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Abstract—Cognitive radio networks (CRNs), offering novel
network architecture for utilizing spectrum, have attracted sig-
nificant attention in recent years. In CRNs, secondary users
(SUs) first determine the status of a channel; if it is free, they
start transmitting. If the status determination is wrong, SUs may
unnecessarily interfere with the licensed primary user (PU). In
cooperative spectrum sensing, a SU makes a decision about the
presence of the PU based on its own and other SUs’ sensing
results. Malicious SUs (MSUs) send false sensing results to SUs
so that they make wrong decisions about the PU presence. As
a result, a SU may transmit during the presence of the PU or
may keep starving for the spectrum. In this paper, we propose
a reputation-based mechanism for cooperative spectrum sensing
which can minimize the effects of MSUs on decision making.
Some of the SUs are selected as distributed fusion centers (DFCs),
which are responsible for making decisions about the PU presence
and inform the reporting SUs. A DFC uses weighted majority
voting among the reporting SUs, where weights are determined
based on reputation. The DFC updates reputations of SUs based
on confidence of an election. If the majority wins by a significant
margin, the confidence of the election is high. In this case, SUs
that belong to the majority get high reputations. We provide
extensive simulations to validate our proposed model.

Index Terms—SSDE, spectrum sensing, cognitive radio networks,
spectrum sensing data falsifying attack, security, spectrum security

I. INTRODUCTION

In a cognitive radio network (CRN), users use a channel if
it is not used by the licensed user. The licensed users are
called primary users (PUs) and the CRN users are called
secondary users (SUs). Detection of the PU transmission plays
an important role in the throughput of a CRN. There can
be two error cases: the PU is transmitting but SU detects
the channel to be free (false-negative), or the PU is not
transmitting but SU detects the channel to be occupied (false-
positive). A false-negative scenario leads a SU to transmit and
cause interference with PU, which is unexpected. A false-
positive scenario prevents SU from using the free channel,
which reduces the CRN throughput. These kinds of detection
errors are very common because of shadowing, multipath
effects, path loss, and hidden terminals. SUs use the coop-
erative sensing mechanism to reduce the error rate [1]. In
this mechanism, SUs share their sensing results with other
SUs. A SU determines the channel status based on its own
sensing information and others’ sensing information. There
are two types of architecture for cooperative spectrum sensing:
distributed spectrum sensing and centralized spectrum sensing.
In a distributed system, SUs broadcast their sensing informa-
tion to their neighbors, and they make decisions according to

“and”, “or”, “majority”, or other rules. In a centralized system,
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Fig. 1. Example of an SSDF attack.
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all SUs send sensing information to the fusion center (FC), and
a FC makes a decision. SUs ask the FC for the channel status
before starting transmissions.

We consider that there are some malicious SUs (MSUs) in
the system, but their population is not more than that of the
benign SUs. MSUs send incorrect sensing information to the
FC or to other SUs to change the results. This kind of attacks
are called spectrum sensing data falsifying (SSDF) attack. If
the majority of SUs are benign, then the majority vote gives
the correct result in most cases. Sometimes MSUs and the
benign SUs with wrong sensing results will win the vote. In
Fig. 1, SU 3 remains behind an obstacle. The error rate of SU
3 is greater than other SUs, but less than MSU 1 . We denote
the PU presence as 1 and absence as 0. When the PU is absent,
the sensing results of 1, 2, and 3 are 1, 0, and 0, respectively.
The majority decision is 0, which is correct. When the PU
is present, the sensing results of 1, 2, and 3 are 0, 1, and 0,
respectively. The majority decision is 0, which is incorrect.
Therefore, it is important to detect the MSUs and reduce their
weights in election.

In this paper, we propose an online learning-based algorithm
to calculate the reputation of SUs at the distributed fusion
center (DFC). We use an adaptive learning rate based on
the confidence. We consider the confidence of an election
as the difference between the population of the majority
and minority. When the confidence level is high, reputation
increases or decreases at a higher rate. When the confidence
level is low, reputation increases or decreases at a lower rate.
This adaptive learning rate helps the system identity the MSUs
correctly and quickly. We conduct extensive simulations to
compare our proposed cooperative spectrum sensing scheme
with some existing schemes.

