function s with high probability. In this paper, we will solve
the above problem in the three different scenarios, respectively:

1) There is a manager, e.g., one of the nodes, that knows
the entire matrix Y . The manager computes all x1, x2, · · · , xn,
and broadcasts them to every node.

2) No centralized mechanism exists. Each node computes
xi independently with its local information Yi.

3) There is a manager that knows some, but not all, rows
of the matrix Y , and is able to broadcast a small amount of
information in the network. Each node i then computes xi with
this broadcast information and its local information Yi.

We will provide the solutions in these three scenarios in
Sections III-E, III-F, and III-G, respectively.

C. Forwarding algorithm

Let us first explain the framework of the SOFA algorithm,
provided that every node has obtained its hash-code for the
time being. SOFA is based on delegation forwarding [18],
which was briefly introduced in Section II-A. SOFA is listed
in Algorithm 1, and is explained in the following.

Algorithm 1 will be executed on every node c, whenever
it encounters another node e. The hash-code he of e can be
either piggybacked to the hello messages of e, retrieved from
the local repository of c, or requested from e using a control
message. Note that, except for the last case, the only control
message required by SOFA is the inevitable hello messages.
After that, c looks over every message m, which it is carrying,
for possible forwarding to e.

A forwarding threshold τ is maintained for each message
m. If the similarity s(he, hm) between he and hm (hm is the
hash-code of the destination of m), is larger than τ , then m
will be forwarded to e while τ is increased to s(he, hm).

D. Ideal similarity

An ideal and trivial way to represent each node i is to use
the full vector Yi. With this “lossless” representation, we can
simply use 〈Yi, Yk〉 as the similarity function, and a benchmark
to evaluate the other LSH-based similarities to be introduced.
Note that this representation of nodes is impractical, since each
encountering peer needs to send and receive a full vector of
size O(n), instead of a short hash-code.

E. Centralized LSH with low-rank matrix decomposition

In the first scenario, there is a manager who knows the
entire matrix Y and computes all x1, x2, · · · , xn.

1) Simplified precise decomposition: We temporarily as-
sume that the rank of Y is a small number k. That is, Y can
be decomposed as the multiplication of two other matrixes:

Y = XΘ, (1)

where X is an n × k matrix, Θ is a k × m matrix. This
decomposition is illustrated in Figure 2.

Denote Yi as the i-th row of Y , and Y
(j)
i as the j-th

element on row Yi. Equation 1 is equivalent to the following
two equations.

Yi = XiΘ, 1 ≤ i ≤ n,

Y
(j)
i = 〈Xi,Θ

T
j 〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

4

X

nxk

kxm

Θ

nxm

Y =

Fig. 2. Low-rank decomposition of Y = XΘ. n is the number of nodes,
m is the number of features representing each node, and k is the number of
bases in Θ, which generates k small integers that are combined to form the
LSH hash-codes.

where ΘT is the transpose of Θ.

Theorem 1 below shows that if we use Xi as the hash-code
of node i, the objective described in Section III-B is satisfied.
The orthonormality of the rows of Θ is defined as: (1) each
row Θi is normalized, i.e., 〈Θi,Θi〉 = 1, and (2) each pair
of rows are orthogonal, i.e., 〈Θi,Θj〉 = 0 if i 6= j. In other
words, ΘΘT = I , where I is the identity matrix.

Theorem 1: If Y = XΘ and the rows of Θ are orthonor-
mal, 〈Yi, Yk〉 > 〈Yj , Yk〉 ⇔ 〈Xi, Xk〉 > 〈Xj , Xk〉

Proof: It is sufficient to prove that 〈Yi, Yk〉 = 〈Xi, Xk〉.

〈Yi, Yk〉 = XiΘ(XkΘ)T = XiΘΘTXT
k

= Xi(ΘΘT)XT
k = XiIX

T
k = 〈Xi, Xk〉.

