## PRIORITY-BASED BROADCASTING OF SENSITIVE DATA IN ERROR-PRONE WIRELESS NETWORKS

Pouya Ostovari, Jie Wu, and Ying Dai





# Agenda

- Introduction
- Motivation
- Setting
  - Error model
- □ Priory-based data transmission
- Simulation results
- Conclusion

#### Introduction

- □ Broadcasting in wireless networks
  - Disseminating data and control messages

- □ Error-prone wireless links
  - Provide resilience
    - ARQ
    - Erasure codes
    - Hybrid-ARQ
    - Fountain codes (rateless codes)

#### Observations

- Errors in packets
  - Not binary

| 8     | 5     | 2     | 9     |
|-------|-------|-------|-------|
| 1000  | 0101  | 0010  | 1001  |
| $s_1$ | $s_2$ | $s_3$ | $S_4$ |

- □ Numeric data
  - Like sensed data by sensor nodes
  - The important of the symbols (bits) are different
    - The importance of the symbols should be considered
- □ Choices for *resilient communication* 
  - Reliable transmissions
  - Maximizing the expected gain with a fixed given number transmissions

#### Motivation

 $\square S_i$ : symbol i

 $\square x_i$ : number of transmission of symbol

 $\square W_i$ : weight of symbol

Packet 
$$S_1$$
  $S_2$   $S_2$   $S_2$   $S_2$   $S_2$   $S_3$   $P = 0.2$   $S_4$   $S_4$   $S_5$   $P = 0.2$   $S_4$   $S_5$   $P = 0.2$   $S_4$   $S_5$   $S_5$   $S_6$   $S_7$   $S_8$   $S_8$ 

| $x_1$ | 4     | 3     | 2     | 1     | 0      |
|-------|-------|-------|-------|-------|--------|
| $x_2$ | 0     | 1     | 2     | 3     | 4      |
| u     | 9.984 | 10.72 | 10.56 | 8.992 | 0.9984 |

4 transmissions

# Setting and Objective

- One-hop network
- □ Lossy links
- □ Transmission window size
  - t slots for a packet



Objective: maximizing the total weight of the received symbols

## Single Packet (Homogeneous Destinations)

□ The case of a packet size equal to 2 symbols

$$u = w_1 \times (1 - p^{x_1}) + w_2(1 - p^{x_2})$$
  
 $st.$   $x_1 + x_2 = t$ 



$$w_1 = 5$$

$$w_2 = 1$$

Saturation point 
$$p^{x_1} < \frac{w_2}{w_1}$$

## Single Packet (Heterogeneous Destinations)

- □ In the case of different transmission error rates, the round-robin pattern does not exist
- □ Iterative algorithm
  - We assign the transmissions to the symbols in *t* rounds

$$\Delta_{x_i} = w_i \times \sum_{l=1}^n \left[ 1 - p_l^{x_i+1} - (1 - p_l^{x_i}) \right] = w_i \times \sum_{l=1}^n \left[ p_l^{x_i} - p_l^{x_i+1} \right]$$

 $\square$  At each iteration we assign the current transmission to the symbol with maximum  $\Delta_{x_i}$ 

# Multiple Packets

- Our model
  - The size of the packets are equal
  - The weights of the *i*-th symbols in different packets are the same

 $\Box$  The problem of sending k independent packets becomes k similar problems with the same solution

■ We can solve the problem for a single packet, and repeat it for any packet

## Multiple Packets- with Network Coding

- $\square$  We first find the optimal  $x_i$
- □ We code all of the *i*-th symbols of the *k* packets together
  - Instead of sending the *i*-th symbols of each packet  $x_i$  times, we send  $x_i \times k$  coded symbols



## Multiple Packets- with Network Coding

- Using network coding might increase or decrease the gain
  - Since partial decoding is not possible
  - For each set of the *i*-th symbols we compare the gain of coding and non-coding

$$u_i^{NC} = w_i \times k \times \sum_{l=1}^n \left[ \sum_{i=k}^{x_i \times k} {k \times x_i \choose j} \times (1 - p_l)^j \times p_l^{x_i \times k - j} \right]$$

$$u_i = w_i \times k \times (1 - p_l^{x_i})$$

We turn off coding if it decreases the gain



# Priority-based Transmission

- □ For each possible distribution:
  - Check the gain of the *i*-th symbols of the *k* packets in the case of coding and non-coding symbols
  - If coding does not increase the gain of the *i*-th symbols, do not perform coding

□ Select the distribution with the maximum gain

# **Bursty Errors**

□ Errors in wireless networks have burst pattern

- How to organize the symbols in the packets?
  - Serial
  - Round robin
  - Random

# Simulations Setting

- □ MATLAB environment
- □ 1,000 random topologies
  - Different links' error rates
- □ Weight of the i-th symbol:  $2^{m-i}$
- Compare with simple retransmission method
  - Distribute the transmissions evenly to the different symbols of the packets

Gilbert-Elliott model



#### Simulations

- Packet size: 5 symbols
- 5 packets
- 10 destinations



$$r = 0.12, q \in [0.05, 0.12]$$



$$r = 0.24, q \in [1, 0.24]$$

### Simulations

- Packet size: 5 symbols
- 5 packets
- 10 destinations





$$r = 0.12, q \in [0.05, 0.12]$$

10 destinations

## Testbed- USRP devices

- 3 USRP devices
  - Sender
  - Receiver
  - □ Interference node
- Narrowband
- Central frequency: 1.26GHz
- □ Antenna gain: 20 db
- 5-digit BCD number



#### Conclusion

□ There is much work on reliable transmissions over error-prone wireless channels

■ We propose a transmission scheme which is based on the importance of the symbols (bits)

- Proposed methods
  - Network coding
  - Considering the bursty errors

#### Future Work

- Security
  - Encoding the whole data increase cost
    - Workload
    - Time complexity
- □ It is enough to encode the important parts of the data
  - Which symbols to encode?
    - Multi-layer vides: the base layer
- We can encode the coefficients of the network coded packets

# Questions

ostovari@temple.edu

http://astro.temple.edu/~tuc71330