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Abstract—Video-on-demand (VoD) service has been explo- Categories Subcategories
sively growing since its first appearance. For maintaining a (Dimensions) %
acceptable buffering delay, the bandwidth costs have becan Animation FE‘:;;; Channels
a huge burden for the service providers. Complementing the N : Users
conventional client-server architecture with a peer-to-ger system Natre 4| e it gt -
(P2P) can significantly reduce the central server's bandwith Sports Erca ity gi>g“f
demands. However, the previous works focus on establishing Tech Environment The Great Outdoors (4| Ch;)rlie
a P2P overlay for each video, producing a high maintenance DD Airplanes L
cost on users. Per-channel-based overlay construction wdsst - Project;"\ Boats
introduced by SocialTube [1], which clusters the users sulzsibed Web Series e _
to the same video channels into one P2P overlay. However, the Language Festivals | Belong to Subscribe to
current per-channel overlay structure is not suitable for users Location Toad Trip
developing new watching preferences. Consider that a chamilis Trains

subscribers tend to watch not only the videos from the chanrge

but also other videos from similar channels. In this paper, ve Fig. 1. Vimeo’s feature space structure. In Vimeo, videdsanoels, and
propose a new overlay structure by exploring the existing szial groups are organized by categories. Unlike the converititags, categories
relations of users and the similarities of video channels. Gr are system-defined, and each category consists of severatsgories. Based
system creates a hierarchical overlay: subscribers of theasne  ©n the content of video channels, the channel owners and o/isteff can

channel form the low-level overlay (also known as groups),rad in ~ @ssociate several category values with the channels.

high-level overlay, different groups are connected basedmotheir . - .
similarities. The new structure has the small-world propety, the from other peers, which significantly lightens the servers-

existence of which has been found in most data-sharing paties. ~ dens. Peers are logically connected at the protocol layeghw

Based on the new structure, we propose a routing algorithm builds a network overlay on the top of the underlying physica
for both channel subscribed and unsubscribed users. Exteng  network [6]. The research on P2P has existed for decades, and

simulation results show the efficiency of our approach. the main concern is how to construct such a logical overlay
for efficiently locating the files. Representative systeros f
unstructured P2P include PA-VOD [7] and NetTube [8], and
the typical structured P2P system is HyperCuP [9]. However,
all of these systems are based on a per-video level: for each
video, an overlay graph is constructed. As pointed out by
In the past decade, we have witnessed the enormousaper [1], the per-video overlays not only generate proikiei

growth of video-on-demand (VoD) services, such as Vimeccosts for maintaining the overlays, but also create plerfity o
and YouTube. According to sites [2]-[4], Vimeo attracted redundant links between a pair of nodes on different overlay

over 100 million unique visitors per month ig013. With the To resolve these problems of the conventional P2P systems
development of affordable smartphones and Internet, mute a SocialTube [1] leverages users’ actual subscription iclat

more VoD platforms have allowed users to create their owr, . : . e :
media channel and upload videos. For example, Ray Johns I};nps. Many VoD sites prowde_ channel sqbscnpnon fumstio
' f users. A user can create his own media channel webpages,

has the most popular personal Youtube channel [5], which ha; . ; . )
gained10 million subscribers. Clearly, a tremendous amount§nd. each ch_annel contains some wdeos relate_d to its topric. F
gsny browsing channels, most VoD sites classify charintds

of network resources have been used to maintain such a hugategories according to their features, and each categay
supply and demand market. Most of the current VoD system ave different types of values (i.e. subcategories). Figivés

are based on a client-server (CS) architecture. All videes a n examole of the cateqory structure in Vimeo. If a reqistere
stored in central servers; whenever a user tries to watch %ser is inpterested in a ?:ha}:mel and wants to .track aﬁ videos
video, a query message will be generated and sent to t’j}%om the channel, he can subscribe to it and keep receiving
Update feeds whenever new videos are uploaded. Consider
htglat the subscribers of a channel are likely to watch the same
videos from the channel, and that users with similar interes
tend to access similar videos. SocialTube proposes arestter

In order to reduce the bandwidth costs and users’ averageased per-channel hierarchical overlay: peers subsctibta
delays, complementing the CS architecture with a peer-tosame channel are built into one low-level community, and
peer (P2P) architecture becomes a common approach. Inthe channels of each category are formed into a high-level
P2P architecture, users, also known as peers, are both-videmommunity. When a video query is generated, random walk-
resources’ suppliers and consumers. Instead of fully ddipgn based searching is conducted within these communities. The
on central servers, in P2P, peers are able to download vide@®r-channel overlay structure can quickly locate the recssu

Keywords—Community, peer-to-peer (P2P) systems, social fea-
tures, subscription, video-on-demand (VoD).

I. INTRODUCTION

servers; then, the corresponding video will be downloade
from the servers to the requester. Although the CS architect
is easy to manage, it brings enormous bandwidth costs for t
servers’ provider, and long buffering delays for users.



TABLE I. THE DISTRIBUTION OFVIMEO CHANNELS' ASSOCIATED

when users search for their subscribed channels’ videas-Co CATEGORY NUMBERS

par to the traditional per-video overlay, the new structuas RO T e R |
H H umbper o ategorie!
both low maintenance costs and high QoS. [ Percentage%) [ 4194] 3811]844]754]39% ] 0 |

SocialTube has two problems. First, it is not efficient for

subscribers to explore videos belonging to other categorie , . .
Users’ watching preferences (i.e. interests) are not a fixe@PPlied to both channel subscribers and non-subscrib@s. (
e provide extensive simulations to show that our new system

value; one may find his new watching preferences by explorin% e ) ; X .
other categories’ channels. Take Fig. 1 as an example. TH&" efficiently locate the files and is applicable in a largdesc

subscribers of “The Great Outdoors” channel are also likely

to watch the videos from “Rainforest Destruction”. By using Il. VIMEO CATEGORY AND USERINTERESTS
SocialTube, one has to go through all the searching space of
either ‘Nature” or “Travel & Events” categories to find the
target channel’s videos. In addition, if the subscriber&Tdfe
Great Outdoors” want to watch videos in the “Animation’
category, it is hard to locate the videos on SocialTube’slaye
since there is no efficient overlay connecting across differ Vimeo has a total of23 system-defined categories. By
categories. Second, SocialTube is not applicable for tHe Vo checking the number of channels under each category, we find
sites (e.g. Vimeo), who are rich in category information.that there is an obvious gap between a popular group, which
Note that most channels are naturally suitable to be labelebas13 categories, and an unpopular group. We collected the
by multiple categories. For instance, “The Great Outdoors’tategory information of the popular group’s channels, ezfch
belongs to both the “Animals” subcategory of the “Nature” which has more thaB00 subscribers. There are a total T2
category and “Countries” subcategory of “Travel & Events”. unique channels, and we further compute the distributidghef

As a result, the high-level communities, created by Sociaé]  number of associated categories in Table. I. We find thaether
are actually overlapped with each other, and eventuallyjnfor are58.06% channels associated with more than one category
into one community, instead of several communities. feature. Clearly, overlapped categories should be coreside

. i ) during overlay design.
In this paper, we propose a new hierarchical P2P overlay

structure, call SocialVoD, by exploring both the subséoipt Users may develop new watching preferences over the
relationships and channels’ similarities on Vimeo. The keyyears. We randomly colle€t 000 users’ channel subscription
design of SocialVoD is the utilization of channel subscribe times, and investigate the change of users’ interests (i.e.
social closeness: the closer the watching preferencesen$ us the category features of subscribed channels), year by year
are, the better the overlay connectivity should be betweedable Il shows the changing pattern of a typical user’s ggts.
them. We not only build interest-based per-channel overlay This user subscribed t87 channels fron2007 to 2011. We

but also, in a high-level, we organize these overlays adegrd divide the records t& groups according to subscription time,
to channels’ existing category information. The main idéa o and count the distribution of the subscribed channels'geate

our approach is that, by neighboring the channel overlayg€atures in each year. From the table, we can see that the
whose category information differs in one dimension, theuser becomes more interested in “Narrative” and “Music”
resulting graph contains enough routing “hints” for segkin related channels, and less interested in the channels fiem t
other unsubscribed channels’ videos. By using SocialVdD, a “Video School” category. Hence, users’ watching prefegsnc
peers are clustered into a loosely-connected multi-legei-c  do change over the years.

munity structure, which has the small-world property. BRSe  ;qerg' watching preferences can be reflected from their

oln theh ne]:/v %vetr:ayh struclturet,) wgbflarther prop((j)se a routingpannel subscriptions. We summarize the watching pattern
algorithm for both channel-subscribed users and unsuiestri - ¢ \,c0r5 in the following: (1) Users frequently look for the

USErs. SocialVoD kee_ps_t_he lOW. maintenance cost f(?ature ideos from their subscribed channels; (2) Users are likely
previous works, but significantly improves the system'srgue gqqy other unsubscribed channels’ videos, which satisfy th
efficiency, especially when users are developing new Wagthi . ching habits; (3) The watching habits may change. Users

preferences. Ext(_ansive sim_ulation_ results_ show the efigief may access certain videos to explore new preferences.
our new system in comparison with SocialTube and NetTube.

Our contributions are threefold: (1) We find that the ex- I1l.  OVERLAY DESIGN
isting P2P systems do not fully utilize the social propertie A
behind the users’ watching patterns. Based on the existing’
channel subscription knowledge and category structure on More and more VoD systems, such as Vimeo and YouTube,
the Vimeo platform, we introduce a new hierarchical P2Pclassify video channels by category. Unlike conventioagbt
overlay structure, which has the small-world feature. Conwhich are created by individual video owners, categorigs an
sidering the users’ watching patterns also present a smaltheir subcategories are strictly provided by the systemef\én
world phenomenon [10], our new structure is more suitableuser creates a video channel on Vimeo, he should seleciasever
(2) Our new system explores the existing category inforomati appropriate categories for describing it. Later, the Vinseadf
as an overlay’s construction “guide” and routing “hints’hish ~ may add more categories or select suitable subcategorgsalu
significantly reduces the searching space of videos. Waydesi Once a channel is created, other users may subscribe to it. We
a new routing algorithm, which creates several node-disjoi adoptu; to represent a uset; to represent a channel. In this
searching paths within the P2P overlay. The algorithm can bpaper, we treat each category as one feature dimension in the

Papers [1], [8] show that most videos on VoD systems are

short, and there are strong clustering behaviors among.user

. In this section, we further investigate the category fesguon
Vimeo, and the change of users’ interests over years.

Feature Coordinate and Feature Distance



TABLE II. T HE CHANGE OF CATEGORY INTERESTSOVER 5 Y EARS (%)

Year | Narrative | Arts | Music | Video School | Personal | Big Picture | Sports | Animation | Travel | Tech | Experimental | Comedy | Nature
2011 21.7 16.6 41.7 0 3.3 0 10.0 3.3 0 0 0 3.4 0
2010 41.2 4.8 4.1 4.5 11.4 4.6 0 9.4 13.6 0 1.8 4.6 0
2009 35.7 1.8 12.5 0 0 7.1 14.3 5.4 0 14.3 8.9 0 0
2008 13.0 6.2 225 24.5 4.1 4.1 4.1 6.2 0 29 4.2 8.2 0
2007 8.8 9.3 8.1 16.8 7.0 0 0 12.5 0 7.6 17.9 6.0 6.0

category-feature space, and we assume that there are aftotal  Nature 4
m dimensions (i.e. system-defined categories).

The feature coordinate of a video channel is defined as
(f1, f2y---, fm), wherel < f; < r; andr; is the number
of subcategories in thé&h dimension. The physical meaning
of value f; depends on a real system. For example, in the
“HD” category dimension,f; = 1 stands for high-definition
videos andf; = 0 represents the regular ones, while, in
the “Language” category dimensiorf; = 0,1,2,... may Plant (0)
indicate English, Chinese, Spanish, and et al. Based on the
feature coordinates, the category-feature space is ipadd
into II7> , r; groups, and each channel belongs to one and only
one group. We us€’; to represent a hypercube group. I£ef) Regular (0) HD (1)
be an operation, which gives the feature coordinate of atyent
and f;(-) gives the coordinate value in thh dimension: Fig. 2. A diagram of the network structure of SocialVoD.
F (¢;) and F (G,;) shows the feature coordinate of channgl
and hypercube grou@';, respectively. manner and replace them with the new ones. Here, we are
considering a short video, the length of which is usuallysles
than10 minutes. These files are generally small, and therefore,
this cache requirement does not excessively burden users.

Animal (1)

The feature difference set from a source coordinate
S = (s1,82,...,8m) t0 a destination coordinatd =
(di,dg,...,dn) is represented byl (S, D) = {i|s; # d;,i €
[1,m]}. Thefeature distance is measured as the cardinality of
the feature difference seff|. For instance, the feature distance
setfrom(1,2,3,4,5,6)to (1,1,5,4,5,3)is {2, 3,6} since the When a new node; appears, it first sends a request to
corresponding values in these three dimensions are differe the server, and the server replies with a set of nodes for
establishing logic connections. Suppages a node from the

B. Channel Subscription and Peer-to-Peer Graph set. According to the features ef and v;, there are three

. ) i . types of connections in SocialVoD:
In practice, a user may subscribe to multiple video channel-

s, the feature coordinates of which may be different fronheac e  If v; andv; subscribe to the same changel! (v;) =
other. According to the number of subscribed channels, a use g~ 1(v;), then edge;v; is anintra-channel link.

u; is mapped to one or several nodgs, v3, ..., v%} in the

P2P network graph. In this section, we assume that each user * ' 1 -1
subscribes to only one channel, and therefareis uniquely same feature coordinate*(v;) # g~ (v;), £ (vi) =
mapped tov;. The case that users subscribe to more than one F(v;), then edgev;v; is anintra-group link.

channel will be discussed in the next section. e If their feature coordinates differ in one dimension
g (vi) # g7 (v;), H(F (v;),F (v;)) = 1, then edge
v;v; IS aninter-group link.