If the rows of Θ are not orthonormal vectors, we can
construct a new matrix Θ′′ from Θ such that the rows of Θ′′

are orthonormal. There are algorithms that make orthonormal
bases, such as the QR algorithm and the Gram-Schmidt
Algorithm. Since each row in Θ is a linear combination of
the rows in Θ′′, for each Yi = XiΘ, there exists an X ′′i , such
that Yi = X ′′i Θ′′.

2) Low-rank and compact hash-code approximation: We
used Xi as the hash-code for node i. However, Xi contains k
real numbers, which is not a compact hash-code. To solve this
problem, we make two changes to Equation 1.

a) Instead of using a vector Xi of k real numbers to
represent node i, we replace Xi by α(i)Zi, where α(i) is a
single real number and Zi is a vector of k small integers. In
this paper, Z(j)

i ∈ {−1, 0, 1, 2} for 1 ≤ j ≤ k. With this small
range, it requires two bits to represent each Z(j)

i and 2k bits
are to represent Zi.

b) Y may not be low-rank in reality. Now, we define the
number of bases k, as illustrated in Figure 2, as a parameter in
our algorithm, which is not the large rank of Y anymore. For a
k much smaller than the rank of Y , we choose an n×1 column
vector α, an n× k matrix X and a k×m matrix Θ such that
α : XΘ approximates Y , where operator : is the element-wise
multiplication operator. The i-th rows in the result of α : X is
α(i)Xi, 1 ≤ i ≤ n.

To measure the difference between Y and α : XΘ, we
define

diff =
||Y − α : XΘ||2F

||Y ||2F
, (2)

where, the Frobenius norm || · ||2F , or the Euclidean norm of

Y is defined as ||Y ||2F =
√∑n

i=1

∑m
j=1 |Y

(j)
i |2.

To minimize diff, we have the following optimization
problem, which solves for the α and X we need, with Θ being
a byproduct.

mina,Z,Θ ||Y − α : ZΘ||2F ,
s.t. Z

(j)
i ∈ {−1, 0, 1, 2}, 1 ≤ i ≤ n, 1 ≤ j ≤ k,

ΘΘT = I. (3)

This problem is a mixed integer and linear programming
(MILP), which can be solved by the branch and cut algorithm
and other greedy heuristics. We simply solve this problem by
first solving its LP relaxation with a bounded X and then
applying a greedy local search.

Finally, the manager node uses α(i)Zi as the hash-code of
node i and broadcasts them to every node in the network. Each
node i can use 〈α(i)Zi, α

(d)Zd〉 to compute its similarity to
any destination d.

F. Localized LSH with random bases

In the second scenario, no centralized mechanism exists,
and each node computes its hash-code independently with its
local information Yi.

Note that the optimization problem shown in Equation 3
chooses α(i) and Zi (1 ≤ i ≤ n) such that α(i)ZiΘ
approximates Yi. At the same time, it chooses Θ such that
all Yi (1 ≤ i ≤ n) can be approximated with a minimum
difference defined in Equation 2. Therefore, the rows in Θ is
a set of principal components of the rows in Y , which means
that any Yi can be approximated by a linear combination of
the rows in Θ.

However, such principal component bases Θ cannot be
computed without a global knowledge of Y . In this second
scenario, we use randomly generated bases Θ instead. Simi-
larly, we make the rows in Θ orthonormal, in order that our
objective in Section III-B is guaranteed with high probability.

With these random bases in Θ being predetermined, the
hash-code α(i)Zi for each node i can be computed with its
local information Yi by

mina(i),Zi
||Yi − α(i)ZiΘ||2F ,

s.t. Z
(j)
i ∈ {−1, 0, 1, 2}, 1 ≤ j ≤ k. (4)

Note that, if we force that Z(j)
i ∈ {0, 1}, 1 ≤ j ≤ k, this

method is similar to the random projection method, which we
discussed in Section II-C.

