

Optimal Monitor Placement Policy Against Distributed Denial-of-Service Attack in Datacenter

Rajorshi Biswas, Jie Wu, and Yang Chen
Dept. of Computer and Info. Sciences
Temple University

Outline

- Introduction to internal DDoS attack
- Previous works
- Monitoring system model
- Problem 1: Minimizing network overhead
- Problem 2: Minimizing network overhead with budget
- Simulation results
- Q & A

Internal DDoS attack and Commercial DDoS Protection Service

- Victim points their domain to DDoS protection server.
- DDoS protection server Victim: Secure tunnel
- DDoS protection server
 - Forwards legitimate packets only.

Monitoring all the internal flows is necessary

System Model: Monitoring Internal Flows

- Every switch is Software Defined Networking (SDN) switch.
- Each flow is copied to monitors.
- Unused VMs are used as monitors.
 - Detect DDoS traffic
 - Send report to controller
- If DDoS is detected:
 - Controller blocks the DDoS from hypervisor of the source

Monitoring cost= bandwidth \times # of hops the flow copy travels

Minimize monitoring cost

Previous work

Greedy: Each flow is monitored in closest monitor.

- Does not consider limited budget on VMs.
- 100% copy of flows cannot guarantee monitoring of all flows.

Problem 1: Find Flow Assignment

- Given topology, locations/VMs of monitors.
 - Find flow assignment that minimizes cost.
- Cost model
 - $C = \sum$ flow bandwidth \times # of hops the flow copy travels
- Constraint
 - VM capacity ≥ number of assigned flows

Required capacity: $\left[\frac{M}{K}\right]$ flows

M: number of unused VM

K: budget for monitors

Monitor capacity: 2 flows

Unusable VM

If required capacity > actual capacity: partially copy flow

Monitoring cost: 12+0+0+4=16

Solution Steps

- Step 1: Create bipartite graph
 - Partition unused VMs.
 - Calculate cost between flow and VM.
- Step 2: Create flow graph
 - Add source and destination.
 - Set cost = 0 for new edges.
- Step 3: Find minimum cost maximum flow.
 - Cheapest augmenting path

of partitions=capacity

Solution Steps

- Step 1: Create bipartite graph
 - Partition unused VMs.
 - Calculate cost between flow and VM.
- Step 2: Create flow graph
 - Add source and destination.
 - Set cost = 0 for new edges.
- Step 3: Find minimum cost maximum flow
 - Cheapest augmenting path

Solution Steps

- Step 1: Create bipartite graph
 - Partition unused VM. according to capacity.
 - Calculate cost between flow and VM
- Step 2: Create flow graph
 - Add source and destination.
 - Set cost = 0 for new edges.
- Step 3: Find minimum cost maximum flow
 - Cheapest augmenting path

Complexity: $O(M^3 + S^3)$

M: # of unused VMs, S: # of SDN switches

Problem 2: Find Flow Assignment (Limited Budget)

- Given topology, number of VMs K
 - Find flow assignment that minimizes cost.
 - Find K locations
 - Find assignment (problem 1)
- Cost model
 - $C = \sum$ flow bandwidth \times # of hops the flow copy travels
- Constraint
 - VM capacity ≥ number of assigned flows
- Best assignment:
 - $f_{ab} \rightarrow d, f_{ac} \rightarrow d, f_{ce} \rightarrow f, f_{eg} \rightarrow f$

Monitoring cost: 12+0+0+0=12

Solution Steps: M/K-lowest cost (MKLC)

- Step 1: Create cost matrix.
 - Find M/K-lowest cost.
- Step 2: Find assignment using problem 1
- Complexity: $O(M^3 + S^3)$
 - M=number of VMs
 - S=number of SDN switches

M=3, K=2 Monitor capacity required: 2

	d	f	h
f_{ab}	12	18	18
f_{ac}	0	8	8
f_{ce}	0	0	4
f_{eg}	4	0	0

Cost matrix

2-lowest	0	0	1
cost	U	U	4

Selected VMs {d, f}

Simulation: Randomly Generated Topologies

Topology I

Nodes: 172

VMs/PMs: 84/43

SDN SWs: 46

Links: 304

Topology II

Nodes: 249

VMs/PMs: 150/52

SDN SWs: 47

Links: 392

Topology III

Nodes: 277

VMs/PMs: 184/44

SDN SWs: 49

Links: 427

Unite disk graph, Randomly placed nodes (uniform), Randomly generated flows Area: 500x500, Neighborhood radius: 70

Simulation: Different Number of Flows and Unused VMs

Network overhead linearly increases with the number of flows. Number of free VMs=20

Network overhead decreases with the number of unused VMs.

Number of flows= 500

Simulation: Comparison with Existing Solutions

MKLC network overhead 27% is higher than optimal. Greedy network overhead 48% is higher than optimal.

Simulation: Comparison with Existing Solutions

MKLC network overhead is lower than Greedy network overhead.

Summary

Our proposed M/K lowest cost approach can produce less network overhead is lower than the existing greedy approach.

Q & A ???