The remainder of the paper is as follows: Section II de-
scribes some related works. Section III describes the system
and the attacker model. Our proposed SSDF mitigation scheme
is presented in Section IV. Some existing and proposed
reputation calculation schemes are presented in Section V.
Section VI presents rules for combining other DFCs decisions
with other DFCs’ observations. In Section VII, experimental
results are presented.



g%

e

Coe

z
Z

Fig. 2. Cooperative sensing system.

II. RELATED WORK

There are many existing works on cooperative sensing under
the SSDF attack. Solutions are based on the authentication
of SUs [2], clustering benign SUs into a group, and the
reputation-trust of SUs. Authors in [3, 4] propose two dif-
ferent clustering algorithms based on the hamming distance
among the sensing results of different timeslots of SUs. An
associative rule mining based classification is proposed in [5].
Authors propose an apriori algorithm to get frequent subsets
of the sensing results from all the SUs. The MSUs remain
in the frequent subsets of the sensing results. Based on the
probability of the PU’s presence, SUs are classified into benign
SUs and MSUs.

The reputation and trust based evaluation is well-studied in
wireless sensor networks [6—8] for detecting malicious nodes.
A trust-based spectrum sensing scheme against SSDF attack
is proposed in [9]. In this method, the FC selects some of the
SUs to make local decisions and the FC combines detection
results based on their reliability. Authors in [10] propose a
distributed spectrum sensing method in which reputations of
SUs are computed based on deviation from the majority’s
decision. If a SU’s sensing result is different from (or the same
as) the majority, then its reputation is decreased (or increased)
by one.

A PU emulation-based testing scheme, FastProbe, creates
PU signals to test whether the SUs are reporting honestly
or not [11]. They propose a scheduling algorithm to test the
SUs periodically. This detection technique is now ineffective,
because there are a lot of mechanisms to detect PU emulation
signals [12, 13]. In addition, these mechanisms are based on
distribution, mean, and variance of energy and transmitter
localization. An MSU can detect the PU emulated signal and
report the correct result in that timeslot to get a high reputation.
Then, it can keep reporting false results in other timeslots. The
reputation-trust based systems use history to calculate SUs’
reputation. On every observation, their reputation is updated
based on some rules. None of them use the confidence of an
election for updating reputation.

III. SYSTEM AND ATTACKER MODEL

In this section, we define the attacker and the system model.

A. System Model

We consider a CRN with some SUs and a PU. The PU
goes on and off frequently in its licensed channel and the
PU presence is uniformly random. All the SUs are located
in a small area and impacted by a PU. In addition, the local
sensing results of SUs are mutually exclusive. The SUs sense

the PU’s licensed channel and periodically send sensing results
to the DFC directly. DFCs are also SUs, but instead of only
sensing, they work as aggregators of others’ sensing results.
DFCs make decisions based on the sensing results sent from
their neighbors.

A SU can become a DFC if it meets certain criteria. A
connected dominating set (CDS) is formed among the SUs.
The CDS is used in wireless sensor networks (WSN) to select
relay nodes for broadcasting a message. The main benefit
of using CDS in a WSN is that every node can reach a
relay node within an 1-hop neighborhood. The difference
between CRN and WSN is that nodes are static in WSN but
mobile in a CRN. Therefore, computing CDS in a CRN is
similar to mobile ad hoc networks. There are some existing
algorithms for constructing a CDS. Authors in [14] present
a node-degree-based dominating node selection process. A
marking process-based CDS construction is proposed in [15].
An energy change-based CDS formation is proposed in [16].
The reputation of a SU can be used as weight in this scheme
which will prevent the MSUs from becoming a DFC. In this
paper, we do not focus on the selection of DFC.

In Fig. 2, the green SUs are selected as CDS. The black SUs
are not members of CDS and they can find a green SU within
one hop. The SUs in CDS become DFCs. Every SU sends
their 1 bit sensing result to the neighboring DFC. The DFC
runs a weighted majority voting among the received sensing
results and updates reputation values of the SUs. Then the
DFC shares its result with other DFCs. After receiving results
from other DFCs, a DFC makes a final decision combining its
own and others’ voting results.

B. Attacker Model

The DFCs only know the SUs who send sensing information
to them. A DFC does not know how many SUs are benign or
malicious. We assume that the number of MSUs is smaller than
the number of benign SUs. Based on the attacker’s behavior,
we classify the attacking strategies into four classes:

a) “Random Yes” Attack: The MSU sends “1” to the
DFC regardless of the sensing result with o probability. When
a = 1, the MSU always sends “1” to the DFC; this is called
the “Always Yes” attack.

b) “Random No” Attack: This attack is just the opposite
of the “Random Yes” attack. The MSU sends “0” to the DFC
regardless of the sensing result with « probability. When o =
1, the MSU always sends “0” to the DFC; this is called the
“Always No” attack.

¢) “Random False” Attack: The MSU sends an opposite
sensing result to the DFC with a probability of «, meaning
that when the MSU’s sensing result is “1”, it sends “0”, and
when it is “0”, it sends “1” to the DFC. @ = 1 means that the
MSU always sends the opposite sensing result.

d) “Completely Random” Attack: The MSU sends ran-
dom sensing information with a probability of a. MSU selects
“0” or “1” randomly and overwrites the result in a timeslot
with « probability. @ = 1 means that the MSU sends a random
sensing result in each timeslot.



IV. PROPOSED COOPERATIVE SENSING ARCHITECTURE

Online machine learning is referred to as a learning system
where data is available to the system in a sequential manner.
In our system, SUs keep sending sensing results of each
timeslot to DFCs. Data from nearby SUs goes to the DFC
in a sequential manner. Let us consider that SU M becomes a
DFC and I SUs report to M. At time ¢, the sensing result from
suy, Sug, .., sur goes to M. In addition, M keeps the weight
and reputation of each neighboring SU. When the sensing
results from neighboring SUs arrive at M, it calculates the
sensing result based on the weighted votes of the SUs’ results.

I . .
b= { L Zamr =
Here, T'h is a threshold, which determines the portion required
to win the vote. For example, if the weights of all SUs are
equal, then Th = 0.5 means the “majority” voting, Th = 1
means the AND voting, and Th = 0 means the OR voting.
We express the reputation 7[i] of su; at time ¢ as following:

weli] = {1_1

refi] = f(*)

Here, D,[i] and D,[M] denote the one bit decisions about
the PU presence of su; and M at time t. p¢[M] denotes
the confidence of election at the DFC M at time ¢. f(x) is
called the weight update function (WUF). Different WUFs
take different parameters including, a common parameter x;.
We are not defining the parameters to make WUFs general.
Let Cy of the SUs report that the PU is absent and C; of them
report that the PU is present (Cy + C7 = I) to M at timeslot
t. So, the confidence level of M at time ¢ is:

if Dy[i] = D¢[M]
if Dy[i] # Di[M] )

Co—C1
Co+ C1

po[M] = ‘ 3

When someone wins by a significant difference of vote, we
conclude that the confidence of the election is high. If the
confidence is high, then the effect of the result will also be
high. That is why we use the proposed adaptive multiplicative
WUF in the Algorithm 1. The complete process is shown in
Algorithm 1.

The stated problem is similar to experts’ opinion aggre-
gation problem where an aggregator with little knowledge
tries to come to a Yes/No decision. Before making any
decision, the aggregator asks all of its nearby experts for their
opinions. Experts respond with Yes/No answers. Based on
their decisions, the aggregator makes its own decision and
calculates their reputation values. Reputation values are used
for future decision making; a high reputation value means that
the experts’ decisions will have priority over others with low
reputation values. Some literature assume that the aggregator
knows the ground truth of the result in the next timeslot.
They can update the reputation values of experts based on
differences between their answers and the ground truth. Our
problem becomes more challenging because there is no ground
truth. The most challenging part of the problem is to find a
suitable WUF. We discuss some WUFs in the next section.

Algorithm 1 Online Learning-Based Spectrum Sensing

Initialize reputation rg[¢] for SU ¢ for ¢ € N(DFC') and t < 0.
while Receive D; from neighbors where D¢[i] denotes sensing result of
SU 4 at time ¢ do

Co < number of Os in D; and C7 < number of 1s in Dy.

it 331 w; D¢[i] > Th then

PU « 1.
else
PU + 0. oo
confidence p; < CngCi
i< 1 ifDilil=PU
T 21, ifDyli] #£ PU
revafi] = f(*) .
R 41 [t
wepa [i] = 1o regilil
t<+—t+1.

V. DIFFERENT WUFS

In this section, we present the existing linear, and multiplica-
tive WUFs with or without a sliding window. We propose our
adaptive-multiplicative WUF with a sliding window.

A. Linear WUF

Some articles like [10, 17] use linear WUF to update the
reputations of sensor nodes in WSN. At ¢ = 0, an aggregator
can assume all the SUs are benign (highly reputed) and
decrease reputation based on their behavior. The drawbacks
of this assumption are that the system needs some initial
time to set up and an MSU can start again with a new ID
when its reputation becomes too low. Let us assume that at
t = 0, an aggregator assumes all the SUs’ reputations are 0.
After evaluation, the aggregator increases the SU’s reputation.
Reputation update depends on two types of information: first-
hand information and second-hand information. First-hand in-
formation means an SU’s own observed information. Second-
hand information means the reputations of other SUs. Based
on the first-hand information, the reputations update is done
as following:

) = freld], wefi]) = p x rei] + (1 — p) X ¢ [4] 4

Here, 1 is between [0, 1] and it determines how much the cur-
rent observation affects the reputation. If the SU’s prediction
is wrong, then the last part of the equation ((1 — p) x x4[i])
is negative and the reputation reduces.

B. Multiplicative WUF

In multiplicative WUF, reputations are increased or de-
creased by a factor. f(x) for the multiplicative WUF can be
defined as following:

F) = frel], we[d]) = reli] x exp(na:li]) ®)

Here, 7 is the learning rate, and it determines the portion of
contribution from the current observation to the reputation.
Another version of this multiplicative WUF considering the
sliding window can be expressed as the following:

cap(na:fi])

F) = freli], me[i]) = refd] x e —E ©

=ri X exp(n(x¢[i] — z:—5li]))
Here § is the effective evaluation period of the SUs. Dividing it
by a factor exp(nz;_s[i]) nullifies the reputation contribution



at timeslot ¢ — §. Therefore, DFCs need to store § number of
past sensing results for every reporting SU. DFCs do not need
to store past confidence because they can recalculate it from
the sensing result.

C. Adaptive Multiplicative WUF

In our society, the reputations of people do not rise or
sink linearly. People have to work hard to become popular
in politics, school, or work. Once someone becomes popular,
his/her small positive activities raise his/her popularity to a
great extent. Our reputation calculation scheme is motivated
by this social fact. The higher a SU’s reputation is, the more it
can be increased (or decreased) by correct (or wrong) sensing.
If a large number of SUs agree with the DFC’s result, then its
confidence level is higher. On the other hand, if almost half
of the SUs disagree with the DFC’s result, then its confidence
level is lower. Therefore, we propose adaptive multiplicative
WUF which is slightly different than multiplicative WUF.
Instead of using a constant learning rate 7, we multiply it
by the confidence of the election. The WUF can be expressed
as following:

fO) = f(reld], me[d]) = i X exp(n(pe[M]z:[i] — Pt75[M]xz75[i]))(7)

VI. HARD BUT SOFT COMBINING RULE

Consider a scenario where a student is answering tough
questions in a job interview. Some of the answers are known
and some are unknown to the student. The student sometimes
answers with high confidence and sometimes with low confi-
dence. Some of the questions are ambiguous and even the
interviewer is confused about the answer. In this scenario,
the interviewer follows some simple rules. When the student
is very confident and his answer is correct, he gets a high
score when interviewers confidence is high. When the student
answers with less confidence and his answer is correct, he
gets a low score when interviewers confidence is high. Table
I summarizes this concept.

TABLE I
JOB INTERVIEW SCORING SUMMARY
Student Interviewer

Confidence | Answer | Confidence | Score
High Correct | High High
High Wrong High -High
Low Correct | High Low
Low Wrong High -Low
High Correct | Low Low
High Wrong Low -Low
Low Correct | Low Lower
Low Wrong Low -Lower

Observing Table I, we see that the confidence of interviewer
and student are multiplied to get the score. The correctness
of the answer determines the sign of the score. Based on
this principle, we propose the “Hard but Soft” combining
rule. In soft combining methods, SUs send their raw sensing
information to the FC. In hard combining rules, SUs send one
bit information to the FC whether or not the PU is present to
the FC. Our proposed “Hard but Soft” rule is in between.
This combining rule is applicable when DFCs share their

results with other DFCs. Each DFC result has a confidence
level. Each DFC shares their one bit result and the confidence
level of the result with other neighboring DFCs. When a
DFC’s result matches (or does not match) with the majority’s
result and both its confidence level and the aggregator DFC’s
confidence level is high, then its reputation increases (or
decreases) significantly. When a DFC’s confidence or the
aggregator DFC’s confidence is low, the reputation of the DFC
increases/decreases at a low rate. When both of the DFCs’
confidences are low, the DFC’s reputation increases/decreases
at a lower rate.

Let P and @ be two neighboring DFCs. P receives a result
about the PU’s presence D;[@)] and confidence of result p;[Q]
at time ¢. P determines its decision D;[P] and confidence
pt[P] using weighted majority rules. Then it compares that
decision with the decision from the DFC @ at the timeslot .
The reputation of @ is updated according to the following:

Q] = {m[m x ezp(npe[PleelQl),  DelPl=DilQ) g
re—1[Q] X exp(—np:[Plp:[Q]), otherwise
This reputation update scheme increases truthfulness. When a
DFC lies with high confidence, then it has a high chance of
being caught and penalized by the aggregator. On the other
hand, lying with low confidence will not affect the aggregator
DFC’s result significantly. Let there be N neighboring DFCs
of the DFC M who send their aggregated results with confi-
dence levels. So, M’s result from other DFCs is as follows:
Dy — {1, 5o welilpe[ilDili] > Th!
0, otherwise
©)

1 N
PIM]e = < ;Pt[i]

Here, w,[i] is the weight (normalized reputation) of the DFC 14
at time ¢. p;[i] is the confidence of the result of D;[i] of DFC
i. p} is the confidence of the result D}[M] from second hand
information, and Th’ is another system variable that is similar
to Th, which determines the portion required to win the vote.

A. Combining Results from SUs and other DFCs

The final result is a combination of information from SUs
and other DFCs. Let’s assume that DFC M’s calculated
result from first hand information (neighboring SUs sensing
information) is D;[M], and the confidence of the result is
pt[M]. From the second hand information (other DFCs shared
results) M’s decision is D;[M] and the confidence of the result
is p}[M]. The final result is D}’ [M] and confidence of the final
result is p} [M].

Dy [M] {

pi [M] = pe[M]p+ pf [M](1 — p)
Here, 1 is a system variable, which determines how much a
DFC will believe its neighboring SUs. The value of u can
change for different DFCs. For example, if a DFC finds that
its reputation among other DFCs is very low, then it can
reduce its p to give less emphasis to its neighboring SUs.

L, D¢[M]pe[M]p + Dy [M]py [M](1 — p) > Th”

0, otherwise (10)



TABLE II
FC AND DFC COMPARISON
Fig. 3(f) | Fig. 3(g)
SU error rate [0,0.1] [0,0.2]
MSU error rate [0.7,1] [0.8,1]
Lowest affected SU [FC,DFC] [0%, 0%] [0%,0%]

This adjustment is helpful when a DFC is surrounded by many
MSUs. Th” is another system variable similar to Th and Th’.

B. Performance Analysis

In the worst case, we assume the population of benign the
SU is N and the population of the MSU is N — 1. MSUs use
the “always opposite” attack strategy. The accuracy (probabil-
ity of correct sensing) of benign SU is p and MSUs accuracy is
very low (= 0%). Then, the probability distribution of number
of correct sensing z, is denoted by P(x).

@) = (D) -prmV an

At the beginning, the weights/reputation of all SUs are equal.
Therefore, only at x = N the DFC can produce the correct
sensing result. The expected increase in the reputation of
a benign SU is by a factor of P(N)exp(np[M]). On the
other hand, MSU’s reputation will decrease by a factor of
P(N)exp(np[M]). For z < N, MSUs are the majority and the
DFC’s result would be wro%g. Therefore, an MSU’s expected
increase in reputation is Za::_[)l P(z)exp(np[M]). In order to
produce the correct result, the DFC should set parameters so
that

N-1

> P(x)exp(np[M]) < P(N)exp(np[M)) (12)
x=0

We compare the tolerance limit of our proposed WUF and the
exponential WUF of 99 SUs (50 benign SUs and 49 MSUs).
We define the tolerance limit as the error rate which violates
the Equation 12. The tolerance limit of the proposed WUF
is greater than the multiplicative WUF. The tolerance limit
remains constant for the multiplicative WUF.

VII. EXPERIMENTAL RESULTS AND SIMULATIONS
A. Comparison among different WUFs

We compare the performances of linear, multiplicative, and
adaptive multiplicative WUFs for two datasets. We consider
10 benign SUs with sensing error rates within [0,0.3] and
10 MSUs with error rates within [0.8,1]. Both datasets have
sensing results over 200, 000 timeslots. In dataset 1, the MSUs
show their malicious behavior from the beginning. In the
dataset 2, the MSUs show benign behavior to build their
reputations up to 100,000 timeslots. From the 100,001th
timeslot, the MSUs start sending the wrong sensing results.

Fig. 3(a) shows comparison between adaptive multiplicative
and multiplicative WUFs. It is observed that the number of
errors in adaptive multiplicative WUF is less than that of the
multiplicative WUF. Figs. 3(b) and 3(c) show the number of
total errors (ER), false positive (FP), false negative (FN), and
error in simple majority voting (ME) in linear and adaptive
multiplicative WUFs for different ;1 and 7 in dataset 1. From
the plots, we can observe that the number of errors in the

linear weight update is very small (0.02%) when g is within
[0.6, 1.0]. On the other hand, the number of errors in the
adaptive multiplicative WUF is higher than the linear WUF
(0.6%). When 7 is within [0.2, 1.0], the linear WUF does
better than multiplicative in the first scenario. However, MSUs
can be as clever as they are in the second scenario, where they
hide their original behavior until they build good reputations.
In that scenario, the multiplicative WUF works better. Figs.
3(d) and 3(e) show the ER, FP, FN, and ME in the linear and
adaptive multiplicative WUFs for different ;1 and 7 in dataset
2. The lowest error rate with the linear update function is
49%. On the other hand, the multiplicative WUF error rate
is almost stable at 3.6% for a learning rate within [0.3, 1].
The simple majority rule shows a 40% error for the dataset 1
and a 32% error for the dataset 2. We also see that the false
positive and false negative rates are almost same, because we
assume the PU’s presence is uniformly random. Therefore, we
conclude that the adaptive multiplicative WUF performs better
than linear WUF and simple majority rules.

B. Simulation with real primary user Data

In the experiments above, we consider the PU’s presence
in each timeslot to be random. To get PU’s behavior, we
observe a 2.4 GHz Wi-Fi band and assume Wi-Fi users to
be the PU. We capture the signal power of the 6th channel
(2.437Ghz 20Mhz channel) of the 2.4GHz band and use that
information for the PU emulation. We observe that PU remains
OFF for long stretches of the time before suddenly coming
ON at some timeslots. Fig. 3(h) shows the PU behavior for
certain time. We experiment with 1,000 CR users where 50%
of them are MSUs. We generate sensing results from 1,000
users according to their sensing error rates, and we compare
the conventional FC-based architecture with our DFC-based
architecture in terms of the number of users affected when
a wrong decision is made. In the conventional FC-based
architecture, all sensing results are sent directly to the FC so
that every SU is affected by the decision made by the FC.
On the other hand, only the SUs that report to the DFC are
affected by a wrong decision.

Figs. 3(f) and 3(g) show the number of error affected users
(ER), false positive affected users (FP), and false negative
affected users (FN) for 2,000 timeslots for different learning
rates (1) of both the FC and DFC based architectures. We
observe that false positive affected users are about 96% of
the total affected users due to the fact that the PU remains
off in most timeslots. For both systems, we use adaptive
multiplicative WUFs. From Figs. 3(f) and 3(g), we see that for
1 < 0.4, both systems have no affected users. One can argue
that if we set a low (n < 0.4) learning rate, we do not need
the DFC-based system. The low learning rate is dangerous in
the scenario where SUs/MSUs frequently changes behavior.
For example, in Fig. 3(e), the low learning rate (n < 0.3)
shows a large number of errors. From this perspective, the
DFC-based architecture shows higher robustness. For 1 within
[0, 1], the DFC-based system shows no error. From the figure,
we can conclude that the DFC-based system works better than
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Fig. 3. Performance comparison among different WUFs.

the conventional FC-based system. Table II shows detailed
parameters of the simulations.

VIII. CONCLUSION

Though cooperative spectrum sensing with the FC shows
great performance when detecting the PU’s presence in CR
networks, it suffers from SSDF attacks. We propose a CDS-
based distributed spectrum sensing mechanism where some
SUs become DFCs. The DFCs collaborate on spectrum sensing
information sent by SUs. We propose an adaptive multiplica-
tive WUF for reputation updates of SUs, which shows a
better performance compared to conventional multiplicative
and linear WUFs. We consider a 2.4Ghz Wi-Fi channel as
an unlicensed channel and Wi-Fi users as PUs, which is more
realistic than assuming a random PU’s presence. We also show
that the DFC-based system performs consistently and better
than the conventional FC-based system.
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