Figure 3 compares the two hash-code methods in Sec-
tions III-E and III-F, respectively, in terms of diff s. The
diff between Y and the reconstruction of Ȳ = α : XΘ is
defined in Equation 2. We generate a matrix Y from each
of the six contact traces that we will use in our simulation,
where Yi is the vector of contact frequencies for node i.
The results show that, in terms of diff, the centralized hash-
codes using learned bases are much better than those computed
using random bases. Fortunately, similar to the observations in

5

0

0.5

1

d
if
f

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

k=16

k=32

k=64

k=128

(a) Centralized LSH with low-rank matrix decomposition

0

0.5

1

d
if
f

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

(b) Localized LSH with random bases

Fig. 3. Reconstruction difference diff of Y using α and X with different numbers of bases k. diff is defined in Equation 2 .

random projection, as the number of bases increases, the diff s
decrease significantly in all traces.

The approximation error may invalidate the nice property
that 〈Yi, Yk〉 > 〈Yj , Yk〉 ⇔ 〈Ȳi, Ȳk〉 > 〈Ȳj , Ȳk〉, which results
in forwarding to nodes of low delivery potential. The actual
effect is hard to analyze theoretically because it depends on
the distribution of the contact frequencies and the correlation
among the node mobility. Simulations will be performed in
Section VI to compare the performance of the forwarding
algorithms that use different hash-code.

G. Semi-localized LSH with learned bases

The third scenario is a more realistic one, which requires
a manager to collect some, but not all, information about the
nodes in the network, i.e., only some of the rows in the entire
matrix Y are available for the manager. Also, the manager is
allowed to broadcast some information in the network. The
actual amount of information that the manager collects and
broadcasts is a parameter in practical deployment.

The comparison in Figure 3 shows that using a learned
bases can generate better hash-codes than using random bases.
Our approach is to let the manager calculate a set of bases that
captures the principal components of the partially collected
feature vectors in Y . There are two steps in this approach.

1) The manager uses the collected feature vectors as rows
to forms a shorter matrix Y . Secondly, it uses the optimization
function in Equation 3 to solve for a set of bases Θ. Then, it
broadcasts Θ.

2) Each node uses the Θ learned by the manager, its local
feature vector Yi, and the optimization function in Equation 4
to solve for its α(i) and Zi.

In the case that the number of learned bases allowed to
broadcast due to bandwidth limitations is not large enough to
generate hash-codes of desired quality, random bases can be
added to the learned bases to form a larger set of bases.

It can be proven that the algorithms to generate hash-
codes in this section belong to the LSH family using similar
technique with which random projection method is proven.

IV. IMPLEMENTATION ISSUES

A. Destination hash-code service

Assume that a source node has the ID of a destination,
the destination hash-code service to be presented can help to

obtain the hash-code of the destination. The idea is similar to
the location service used in location-based routing.

In fact, SOFA does not forward messages towards IDs, but
towards hash-codes. With this fact, the service uses a globally
known hash function H that hashes node IDs to node hash-
codes. Note that H is a regular hash function instead of an
LSH function, which means that similar IDs will be hashed
to very different hash-codes. The service is a distributed and
cooperative algorithm, which consists of two parts:

Registration: After computing its hash-code hi, each node
i, sends the pair {i, hi} to the node whose LSH hash-code is
the most similar to H(i) (Assume that there is a similarity
function to compare the two types of hash-code). Note that
there might not exist a node whose hash-code is exactly H(i).
After receiving a pair {i, hi}, each node j stores the pair, until
it finds another node k such that hk is more similar to H(i)
than hj , and sends the pair to node k .

Query: A node j that needs to know hi will send the query
{i} together with j’s hash-code hj to the node whose hash-
code is the most similar to H(i). Any node that has the pair
{i, hi} will send it to j via hj .

B. Asymmetric similarities

We have assumed that each node i can be represented
by a vector of features Yi, and the similarity si,j between
nodes i and j is 〈Yi, Yj〉. Under this definition, similarities are
symmetric: si,j = sj,i. However, this is not always true: for
instance, contacts are directional by definition and they seldom
occur pair-wisely in real traces.

To represent asymmetric similarities, we represent each
node i with two vectors of features Y si and Y ri . With this
two vectors per node representation, the asymmetric similar-
ities between nodes i and j are now si,j = 〈Y si , Y rj 〉 and
sj,i = 〈Y sj , Y ri 〉. For the contact frequency features used in this
paper, Y si is the sending contact frequencies of node i, which
is summarized over the past contacts where i is able to send
messages. The vector for the receiving contact frequencies Y ri
is computed likewise.

C. Feature enhancing

For specific type of features, we may perform practical
enhancement such that they result in more accurate similarities.
Specifically, we enhance the each vector of contact frequencies
by setting Y r(i)i =

∑
j 6=i Y

r(j)
i . This is a reasonable enhance-

ment because Y r(i)i , i.e., the sending frequency of i to itself, is

6

originally unmeasurable, and the fact that node i can always
send messages to itself more frequently than the sum of all
other nodes. Y ri is enhanced likewise.

D. Message vectors

In a typical opportunistic forwarding algorithm, each en-
countering peer i sends and receives the following control
messages: (1) a message summary vector containing the IDs
of the messages in i’s buffer, which prevents the other peers
from sending the messages that i has; (2) a query and a reply
for the peer’s similarity with the destination of each message
in i’s buffer; and (3) other optional messages, such as the
disseminated acknowledgments for the successfully delivered
messages [4]. We focus on removing the summary vector in
this subsection.

Summary vector is used in almost all DTN opportunis-
tic forwarding algorithms. However, summary vectors may
produce an extraordinarily high volume of control overhead,
which will be shown in Section VI. In SOFA, we optionally
remove the use of summary vector. The disadvantage of remov-
ing summary vectors is that message copies will be forwarded
redundantly. Fortunately, SOFA is based on delegation for-
warding, which requires that each message must be forwarded
to nodes with increasing similarities to the destination. This
prevents most redundant forwarding and loops. An analysis of
the data overhead after the removal of summary vector will be
presented in the following.

V. ANALYSIS

A. Data forwarding overhead

We will derive an upper bound for the expected number of
forwardings per message in Algorithm 1 with and without the
use of summary vector, respectively. The derivation is similar
in spirit to [18]. We imagine that there are two stages in the
forwarding of each message. In the first stage, copies of the
message are forwarded only to the k nodes that do not have
the message. In the second stage, copies of the message are
forwarded redundantly among these k nodes. Note that (1)
each forwarding of a copy will increase its threshold, and
both stages 1 and 2 will eventually stop after the thresholds in
all copies reach the maximum similarity value, and (2) stage
2 overlaps stage 1 in reality, which may decrease k. As a
result, our analytical two stages will have a larger number of
forwardings than the overlapping stages in reality.

In stage 1, we assume that the forwardings happen in s
steps (sub-stages). In each step i (1 ≤ i ≤ s), there is a
corresponding forwarding set Ci. Initially, C1 only contains
the source. In each step i, each node in Ci is expected to
forward a copy to a new node, and E[|Ci+1|] = 2E[|Ci|]
due to the assumption that no redundant forwarding exists in
stage 1. Let τi be the expectation of the similarity threshold
on the message copies in Ci, and let expectation gi = 1 − τi
be the gap between τi and the maximum similarity. Assuming
that the similarities are uniformly distributed between [0,1],
then gi+1 = gi

2 and g0 = 1
2 , which follows gi = 1

2i . Note
that, in [18], it is argued that the number of forwardings is
determined by number of distingue similarities, rather than by
the distribution of the similarities. Let N be the set of nodes,
and n = |N |. Define C ′i ⊆ (N − Ci) as the set of nodes

TABLE I. INFORMATION ABOUT THE TRACE DATA.

Trace Contact Length Fwd Dest
(d,h:m.s) nodes nodes

Imote (Intel) 2766 4,3:46.31 9 128
Imote (Cambridge) 6732 6,1:6.28 12 223

Imote (Infocom) 28216 2,22:52.49 41 264
Imote (Infocom 2006) 227657 3,21:43.39 98 4519

Imote (Content) 41587 23,19:50.18 54 11421
UMassDieselNet 18700 28,17:12.51 31 32

with similarities higher than gi, then E[|C ′i|] = gin = n
2i and

the new forwarding nodes created by step i must in C ′i, i.e.,
(Ci+1 − Ci) ⊆ C ′i. This follows that stage 1 is expected to
stop when |C ′i| ≤ |Ci|. Since E[|C ′s|] = n

2s and E[|Cs|] = 2s,
we have s ≤ log2 n

2 , and the number of forwardings in stage 1
is:

k = |Ci| = 2s < 2
log2 n

2 =
√
n.

In stage 2, we assume that the forwardings happen in s′

steps (sub-stages) among the k =
√
n nodes. In each step

i (1 ≤ i ≤ s′), except the node with the maximum similarity,
all nodes forward and obtain higher similarity thresholds for
the message. Again, let τi be the expectation of the similarity
thresholds of the message copies in step i, and let expectation
gi = 1−τi be the gap between τi and the maximum similarity.
Similar to stage 1, we have gi+1 = gi

2 , and g1 = 1
2 , and

therefore gs′ = 1
2s′ . Since kgs′ = 1 (stage 2 stops when all

similarities are equal), we have s′ = log2 k, and the number
of forwardings k′ in the two stages is, in total:

k′ < ks′ = k log2 k =
√
nlog2

√
n.

The analysis above assumes that all nodes have different
similarities with the destination, and all of the n nodes can
encounter each other, thus giving an upper bound on the
expected number of forwardings.

To summarize, the average number of forwardings per
message in SOFA is bounded by

√
n when summary vectors

are used, and it is bounded by
√
n log2

√
n without using

summary vectors.

B. Computation overhead

All the centralized, localized, and semi-localized calcula-
tions of hash-code, as presented in Sections III-E to III-G,
can be conducted offline. SOFA only need to compute the
similarity between the nodes using their hash-codes, which
is simple to calculate the inner-product of each pair of hash-
codes.

VI. SIMULATION

A. Simulation trace and method

We conduct trace-driven simulations on six real contact
traces. They include the UMassDieselNet trace [4], which
consists of 55 days of the bus-to-bus contacts (holidays are
removed due to reduced schedules), and the Cambridge Haggle
trace set [22], which includes a total of five traces of Bluetooth
device contacts by people carrying mobile devices (iMotes).
Bluetooth contacts are classified into internal contacts between
internal iMotes, and external contacts between internal iMotes
and the external bluetooth devices overheard. Since there is
no record of contacts between external nodes, we only use

7

0

20

40

S
iz

e
 (

K
B

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

SprayWait

Delegation

Social

Similarity

SOFA

SOFA(rand)

(a) Overhead of control messages

0

0.5

1

D
e

liv
e

ry
 r

a
te

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

(b) Delivery rate

0

20

40

S
iz

e
 (

K
B

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

SprayWait

Delegation

Social

Similarity

SOFA

SOFA(rand)

(c) Total messages overhead

0

100

200

D
e

la
y
 (

h
o

u
rs

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

(d) Delay

Fig. 4. Simulation results on all six traces in terms of control overhead, total overhead, delivery rate and delay. Similarity is an ideal forwarding algorithm.

internal nodes as source nodes and forwarding nodes, but allow
all nodes to be destinations. Information about the traces are
summarized in Table I.

In each simulation, we generate 5,000 messages. Each
message is assigned a random internal node as the source, and
another random destination among all nodes. All messages are
created on their sources at time 0. Results are measured at 10
time-to-live points of 10%, 20%, · · · , 100% of the total trace
time, respectively. Although infinite buffer size and bandwidth
might cause inaccuracies [23], our simulations are conducted
with unrestricted buffer sizes per node, and unlimited number
of messages sent per contact, since otherwise some buffer
manager policy and queuing policy would need to step in,
which could make the results more difficult to analyze. The
forwarding algorithms to be compared are: SprayWait [6]. It
blindly forwards a number of L copies per message. In our
simulations we set L = 10. Delegation [18]. As introduced
in Section II, it uses contact frequency as its forwarding
quality metric. Social. It measures social centrality of each
node in terms of its total contact frequency, and uses the
delegation forwarding framework. Similarity. It uses the ideal
bench-mark similarity in Section III-D. SOFA. As presented
in Section III-E, it uses the hash-codes generated with at most
64 learned bases. Sometime we use less than 64 bases because
the number of orthonormal bases cannot exceed the number
of features. SOFA(rand). As presented in Section III-F, it uses
the hash-codes generated with at most 64 random bases.

We leave the implementation of the algorithm using semi-
localized hash-code, presented in Section III-G, to our future
work. Its performance should stands somewhere between those
of SOFA and SOFA(rand). For simplicity, we assume that
the source of each message knows the hash-code of the
corresponding destination, without needing a destination hash-
code service.

B. Results and analysis

We first conduct simulations without using summary vec-
tors. Figure 4 shows the simulation results at the end of each of
the six simulations. To show the simulation results at different
times during simulation, we show the simulation results on
the UMassDieselNet trace, with different message time-to-live
values, in Figure 5.

1) Overhead of control messages: It is the sum of the size
of the two types of control messages: routing information and
summary vectors. In this subsection, summary vectors are not
used. Routing information is different for different forwarding
algorithms. SprayWait does not use any routing information.
Assuming each ID or contact frequency is represented by 4
bytes, each node in Delegation requires to send and receive
8d bytes of routing information, where d is the number of
different destinations for all the messages in the node. Social
sends a single total contact frequency of 4 bytes per contact.
We assume that the ideal Similarity does not need to send any
routing information, which otherwise will be in large volume.
Finally, SOFA and SOFA(rand) use a fixed hash-code of 20
bytes per node, 4 bytes for α and 2 bits for each of the 64
Zis. As shown in Figure 4(a), the control overhead of SOFA
and SOFA(rand) are much smaller than Delegation.

2) Delivery rate: Delivery rate measures the percentage of
messages that research their destinations before a given time-
to-live. As shown in Figure 4(b), in traces Imote (Infocom) and
UMassDieselNet, the delivery rates of SOFA and SOFA(rand)
are very close to Delegation, the best one. In the two largest
traces Imote (Infocom 2006) and Imote (Content), the deliv-
ery rates of SOFA and SOFA(rand) are slightly worse than
Delegation, while significantly better than the others. This is
because of the relatively large diff s in these traces, as shown
in Figure 3. Considering the fact that the control overheads of
SOFA and SOFA(rand) are just a tiny fraction of Delegation,
SOFA and SOFA(rand) provide very good trade-offs between

8

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time−to−live (% of total trace time)

S
iz

e
 (

K
B

)

SprayWait

Delegation

Social

Similarity

SOFA

SOFA(rand)

(a) Overhead of control messages

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

Time−to−live (% of total trace time)

D
e
liv

e
ry

 r
a
te

(b) Delivery rate

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Time−to−live (% of total trace time)

S
iz

e
 (

K
B

)

(c) Total messages overhead

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time−to−live (% of total trace time)

D
e
la

y
 (

h
o
u
rs

)

(d) Delay

Fig. 5. Simulation results on the UMassDieselNet trace in terms of control overhead, total overhead, and delivery rate.

control overhead and delivery rate. As expected, SOFA always
delivers more messages than SOFA(rand) because the latter
uses random bases that result in larger diff s.

While having high delivery rate in four of the traces, SOFA
and SOFA(rand) have comparatively low delivery rates in two
smaller traces: Imote (Intel) and Imote (Cambridge). In these
traces, especially the Imote (Intel) trace, we can observe that
all algorithms using social features perform very poorly, which
suggests that the assumption of correlated interaction, which
is critical for social features based forwarding algorithms, does
not hold in these traces.

3) Total message overhead: This is the estimated size of
data and control messages generated per message in total,
assuming that the size of each data message is 256 bytes.
Again, we ignore the control overhead of Similarity since it is
an ideal algorithm. As shown in Figure 4(c), the total overhead
of the SOFA or SOFA(rand) amounts to no more 50% of that
of Delegation in most of the traces.

When compare Figure 4(a) with Figure 4(c), we can
find that the control overhead accounts for most of the total
overhead, especially for forwarding algorithms that use pair-
wise routing information, such as Delegation. We can also
see that the forwarding algorithms using social similarities,
including Social, Similarity, SOFA, and SOFA(rand), produce
more data overhead than Delegation. This is bcause Delegation
uses pair-wise contact-frequency, which is often the most
accurate forwarding metric for message forwarding.

Comparing Figure 4(b) with Figure 4(c), we find that, in
several traces, SprayWait has a higher forwarding rate and
a lower total overhead than Social, which is because social
similarity can sometimes be misleading. For instance, a group
of people with frequent intra-group contact may be mistakenly
identified as nodes of high social centrality.

4) Delay: The delay of a message is the time when the
first copy of the message reaches the destination. Delays are

only measured among delivered messages, since messages that
are not delivered do not have this property. The delay for all
of the compared algorithms on all traces are similar.

5) Results with various time-to-lives: The performances of
the forwarding algorithms are compared in Figure 5, assuming
different time-to-lives are used. As shown in Figure 5(b), the
delivery rates of all forwarding algorithms increase as time-
to-live increases. As shown in Figures 5(a) and 5(c), both
the control overhead and the total overhead increase as time-
to-live increases. This is because the forwarding algorithms
keep encountering nodes and sending control messages, which
makes the control overhead per message increase over time.
Comparing Figures 5(b) and 5(c), one can see that, even when
the forwarding algorithms hardly forward data message any
more, the total amount of overheads keep increasing due to
the continuously generated control overhead. This suggests
another way to reduce control overhead in practice. Finally, all
delays increase as time-to-live increases because the messages
delivered later have larger delays.

6) Using summary vectors: The results in Figure 6 show
that using summary does not result in significant improvements
in the delivery rates, but it results in prohibitive control over-
heads for all algorithms. The increase is especially prominent
in the traces that contain large amount of contacts, such as
Imote (Infocom 2006), and in algorithms that forwards large
number of copies per message in the trace, e.g. Social. We
conclude that direct use of summary vectors should be avoided.

C. Summary of simulation

Simulation results show that the proposed SOFA algorithms
have smaller control overhead and comparable delivery rate. In
most of the traces, especially the traces with large number of
nodes and contacts, SOFA provides an interesting trade-off be-
tween delivery rate and total message overhead. We conclude
that the forwarding performance of SOFA is competitive.

9

0

100

200
S

iz
e

 (
K

B
)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

SprayWait

Delegation

Social

Similarity

SOFA

SOFA(rand)

(a) Overhead of control messages

0

0.5

1

D
e

liv
e

ry
 r

a
te

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

(b) Delivery rate

0

100

200

S
iz

e
 (

K
B

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

SprayWait

Delegation

Social

Similarity

SOFA

SOFA(rand)

(c) Total messages overhead

0

100

200

D
e

la
y
 (

h
o

u
rs

)

Imote (In
tel)

Imote (Cambridge)

Imote (In
focom)

Imote (In
focom 2006)

Imote (Content)

UMassDieselNet

(d) Delay

Fig. 6. Results for the algorithms when using summary vectors, which show that the use of summary vectors may create enormous overhead.

VII. CONCLUSION AND FUTURE WORK

While existing work focuses on DTN opportunistic for-
warding algorithms that increase the delivery rate or decrease
data overhead, little attention has been drawn to the control
overhead. We proposed using LSH to represent each node as
a hash-code, and use these hash-codes to compute the pair-wise
similarity that guides forwarding decisions. We introduced
three hash-code generation algorithms for three application
scenarios. Extensive simulations are performed to evaluate
the SOFA algorithms. Future work includes fine-tuning the
parameters in the LSH algorithms, such as hash-code length,
and applying SOFA on traces where nodes have other types
of features, such hotspot contact frequencies.

REFERENCES

[1] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network.
In Proc. of ACM SIGCOMM, 2004.

[2] M. Motani, V. Srinivasan, and P. Nuggenhalli. PeopleNet: Engineering
a wireless virtual social network. In Proc. of ACM MobiCom, 2005.

[3] A. Chaintreauy, P. Hu, J. Crowcroft, C. Dioty, R. Gassy, and J. Scotty.
Pocket Switched Networks: Real-world mobility and its consequences
for opportunistic forwarding. In Tech. Rep. UCAM-CL-TR-617, 2005.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networking. In Proc.
of IEEE INFOCOM, 2006.

[5] Y. Gu and T. He. Data Forwarding in Extremely Low Duty-cycle Sensor
Networks with Unreliable Communication Links. In Proc. of ACM
SenSys, 2007.

[6] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and Wait:
An Efficient Routing Scheme for Intermittently Connected Mobile
Networks. In Proc. of ACM WDTN, 2005.

[7] A. Lindgren, A. Doria, and O. Schelen. Probabilistic Routing in
Intermittently Connected Networks. Lecture Notes in Computer Science,
3126:239–254, August 2004.

[8] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and Focus:
Efficient Mobility-Assisted Routing for Heterogeneous and Correlated
Mobility. In Proc. of IEEE PerCom, 2007.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani. DTN
Routing as a Resource Allocation Problem. In Proc. ACM SIGCOMM,
2007.

[10] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli. Age Matters:
Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter
Ages. In Proc. of ACM MobiHoc, 2003.

[11] E. Daly and M. Haahr. Social Network Analysis for Routing in
Disconnected Delay-Tolerant MANETs. In Proc. of ACM MobiHoc,
2007.

[12] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social-based
Forwarding in Delay Tolerant Networks. In Proc. of ACM MobiHoc,
2008.

[13] U. Acer, S. Kalyanaraman, and A. Abouzeid. Weak State Routing for
Large Scale Dynamic Networks. In Proc. of ACM MobiCom, 2007.

[14] J. Leguay, T. Friedman, and V. Conan. DTN Routing in a Mobility
Pattern Space. In Proc. of ACM WDTN, 2005.

[15] J. Wu, M. Xiao, and L. Huang. Homing Spread: Community Home-
based Multi-copy Routing in Mobile Social Networks. In Proc. of IEEE
INFOCOM, 2013.

[16] M. Xiao, J. Wu, C. Liu, and L. Huang. TOUR: Time-sensitive
Opportunistic Utility-based Routing in Delay Tolerant Networks. In
Proc. of IEEE INFOCOM, 2013.

[17] A. Vahdat and D. Becker. Epidemic Routing for Partially-connected
Ad Hoc Networks. In Technical Report, Duke University, 2002.

[18] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot. Delegation
Forwarding. In Proc. of ACM MobiHoc, 2008.

[19] D. Gunawardena, T. Karagiannis, A. Proutiere, E. Santos-Neto, and
M. Vojnovic. Scoop: Decentralized and Opportunistic Multicasting of
Information Streams. In Proc. of ACM MobiCom, 2012.

[20] J. Wu and Y. Wang. Social Feature-based Multi-path Routing in Delay
Tolerant Networks. In Proc. of IEEE INFOCOM, 2012.

[21] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proc. of ACM STOC, 1998.

[22] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chain-
treau. CRAWDAD data set cambridge/haggle (v. 2006-09-15).
http://crawdad.cs.dartmouth.edu/cambridge/haggle, September 2006.

[23] N. Ristanovic, G. Theodorakopoulos, and J. Le Boudec. Traps and Pit-
falls of Using Contact Traces in Performance Studies of Opportunistic
Networks. In Proc. of IEEE INFOCOM, 2012.