D. Overlay Construction

If they subscribe to different channels but have the

During the construction of the P2P network, a logical
connection is created from usets to u;, at the protocol

layer, by lettingu; store the IP address af;. The whole In order to control the usage of resources, SocialVoD limits
system forms a P2P network gragph = (V,E), E C V?,  the number of out-links that a user can createbtdNhen
whereV' = {v1,v,..., v, } represents the virtual nodes and the server returns the set, it should guarantee the number of
E = {vyv;} gives the logic connection from nodesto v;.  connections for each type following intra-channiitra-group

Let g(c;) be a mapping function from a given channel to a set inter-group= p : (1=p)g: (1 —p)(1 —q), wherep, ¢ are

of nodes, who subscribes tg; the inverse functioy='(v;)  two system-defined parameters ang < (0.5, 1).
gives the channels that; subscribed to. ) ’ )
Take Fig. 2 as an example. Assume thats a new peer in

the system, who subscribes to chanaglb = 5,p = ¢ = 0.6
and m = 2. Whenv; contacts the server for the first time,
SocialVoD requires each user to maintain a cache of videothe server randomly selectsx p = 3 peers (i.ews, v3, v4),
that has been watched within a system-defined session. Whe&vho are online and also subscribedg to build intra-channel
the cache is full, the oldest file will be replaced by the newlinks, as shown by red arrows in Fig. 2. The server picks up
one. This storage scheme can increase the availabilityesf. fil bx (1—p)q ~ 1 peer frome,’s subscribers, anblx (1 —p)(1—
Moreover, the popularity of a video changes with time. Thisq) ~ 1 peer frome; andcs’s subscribers to build inter-group
caching scheme can eliminate the unpopular files in a timelyinks (green arrows) and intra-group links (blue arrows).

C. Resource Replication Scheme



The server stochastically creates the connections suth tha G:(0,1,1) (+
it not necessary to remember the global structure of thdayer N
graph. When the server seeks the end nodes of the intra-
channel links and intra-group links, it randomly picks up
the corresponding number of nodes, who are online at the
moment. When creating the inter-group links, the servet firs
selects one dimension, in the category-feature space, to be
different from it, and then randomly picks up a peer with
a different subcategory value in that dimension. This peer i
selected as the end of an inter-group link. For a given ling, t
probability of having two ends with different coordinates i
(1 _p)(l _q)/m SUppOS@(GZ) - (flv LR fka cety fm) and
F(Gj) = (f1,--, ffs---» fm). The expected number of out-

links from coordinate grouf; to G, who differ in,thEkth cat- Due to the churn of P2P, peers in SocialVoD periodically
i [F k(vi)=f,i€[1,n]} ’

egory, can be approximated &&+| x 1177 w9z e X check and update their links to other communities. Unlike

(1-p)(1—q)/m, whereb is the number of out-links per peer, SocialTube, where peers always update their links to the

|G;| gives the number of nodes in hypercube grakip and newest visited peers, SocialVoD removes failed links and

I\Eipg));};ki[[llz]ﬁ\l is the probability for selecting], as the ~ replaces them with the links to the other communities, where
AR A SAa ol recently, the feature-based routing mostly failed. Esalyt

new value In dimensiot. . . ; A
) ) ) SocialVoD gives more emphasis on how to reach a destination,
SocialVoD creates a two-tier community structure and thregnstead of where the destination is.

levels of overlays. Peers, who subscribed to the same channe

form the low-tier community, also known as the per-channel IV. ROUTING IN SOCIALVOD

community C, as illustrated byC; to Cs in Fig. 2. The ) ] _ ]
intra-channel links among the peers build the lowest-level A query is conducted by two steps in SocialVoD. The first
overlay. Because a subscriber is very likely to watch thestep is called feature-spaced inter-group routing, whisesu
videos provided by his subscribed channel, clustering peerthe highest-level overlay to locate the group with the dpeci
from the same channel improves files’ availability and rexuc feature coordinate. In order to control the network tratiach

the average length of query paths. Per-channel communitieguery has a limited number of query copies, assuminighen
who have the same feature coordinate, are clustered into tfi€lecting query paths, one should avoid the situations evher
top-tier community: the coordinate grodp, as illustrated by ~more than one query message searches the same space. The
Go to G5 in Fig. 2. The middle-level overlay is established second step of a query is to find the target file within the
by the links connecting different channels within the samespecific group, and we apply the conventional random walk-
group. SocialVoD connects different groups if their featur Pased approach to conduct the searching.

coordinates are different in one dimension. The inter-grou

links form the highest-level overlay. As users tend to astee ~ A. Coordinate Routing Sequence and Node-digjoint Paths

files with similar features, they may also query the files from | 2. dimensional hypercube, if a sourSehas a packet
unsubscribed channels. SocialVoD puts similar subs@ibers,, qestination with feature distancé, there are exactly:

close to each other, which can improve the query efficiency. node-disjoint shortest paths with lengttfrom S to D. Since
these paths uniquely partition the searching spacekinion-
overlapping subspaces, querying along the node-disjaititsp
In SocialVoD, a feature-specified query is conducted byis both efficient and resource-saving. Suppose thand D
forwarding the query messages from group to group via intereliffer in ¥ dimensions, wheréf (S, D) = {1,2, ..., k}.
group links. The speed of finding an inter-group link with
the specific feature coordinate directly influences theingut ; . X .
efficiency. For accelerating the searching process, thebaesn sequence, which determines the resolution order of a given

of each group vote for a leader, who collects the inter-grouﬁet Of. dimension dlﬁerenceE(S,D) [11]. For instance, the
link information from its members. Usually, the leaders arecoordmate sequencl; requires peers to construct a query

; . path by gradually solving feature differences from dimensi

selected based on their stabilities. | to k. When H(S,D) = {1,2,...k}. there are a total

When a nodey; joins a group, he first asks the leader’s IP of k coordinate routing sequences, and tita sequence
address from his connected peers, who are in the same grouR; : (i + 1,...,k,1,...,i — 1,i) is created by making — 1
Then,v; reports all of his inter-group links, together with his circular left shifts ofR;:
own IP, to the leader. When a peer servers as a relay node
in an inter-group routing, he should ask the leader for the IP ® Thelst sequencel, = (1,2,....k — 1, k)
of other members, who have the inter-group links to the next o The2nd sequenceR, = (2,3, ..., k, 1)
group. The query messages will be forwarded to the next group
via these members. Leaders may consume more resources for®  --....
performing the book-keeping work. We can adopt role rotatio ¢ The kth sequenceRy = (k,1,....k — 2,k — 1)
and other incentives from the consideration of fairnessel\é T ’
leader is going to leave SocialVoD, he should find his inlberit Note that the resolution order iR; can be any permutation
and broadcast this update to group members. of the elements in feature difference 9&{S, D).

Gi(1,1,1)

Go(0,0,0)  Gi(1,0,0)

Fig. 3. Coordinate routing sequence-based inter-groupngu

E. Inter-group Link Management

Ry : (1,2,..,k) is defined as thecoordinate routing



Algorithm 1 The selection of coordinate routing sequences at
source nodes

LT+ ¢

2: for VG; € N(G;) do

3. for every dimensiorj < 1...m do
4: if Fj(Gi) #* Fj(GS) then
5
6
7

: ComputeTy, andT « T U{(4, T})}
: According toT?, sort the elements df’ in decreasing order.
. Select the first, elements and create routing sequenBes

3. Travel

Each sequence uniquely defines one shortest path from 2HD
S to D. Take Fig. 3 as an example. Suppose that is
looking for a video fromG~, and the feature distance set is
H(S,D) = {1,2,3}. When S createskR; = (3,1,2), the
query path according td?s is Gog — Gy — Gg¢ — Gr, Fig. 4. The hierarchical community structure in SocialVoD.

while, if S createsRy, = (2,3,1), the query path becomes

Gy — G1 — G3 — Gr7. Hence, the coordinate routing

sequence sekR = {Ry, Ry, ..., R;,} createsk node-disjoint AssumeG, is the resident group of sourcg and letN(G)

1.Nature

shortest query paths from the feature difference set. be a set of groups, who are connected with, N(G;) =
{G;|H(F (G;), F (Gy)) = Lie [l,m],ﬂv,v’s.t.v € G_S,v’ c
B. The Selection of Coordinate Routing Sequences Gi, v’ € EY}. For each neighboring group;, Algorithm 1

computes the accessing probabilityof the remaining feature

In order to control the network traffic§ has onlyh copies  difference, if G; was selected as the first relay group in
of a query message. In other wordscan conduct: parallel  the routing path (dimension is the first resolved feature
searches for the destination grop Assuming the feature difference). Algorithm 1 creates the corresponding cauat
distance fromS to D is k, the relation betweerk and &  routing sequences by selecting thereighbors, who have the
influences the selection of query paths. Wiien k, S is able  largest T7. This method essentially explores the rare inter-
to use not only the shortest paths for searchingbut also  group links first. The reason is that, as the processing of the
the non-shortest ones. Howeverpii< k, S should determine feature-based routing, the searching space becomes gmalle
which path (or coordinate routing sequence) has more of &ixing the rare dimensions’ values first can increase theesscc
chance to reach the destination group. rate of the remaining steps.

Consider that, for a given category, the popularity of Take Fig. 4 as an example. Assume tisat= (0,0, 0),
subcategories is different. The sizes of some groups aetdegre D = (3,1,2), and H(S, D) = {1,2,3}. The popularity of
than others. Since the ends of inter-group links are rangomlthe 1st dimension “Nature” follows3 : 6 : 10 : 4, that of the
and uniformly selected, a larger-sized group absorbs morend dimension “HD” is4 : 6, and that of the3rd dimension
inter-group links, and has more of a chance to be visitedTravel’ is 5 : 7 : 3. There are three potential coordinate
from other groups. As a result, we approximate a coordinateouting sequencest; = (1,2, 3) (the red path)Rs = (2,3, 1)
routing sequence’s success rate by subcategories’ pdyular (the blue path), and?; = (3,1,2) (the green path). Using

Suppose the feature coordinatesoand D are (s1,...,s,)  R; indicates solving thest dimension’s difference first. For
and(dy,...,d), and dimensiori € H(S, D). In the highest the source node, the remaining success rate of the red path is
overlay, the transition probability from any grou, who  estimated a§] = (3—1)! x § x =25 = £. Similarly, the rates
satisfiesF ;(G) = F(S5), to other groupsG’, which have  for using R, and R3 can be calculated a8y = (3 — 1)t x
the property/ ;(G') = F (D), is estimated by the following % x 6+140+4 =2, andTj = (3—1)! x % x & =2 If
equation: h = 2, then the source should usg and Rs.

7 HolF i) = die; € V)] 0

" HwilFivy) # sisvy € VY C. Feature Space Routing

where| - | gives the cardinality of a set, and # d;. Assume SocialVoD has three types of routings: intra-channelaintr

that a path resolves thih dimension difference first. The group, and inter-group. When a user looks for his subscribed
successive rate of the path’s remaining steps is approginat channel’s videos, an intra-channel routing happens. Query

as follows: ) messages are randomly propagated within the per-channel
T = (|H| - 1! H T; (2) community. Each message is associated with a hop counter,
JeH\{i} which is decreased by one after each time of forwarding.

where H is the abbreviation of the feature difference setonce the counter becomes zero, the query message will be

H(S, D), and H\{i} indicates all the unmatched Olimensionsdiscarded. Similarly, if the user seeks for v?deos from othe
betvx;eer;S and D except dimensiori channels, but have the same feature coordinates, the random

walk-based searches are conducted within the correspgpndin

Algorithm 1 gives the procedure for selecting the coordi-group. However, when the user searches the files from other
nate routing sequences when< k. Since the inter-group links  groups, SocialVoD first sends the messages to the destinatio
are randomly created, a group may not be connected to all otlgroup by inter-group routing, and then, adopts intra-group
er groups, whose feature coordinates differ in one dimensio routing to locate the target file within the destination grou



Algorithm 2 Inter-group Routing from Sourcé
1: while A > 0 do

Algorithm 3 Inter-group Routing for a Relay Node iA;
1: if F(G;) = F(D) then

2. if R# ¢ then 2:  Use intra-group routing withirdz;.

3: [*shortest path routing*/ 3: else

4: Pick up a sequenc®; from R. 4: if mode = 0 then

5: Find G; € N(Gs) s.t. Fi(Gj) # si, Fi(Gj) = di. 5: R + R\R][1], the next resolving dimensioh + R[1].

6: R+ R\{RZ}, mode < 0, send(Ri, mode) to Gj. 6: Find G; S N(Gz) s.t. Fk(Gz) # dg, Fk(G;) = dj.

7 else 7 Send(R, mode) to G;.

8: /*non-shortest path routing*/ . 8: if mode =1 then

9 Find G; € N(Gs) s.t. Fi(Gj) # siyi € H. 9 H «+ H\{j}.

10: H + H\{i}, mode + 1, send(H | J{i}, mode) to G; 10: Find G; € N(G;) st.3k € H, Fx(G:) # di, Fr(G}) =
11: h<+h-1 di. Send(H,mode) to Gj.

The inter-group routing at a source node is given by G3(0,1,1) (;
Algorithm 2. Based on the relation betwekrandk, there are
two modes, wherenode is 0 for a shortest path antl for a
non-shortest path. Assume that the feature coordinateunso
Sis (s1,...,8m) and that ofD is (di,...,d,,). The feature
difference set is represented By = {i|s; # d;,i € [1,m]}.
The coordinate sequences det= {Ri, R, ..., R} provide

G(1,1,1)

Us Gs(1,0,1)

the basic guidance for the shortest path mode. lebe the
compliment set off, H = {i|s; = d;, € [1,m]}, which will
be used for the non-shortest path mode.

ay

G0(0,0,0)

G4(1,0,0)

Algorithm 2 gives the shortest path routing with a high Fid. 5
priority; as long as seR contains some coordinate sequences g->
(i.e. h < k), S should use the corresponding shortest path first.
S picks up a sequenck; from R. Suppose the first resolving
dimension ofR; isi. S finds G, whoseith dimension value is
the same as that dP, from neighboring groupd/(G,). Then,

S sendsR; to G; and asks it to use shortest path mode. Whe
R becomes empty (i.é. > k), it switches to non-shortest path
mode, in which the source node increases the feature déstan
from k to k+ 1. For instance, in Fig. 37, is sending message
to Gs, where F(Gy) = (0,0,0) and F(Gs) = (0,1,1).
Although there are only two different dimensiorts,can first
send the message to gro(p 0,0) and then forward it to the
destination. The path becomé€s — G4 — G — G7 — G3.

Source selection when a user subscribes to multhdarels.

coordinates, if we directly use the basic scheme of SociaVo
peers will form into one giant community, instead of several
groups. For instance, users and u, are the members of
channelC, and users:; andus subscribe to another channel
g". Directly connectingu; us andus andwusz will eventually
put u; us into the same community. To avoid this situation, a
user is mapped to several nodes on the P2P graph, according
to his own subscription. Suppose user subscribed toj
channels, them; is mapped to a set of nod¢si, v5, ..., v}}.
Each node is associated wiifij out-links (the number of out-
links for each user is stilb). When searching a file, the user
Algorithm 3 is designed for relay nodes. Assume theshould decide to use which nodg as the source node, since
current relay node is in grou@;, and the node got the query they may have different feature distances to the destimatio
message fronGy, whereG; € N(Go), F;(Gi) # F;j(Go).  group, as illustrated by Fig. 5.
Let R[1] be the first element in the coordinate routing sequence ) ) ) o
R. If G, is the destination group, then intra-group routing will  Algorithm 4 gives the procedure for selecting the initial
be used to search the file. Whe, is not the destination Node of a routing. The idea of this scheme comes from Algo-
and the routing is in the shortest path mode, the dimensiofithm 1. LetM (u) be the mapping function from userto his
is different, and has been resolved fraf to G;; it should ~ corresponding nodes on the graph(u) = {vi, va, ..., v}
be removed (step.5). The query message is forwarded to tteasically, Algorithm 4 tests all elements i/ (u), and calcu-
next group according to the new head Bf As for the non-  lates the remaining path’s success ratefrom these nodes.
shortest path mode, any element from the dimension difeeren Then, it selects the top paths with the highest success rate.
set can be used as the next resolving dimension. For examplOte that, in practice, not all groups, whose feature comrs
in Fig. 3, Gy sendsH = {1,2,3} andmode = 1 to G,. At  differin one dimension, are connected. Also, some grougs ma

G4, the unsolved dimension set beconfés= {2, 3}, and G, temporarily not contain any peer (all of them are .off-l_inég

Equation. 2 to find out an optimal receiving group. feature space, may not always be the best source.

Let us go back to Fig. 4's example, whefe= (3,1, 2),
and the popularity of each dimension follows: 6 : 10 : 4,
4 :6,and5 : 7 : 3. Suppose that the user also subscribes
to a channel in groug2, 1, 1), then the feature difference set
The main idea of SocialVoD is to cluster users accordings H = {2,3}. There are two potential coordinate routing
to their subscribed channels’ category features. Howsimze  sequencesR; = (1,2) and Ry = (2,1). If we solve thelst
a user may subscribe to several channels with differentifeat dimension first, then we havg| = i, while, if we solve the

V. EXTENSION
A. Multi-channel Subscriptions



Algorithm 4 The selection of initial node for a user VI. PERFORMANCEANALYSIS AND EVALUATION
1T+ ¢

In this section, we conduct extensive simulations to eval-

2: for Everyv € M(u) do .

3 Find G, st.F(Gs) = F (v). uate the performances of our proposed system by using both
4. for VG; € N(Gs) do synthetic data and real data. For the ease of comparison, we
5: for j«<1...m do call our scheme, which clusters the subscribers of the same
6 if F;(G:i)#Fj(Gs) then channel into a community and connects different commugitie

7 ComputeT}, andT « T'\U{(v,5,T})} whose coordinates differ in one dimensio®ycial\VoD; the

8: According toT7, sort the elements df in decreasing order. previous work [1]’ which On'y clusters the peers in indivadlu

9: Select the first elements inl", and use them as routing sources. categories, is calle@ocial Tube; we also compare the results
with NetTube [8]. Since these approaches use different search-
ing schemes, we keep the maximum possible length of their

2nd dimension, we gety = %_ Again, if h = 2, then the overall searching paths be the same.
user should use routing sequer{d¢e2, 3) from group(0, 0, 0)

and (2, 1) from group(2, 1, 1). A. Smulation Setup and Evaluation Metric

When users are allowed to subscribe to multiple channels, Tg measure the performance of SocialVoD, we conducted
the inter-group routing can be accelerated. Here, we peROSs extensive simulations by using Matlab. For the synthetitusi
new approach, callefature matching shortcut. In the classic  |ation, we assume that there areategories and each category
hypercube routing, each instance of message forwarding cagys 4 different value types (i.e. subcategories); For the real
solve only one dimensional difference. But, in SocialVoD,one, we use the real category features of Vimeo channels.
since a user is mapped to several nodes, it is possible thefe generates, 000 peers for the synthetic simulations and
the physic holder of a query message may be mapped t@5 (00 peers for the real ones. Each peer is associated with
another peer, who is more than one feature distance closer {fixed-size buffer and outlink budget. While setting up, we
the destination. Take Fig. 5 as an example. Supppem G2 randomly assign a popularity degree to each subcategady, an
gets a message witlts as destination. Since there is anothereach peer randomly selects the subscribed channel coteslina
nodewv; possessed by the same userv;,v; € M(u),v; €  pased on the popularity. Therefore, different channelsehav
Gs,vi € G2, u can stop the inter-group routing and begin to gifferent sizes. During simulation, some peers randoniate

use intra-group routing from;’s out-links. new videos and save into their own buffers.
In this paper, we emphasize on the following two aspects
B. Routing for non-subscribers of users’ watching behaviors: 1) frequently watching their

subscribed channels’ videos; 2) developing new watching

As for users, who have not subscribed to any channelreferences by exploring other unsubscribed channels that
there is no feature coordinate information. Based on hicbr have similar features. To accurately simulate the watching
query records, SocialVoD deducts the most frequently e@rc  behaviors, we use the following video selection mechanism.
subcategory features of a non-subscriber, in each dimensioFor each dimension, we assign users with a probability for
and uses these values as the user’s feature coordinate. Intgvatching the videos with the same subcategory feature. As
group links are generated from the user to the corresponding result, a user may query the videos from his subscribed
coordinate group, which consists of the subscribers, wive ha channel, and he may also query for other types of videos;
the same feature coordinate. Since non-subscribers’ coordusers have a better chance of the videos with similar fesiture
nates are not accurate, links are created only from a nono their subscribed channels than a totally different vitjge.
subscriber to subscribers, and not vice versa. When a nomiter sending a query, a node will wait for&I’ L. When time
subscriber wants to watch some videos, the inter-groupngut is up, the node will send a query directly to the central serve
will be conducted from the linked coordinate group. Once aand get the video file. No matter whether the node found the
non-subscriber’s watching preference is formed (i.e. stibs  corresponding video from the P2P system or not, eventually,
to certain channels), most of his links will have alreadyrbee it will get the file and locally save it in the buffer.

connected to the subscribed communities. o )
When building the P2P overlay in the feature space, the

number of outlinks from one community to the other is
C. Prefetch for new videos determined by the number of peers subscribed to the channel
and system variablé¢l — p)(1 — ¢). During feature space
One common problem for new videos is their availabilities.routing, SocialVoD sends out several query messages with
Unlike other VoD platforms, