
On Solutions to a Seating Problem∗

Fei Dai, Mohit Dhawan, Changfu Wu and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

Abstract
The seating problem, proposed by Wu [2], deals with

the following assignment ofn couples in a row:n couples
are seated in one row. Each person, except two seated at
the two ends, has two neighbors. It is required that each
neighbor of personk should either have the same gender or
be the spouse ofk. In this paper, we consider several solu-
tions to the problem, both direct and indirect. Simulations
have been conducted to compare these solutions.

Keywords: Seating problem, algorithm, recursion tree,
recursive function, simulation.

1 Introduction

Theseating problem[2] is a combinatorial problem de-
fined as follows:n couples{(hk, wk)}, wherehk andwk

are husband and wife of couplek, go to a movie theater
and are seated in one row. Each person, except two seated
at the two ends, has two neighbors. It is required that each
neighbor of a personk should either have the same gender
ask or be the spouse ofk. A reasonable patternis an as-
signment ofn couples without indices that meet the above
requirement. For example, whenn = 3 all reasonable pat-
terns are as follows:

wwwhhh whhwwh whhhww hhwwwh
hhhwww hwwhhw hwwwhh wwhhhw

while pattern “whwwhh” is unreasonablebecause the first
h has two neighboringw’s, only one of which could be his
wife.

A classical, but different, seating problem is the follow-
ing [1]: n couples are seated around a table in such a way
that two neighbors of each personk are the different gender
of k and they are not the spouse ofk. An indirect solution
enumerates all patterns, and then eliminates all unreason-
able (not reasonable) patterns by printing out reasonable

∗This work was supported in part by NSF grants CCR 9900646
and ANI 0073736 and a grant from Motorola Inc. Email:
{fdai,mdhawan}@cse.fau.edu, cwu02588@fau.edu, jie@cse.fau.edu.

patterns only. Adirect solutionsystematically generates all
reasonable patterns directly. In this paper, we consider four
possible solutions to the seating problem. Each solution is
discussed by using both direct and indirect approaches. In
each solution, bit “0” represents a “wife” and “1” repre-
sents a “husband”. A reasonable pattern is a 0-1 string that
satisfies the following two constraints: (a) exactn “0”s and
n “1”s. (b) no isolated 0 or 1 bit, except at two ends.

Four methods are considered in this paper. In thebi-
nary tree method, a binary tree structure is used to gen-
erate all possible seating patterns. Each node in the tree
is assigned either 0 or 1. Thestate machine methodcan
be considered as a special case of the binary tree method,
where the last bit of a partially generated string is used as
state information to decide the next one or two bits to gen-
erate reasonable patterns. In theshifting method, a special
reasonable pattern is generated first, where all 1’s are as-
signed to the right hand side of all 0’s. Then 1’s are sys-
tematically shifted from left to right. The last reasonable
pattern generated is all 1’s assigned to the left hand side of
all 0’s. The last method is based onsegments. A 0-segment
(1-segment) is a sequence of all “0”s (all “1”s) separated
by “1”s (“0”s), and a pattern is a sequence of alternating
0-segments and 1-segments. In a reasonable pattern, the
length of each segment is greater than or equal to 2, except
for the first and last segments.

2 Preliminaries

Givenn couples{(hk, wk)}, aseatingis a permutation
of n couples{hk, wk}. A reasonable seatingis a seating
with all its 2-bit-substrings in the form: (1)hihj , (2)wiwj ,
(3) hiwi, or (4)wjhj , where1 ≤ i, j ≤ n. A valid pattern
is a 0-1 string of length2n with exactlyn “1”s andn “0”s,
where each “1” represents a husband, and each “0” repre-
sents a wife. Two seatings are equivalent if they correspond
to the same permutation ofn couples without considering
indices. Therefore, each seating can be represented by a
pattern of 0-1 string of length2n:

Definition 1 (Reasonable Pattern)Given n couples, a
reasonable pattern is a valid pattern that corresponds to
a reasonable seating.

Theorem 1 A valid patternP is a reasonable pattern if
and only if it has no 3-bit-substring “101” or “010”.

Proof: The necessity is obvious: it is impossible to find
a corresponding substring in a reasonable seating corre-
sponding “101” or “010”. For the sufficiency, we show
that P corresponds to a reasonable seating. Because pat-
ternP has no 3-bit-substring “101”, each “0” either has no
neighboring “1” or is adjacent to a unique “1”. Similarly,
each “1” either has no neighboring “0” or is dedicated to a
unique “0”. Suppose the number of “0”s with neighboring
“1”s (same as the number of “1”s with neighboring “0”s) is
m, for each matching pair of “0” and “1”, we assign a cou-
ple (hi, wi), 1 ≤ i ≤ m. then we assignhj (m < j ≤ n)
to the restn −m “1”s, assignwj (m < j ≤ n) to the rest
n−m “0”s, and get a reasonable seating. 2

In a 0-1 string, a1-segmentis a sequence of “1”s sepa-
rated by “0”s, and a0-segmentis a sequence of “0”s sepa-
rated by “1”s. For example, pattern “110001” can be sep-
arated into 3 segments: “11”, “000”, and “1”. The first
segment and the last segment of a 0-1 string areend seg-
ments, the other segments areinternal segments. In the
above example, “11” and “1” are end segments and “000”
is an internal segment.

Theorem 2 A valid pattern is a reasonable pattern if and
only if all its internal segments are of length greater than
or equal to 2.

Proof: An internal segment of length 1 implies a substring
“101” or “010”. On the other hand, if all internal segments
have length greater than or equal to 2, there is no such a
substring. 2

We usee′ to denote thecomplement elementof e ∈
{0, 1}. Specifically, 1′ = 0 and 0′ = 1. The com-
plement of a 0-1 stringP = p1p2 . . . pn is defined as
P ′ = p′1p

′
2 . . . p′n. Apparently, the complement operation

is symmetric; that is,(P ′)′ = P .

Theorem 3 P is a reasonable pattern if and only if its
complementP ′ is a reasonable pattern.

Proof: If P is a reasonable pattern, it has no substring
“101” or “010”, which implies thatP ′ has no substring
“010” or “101”, and therefore, is a reasonable pattern. If
P ′ is a reasonable pattern,P = (P ′)′ is also a reasonable
pattern. 2

Givenn couples, the seating problem is to print out all
the reasonable patterns. From Theorem 3, we only need to
enumerate every reasonable pattern starting with “1” and

1

1011

101110

100110101100

100

1

1011

110

10011100

100

(a) (b)

pruned part

Figure 1: The binary tree method: (a) The indirect ap-
proach generates all valid pattern prefixes. (b) The direct
approach generates only reasonable pattern prefixes.

then print it out together with its complement pattern. Al-
gorithms to solve the seating problem can be either direct
or indirect. The indirect algorithms enumerate all valid pat-
terns by traversing a searching tree in the problem space. It
generates every valid pattern and print it out when it is a
reasonable pattern, as in the following procedureCHECK

(P), whereP is a valid pattern andPRINT (P) prints out
bothP andP ′.
CHECK(P)

1: if P has no substring “101” or “010”then
2: PRINT(P)

In the direct solutions, the searching tree is much smaller be-
cause all the branches that cannot lead to reasonable patterns are
pruned. It is also not necessary to check the patterns generated
by the direct solutions because only reasonable patterns can be
generated.

3 Binary Tree Method

The most straightforward way of enumerating all possible
valid patterns is to explicitly build a searching tree. At each step
of the searching process, at most two decisions are feasible: as-
signing next seat to male (“1”) or female (“0”). Therefore, the
resultant searching tree is a binary tree.

Indirect approach. Figure 1 (a) shows a sample binary tree gen-
erated by the indirect approach for the seating problem with 2
couples. Each node of the binary tree is a triple (v, l, r), where
v represents both node id and its pattern prefix andl (r) is the
left (right) child. This binary tree only contains nodes withvalid
prefixes; that is, forn couples, the number of “1”s (also “0”s) in
a pattern prefix is at mostn. A pattern prefix withn “1”s andn
“0”s is a leaf node of the binary tree and forms a valid pattern. For
example, whenn = 2, “1”, “11”, and “101” are valid prefixes;
“1100” and “1010” are valid patterns; “111” is not a valid prefix
and does not appear in the binary tree.

The core of the following indirect algorithm is the procedure
V ISIT, which recursively builds the binary tree from root “1”.
V ISIT takes three parameters:v is the node to grow new branches,

h is the number of “1”s (husbands) left to form a valid pattern, and
w is the number of “0”s (wives) left. Three conditions are tested
at each node: If the current valid prefix is a valid pattern, this
pattern is checked and, if it is reasonable, printed. If it is possible
to create a left (right) child with valid prefix, the left (right) child
is created and visited in a depth-first manner. Here we suppose
function NEWNODE (v) will create and return a new node (v,
NIL , NIL). v1 represents a concatenation ofv and 1, i.e.,v||1.

TREE (n)

1: root ← NEWNODE (“1”)
2: V ISIT (root, n, n)

V ISIT (v, h, w)

1: if h = w = 0 then
2: CHECK (v)
3: if h > 0 then
4: l(v) ← NEWNODE (v1)
5: V ISIT (l(v), h− 1, w)
6: if w > 0 then
7: r(v) ← NEWNODE (v0)
8: V ISIT (r(v), h, w − 1)

Direct approach. The indirect approach is straightforward but
not efficient. For example, in Figure 1 (a), branch “101”-“1010”
does not contribute in generating reasonable patterns and can be
safely pruned. We call a pattern prefix with subsequence “101” or
”010” an unreasonable prefixand otherwise areasonable prefix.
Clearly, a reasonable pattern cannot be generated from a unrea-
sonable prefix. Figure 1 (b) shows the binary tree built by the
direct approach. If we create only nodes with reasonable prefixes,
we will generate all reasonable patterns and reasonable patterns
only.

The direct approach of the binary tree solution is very simi-
lar to the indirect approach, except the recursive procedureV ISIT

is modified as the followingV ISIT* . The revised procedure also
checks three conditions, but with extra constraints to prevent it
from creating unreasonable prefixes. Since the new procedure al-
ways generates reasonable patterns, the patterns are printed di-
rectly without checking. FunctionRIGHT(v, 2) returns the 2
rightmost bits ofv.

V ISIT* (v, h, w)

1: if h = w = 0 then
2: PRINT (v)
3: if h > 0 and RIGHT(v, 2) 6= “10” then
4: l(v) ← NEWNODE (v1)
5: V ISIT* (l(v), h− 1, w)
6: if w > 0 and RIGHT(v, 2) 6= “01” then
7: r(v) ← NEWNODE (v0)
8: V ISIT* (r(v), h, w − 1)

4 State Machine Method

The state machine method is more efficient than the binary tree
method because it searches the solution space without actually
generating a binary tree. It also condenses several steps into one
step to reduce the number of nodes in the recursion tree.

(c)

1 01

00

11

0

11(00)

1

100(1)

100(1)101(0)

11(00) 10

1

pruned part

collapsed part

(a) (b)

Figure 2: The state machine method: (a) In the indirect ap-
proach, single-thread segments collapse into single nodes.
(b) In the direct approach, pruning produces a new single-
thread segment, which is also collapsed. (c) The state ma-
chine used by the direct approach.

Indirect approach. The binary tree method is inefficient for
two reasons: the explicit binary tree and single-thread segments.
Explicitly building a binary tree consumes enormous amount of
memory as well as CPU time, and is also unnecessary. In the re-
cursive procedureV ISIT (v, h, w), all tasks are based onv, h,
andw, and have nothing to do with rest of the binary tree. In the
following three methods, there will be no explicit tree. Instead,
the recursive procedures can traverse the virtual searching trees,
navigating via three parametersv (prefix), h (“1”s left), and w
(“0”s left). For example, in Figure 2 (a), root “1” corresponds to
the first level invocationFIRE (“1”, 1, 2), which first spawns node
“11”, corresponding to the second level invocationFIRE (“11”, 0,
2). After the search in this branch ends, the control goes back to
root, and goes down to another node “10”. After the algorithm
completes, all invocations toFIRE form a binary recursion tree.

A single-thread segmentis a part of the recursion tree consist-
ing of a parent, its only child, its child’s only child, etc. For ex-
ample, in Figure 1, nodes “11”, “110”, and “1100’ form a single-
thread segment. A single-thread segment can becollapsedinto
one node, because the status of the last node in the segment is al-
ready determined at the first node. For example, considering two
couples, from prefix “11” comes only one valid pattern “1100”
(no more “1”s available). By collapsing this segment into one
node (“11(00)” in Figure 2 (a)), we reduce the number of invoca-
tions to the recursive procedureFIRE.

The core of the following indirect approach is the procedure
FIRE. Similar to V ISIT in the previous method, it visits the left
and right children in a depth-first manner. It collapses single-
thread segments in this way: If there are only “0”s left, they are
all appended to the current prefix to form a valid pattern. If there
are only “1”s left, they are treated in the same way. Notation
“1(x)” (“ 0(x)”) representsx continuous “1”s (“0”s).

STATE (n)

1: FIRE (“1”, n− 1, n)

FIRE (v, h, w)

1: if h = 0 then
2: CHECK (v0(w))
3: else ifw = 0 then
4: CHECK (v1(h))
5: else

6: FIRE (v1, h− 1, w)
7: FIRE (v0, h, w − 1)

Direct approach. As shown in Figure 2, when an unreasonable
branch is pruned from the recursion tree, the newly created single-
thread segment can be further collapsed. That is, because node
“10” has only one child with reasonable prefix “100(1)”, they col-
lapse into one after pruning.

The direct approach uses astate machineto achieve both prun-
ing and collapsing. In the following recursive procedureFIRE* ,
new events arefired based on currentstate(i.e., the last bit of cur-
rent prefix), number of “1”s left (h), and number of “0”s left (w).
As shown in Figure 2 (c), if the last bit is “1”, the following bits
are either “1” or “00”. “01” is forbidden, because it will produce
an unreasonable prefix. If the last bit is “0”, the following bits are
either “0” or “11”. The other part (collapse with only “0”s or “1”s
left) is exactly the same as inFIRE.

FIRE* (v, h, w)

1: if h = 0 then
2: PRINT (v0(w))
3: else ifw = 0 then
4: PRINT (v1(h))
5: else ifRIGHT(v, 1) = “1” then
6: FIRE* (v1, h− 1, w)
7: if w ≥ 2 then
8: FIRE* (v00, h, w − 2)
9: else

10: FIRE* (v0, h, w − 1)
11: if h ≥ 2 then
12: FIRE* (v11, h− 2, w)

5 Shifting Method

Unlike the other three methods, the shifting method does not
use pattern prefixes to synthesize patterns. The indirect approach
starts from a valid pattern and switches to other valid patterns by
shifting the position of “1”s in the original pattern. The direct
approach starts from a reasonable pattern and switches to other
reasonable patterns in a similar but restricted way. Therefore, in
the direct approach, the number of nodes in the recursion tree is
exactly the number of reasonable patterns.

Indirect approach. Figure 3 (a) shows the recursion tree of the
indirect shifting method. The original pattern is the one with all
“0”s in the left side and all “1”s in the right side; that is, “0011”.
However, because we only need to generate those patterns start-
ing with “1”, the first “1” is shifted to the first slot to generate
the root node, “1001”. Then the second “1” can be shifted left to
the second and third slots to generate “1100” and “1010”, respec-
tively.

The core of the following indirect algorithm is the recursive
procedureMOVE (v, h, w). The three parameters represent a
valid pattern: the first part of the pattern isv, the second part is
w “0”s, and the third part ish “1”s (v0(w)1(h)). For example, the
corresponding pattern forMOVE (“1001”, 3, 3) is “1001000111”.
When invoked,MOVE first checks the current pattern and prints

(c)

1110000011

1100000111 1100110001

110000011110011001

10101100 1100

pruned part

(b)(a)

Figure 3: The shifting method: (a) the indirect approach,
(b) the direct approach, and (c) two legal shiftings in the
direct approach.

it if reasonable. Then it shifts the first “1” in the third part of the
pattern, and recursively processes every newly generated pattern.

SHIFT(n)

1: MOVE(“1”, n− 1, n)

MOVE(v, h, w)

1: CHECK (v0(w)1(h))
2: if h 6= 0 then
3: for k ← 0 to w − 1 do
4: MOVE (v0(k)1, h− 1, w − k)

Note that the recursion tree ofMOVE is not necessarily a bi-
nary tree. In patternv0(w)1(h), the first “1” in the third part can
be shifted tow positions, and therefore, may hasw children.

Direct approach. In the following revised procedure,MOVE* ,
only two categories of shifting are allowed, as shown in Fig-
ure 3 (c): (1) moving one “1” and putting it right behindv, and
(2) moving two “1”s together and leaving at least two “0”s be-
tween them andv. Note that shifting category (2) is the result of
pruning and collapsing regarding to the indirect approach. Fig-
ure 3 (b) shows the example of two couples. From “1001”, only
shifting (1) is feasible becauseh < 2.

MOVE* (v, h, w)

1: PRINT (v0(w)1(h))
2: if h ≥ 1 then
3: MOVE* (v1, h− 1, w)
4: else ifh ≥ 2 and w ≥ 2 then
5: for k ← 2 to w − 1 do
6: MOVE* (v0(k)11, h− 2, w − k)

The shifting method is slightly more efficient than the state
machine method because it has fewer nodes in the recursion tree.
Its recursion tree is alsoflatter than that of the state machine
method; that is, each node has more children and it takes fewer
steps to generate a reasonable pattern. For example, in order to
get pattern “110001”, the shifting method takes 2 steps: “100011”
→ “110001”; while the state machine method takes 4 steps: “1”
→ “11” → “1100”→ “11000(1)”.

6 Segment Method

The segment method treats a pattern as a sequence of alter-
nating 1-segments and 0-segments. In the indirect approach, the
length of each segment can be any positive number. In the direct

collapsed part

10

(a) (b)
101(0)

1
pruned part

<empty>

11(00)

100(1)

phase 2

11(00)1(001)

<empty>
phase 1

Figure 4: The segment method: (a) The indirect approach
has no constraint on segment length. (b) The direct ap-
proach requires segment length of at least two.

approach, the length of every internal segment is greater than or
equal to 2.

Indirect approach. The segment method generates patterns by
allocating n “1”s and n “0”s to alternating segments. In the
following indirect algorithm, procedureHUSBAND allocates 1-
segments andWIFE allocates 0-segments. For example, in Fig-
ure 4 (a),HUSBAND has two options: “1” or “11”. From “1”,
WIFE also has two options: “10” and “100”. By searching all
these options, the indirect approach can enumerate every valid
pattern.

SEGMENT (n)

1: HUSBAND (∅, n, n)

HUSBAND (v, h, w)

1: if w = 0 then
2: CHECK (v1(h))
3: else
4: for k ← 1 to h do
5: WIFE (v1(k), h− k, w)

WIFE (v, h, w)

1: if h = 0 then
2: CHECK(v0(w))
3: else
4: for k ← 1 to w do
5: HUSBAND (v0(k), h, w − k)

Direct approach. The direct approach prunes unreasonable pat-
tern prefixes by enforcing the following rule in the revisedHUS-
BAND* andWIFE* procedures: the length of each segment, ex-
cept for the last one, must be greater than or equal to 2. For the
sake of simplicity, the first segment is also treated as an inter-
nal segment. The revisedSEGMENT* takes care of the special
case with a single “1” as the first segment. For example, in Fig-
ure 4 (b), “1100” is a normal allocation (in phase 1) and “1001”
is treated as a special case (in phase 2).

SEGMENT* (n)

1: HUSBAND* (∅, n, n)
2: WIFE* (“1”, n− 1, n)

HUSBAND* (v, h, w)

1: if w = 0 then
2: PRINT (v1(h))
3: else ifw = 1 then

4: PRINT (v1(h)0)
5: else
6: for k ← 2 to h do
7: WIFE* (v1(k), h− k, w)

ProcedureWIFE* is same asHUSBAND* , except that “1” and
“0”, h andw are interchanged. Note that the segment method has
the flattest recursion tree. It takes even fewer steps to generate
a reasonable pattern than the shifting method. For example, in
order to get pattern “111000”, the segment method only needs
two steps:< empty >→ “111(000)”; while the shifting method
needs three steps: “100011”→ “110001”→ “111000”.

7 Performance Evaluation

Complexity analysis. The complexity of a recursive algorithm
is mainly determined by the size of its recursion tree. We use
T (A) to denote the number of nodes andL(A) the number of leaf
nodes in the recursion tree of algorithmA; that is, the recursive
function is invokedT (A) times satisfying the normal branch and
L(A) times satisfying the terminating condition.

Lemma 1 For any algorithmA proposed in the paper,T (A) ≤
2nL(A), wheren is the number of couples in the seating problem.

Let V (n) denote the number of valid patterns withn couples
andR(n) denote the number of reasonable patterns, the following
theorem holds:

Theorem 4 If I is an indirect algorithm andD is the corre-
sponding direct algorithm, thenT (I) ∈ [V (n)/2, nV (n)] and
T (D) ∈ [R(n)/2, nR(n)].

Proof: For the shifting method, every node in the recursion tree is
a valid (reasonable) pattern in the indirect (direct) approach. Be-
cause only half of the total valid (reasonable) patterns are gener-
ated,T (I) = V (n)/2 andT (D) = R(n)/2. For the other meth-
ods, every leaf node is a valid (reasonable) pattern in the indirect
(direct) approach. From Lemma 1,V (n)/2 ≤ T (I) ≤ nV (n)
andR(n)/2 ≤ T (D) ≤ nR(n). 2

Apparently, V (n) =
(
2n
n

)
, which increases exponentially.

There is no simple expression forR(n). Figure 5 (a) compares
V (n) andR(n) for n from 2 to 16. We observe that (1) bothV (n)
andR(n) exhibit exponential growth, and (2) the relative ratio be-
tweenV (n) andR(n) also increases exponentially. If these two
rules still hold for largern, from Theorem 4,T (I) of any indirect
algorithmI is larger thanT (D) of any direct algorithmD, and
the ratio T (I)

T (D)
increases exponentially withn. The relationship

between different direct algorithms is specified in Theorem 5.

Lemma 2 For a recursion tree of algorithmA, T (n) ≤ 2L(n)−
1 if every non-leaf node has at least 2 children;T (A) ≥ 2L(n)−
1 if every non-leaf node has at most 2 children.

Theorem 5 Let TREE* , STATE* , SHIFT* , and SEGMENT* de-
note the direct binary tree algorithm, the direct state machine
algorithm, the direct shifting algorithm, and the direct seg-
ment algorithm, respectively, thenT (TREE*) ≥ T (STATE*) ≥
T (SEGMENT*) ≥ T (SHIFT*).

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

2 4 6 8 10 12 14 16

N
um

be
r

of
 p

at
te

rn
s

Number of couples

Number of valid and reasonable patterns

Valid
Reasonable

0.1

1

10

100

1000

10000

100000

4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(m

s)
Number of couples

Direct vs. Indirect algorithms

Tree
State
Shift

Segment
Tree*

State*
Shift*

Segment*

(a) (b)

Figure 5: Comparison between (a)V (n) andR(n), and (b)
the execution time of both indirect and direct algorithms.

Table 1: Execution time (ms) of indirect algorithms.
Couple# TREE STATE SHIFT SEGMENT

6 37 6.88 5.60 3.79
7 139 30.0 18.6 11.9
8 562 107 71.8 45.1
9 2347 512 259 166
10 9933 1871 1042 642
11 42578 7366 3830 2395

Proof: Obviously,T (TREE*) ≥ T (STATE*). T (STATE*) ≥
T (SEGMENT*) because the recursion tree ofSTATE* is an in-
complete binary tree, and that ofSEGMENT* has no single-thread
segment (that is, each non-leaf node has at least 2 children). From
Lemma 2,T (STATE*) ≥ 2L(n)− 1 ≥ T (SEGMENT*). At last,
T (SEGMENT*) ≥ L(n) = T (SHIFT*). 2

Theorem 6 For the seating problem withn couples, the number
of reasonable patternsR(n) ≥ 2n.

Proof: R(1) = 2 ≥ 21. SupposeR(k) ≥ 2k, by putting
an extra couple before the first segment we getR(n) reasonable
patterns fork + 1 couples; by putting the extra couple after the
first segment we get otherR(n) reasonable patterns, and there is
no intersection between these two groups. That is,R(k + 1) ≥
2R(k) ≥ 2k+1, for all k ≥ 1. 2

Simulation results. The four indirect algorithms (TREE, STATE,
SHIFT, and SEGMENT) and four direct algorithms (TREE* ,
STATE* , SHIFT* , andSEGMENT*) are implemented and tested
in a SUN 4 workstation to compare their actual performances.
Table 1 shows the execution time of the four indirect algorithms.
Table 2 shows the execution time of the four direct algorithms.
As expected, the execution time of both indirect and direct algo-
rithms grows exponentially as the number of couples increases.
The binary tree method fails for 12 couples for the indirect so-
lution and 17 couples for the direct solution, when its enormous
memory demands exceed the system limit.

Between different methods, the binary tree is by far the slow-
est. For the seating problem with 16 couples, the direct binary tree
algorithm is 50 times slower than the direct segment algorithm.
This is because of its largest recursion tree and the extra overhead
of explicitly building a binary tree. The state machine method
is about 5 times faster than the binary tree method and 10 times
slower than the segment method. It is surprising that the shifting

Table 2: Execution time (ms) of direct algorithms.
Couple# TREE* STATE* SHIFT* SEGMENT*

6 6 0.62 1.44 1.06
8 23 4.45 2.47 1.52
10 135 34.3 9.40 3.99
12 810 269 57.9 23.3
14 5744 2128 349 151
16 54390 12078 2239 885

method is about two times slower than the segment method, al-
though it has a smaller recursion tree. This can be explained by an
optimization in the segment algorithm. In the other three meth-
ods, patterns are stored in the form of 0-1 strings. However, in
the segment methods, patterns are stored as a sequence of integer
numbers, each number representing a segment. These condensed
patterns occupy less memory and take less time to generate.

Figure 5 (b) compares the performance of all eight algorithms
specified in this paper. In spite of the huge difference in absolute
values, the execution time of four indirect algorithms has the same
slope with a logarithmically scaledY -axis. Similarly, the four di-
rect algorithms also have almost the same slope. That means,
these methods probably have the same complexity. The only dif-
ference is the constant coefficients determined by the different
pruning and collapsing methods and various implementation is-
sues. Another observation is that the execution time of both the
indirect and direct algorithms grows exponentially. Although the
direct algorithms are slightly better than the indirect algorithms,
sooner or later, they reach the same limit of the CPU speed. For
all these algorithms, the seating problem is only solvable for a
few (≤ 30) couples.

8 Conclusion

In this paper we have introduced a seating problem and its four
possible solutions, which are based on quite different ideas and
implemented with different data structures and algorithms. For
each solution, we also have compared the indirect approach that
generates all possible seating patterns and eliminates the “bad”
patterns, and the direct approach that only generates the “good”
patterns. When describing these solutions, we provide an insight
that the difference among them is the result of several transfor-
mations, namely pruning, collapsing, and flattening, on their cor-
responding recursion trees. Furthermore, by complexity analysis
and performance simulation, we show that none of these solutions
is a polynomial-time algorithm. An efficient algorithm can delay,
but not prevent, the explosion of the computation time.

References

[1] K. P. Bogart and P. G. Doyle. Non-sexist solution of
the ḿenage problem. http://math.dartmouth.edu/˜doyle/docs/
menage/menage/menage.html, Sep 1994.

[2] J. Wu. Lecture Notes: COT6401 Analysis of Algorithms.
http://www.cse.fau.edu/˜jie/project.pdf, Fall 2001.

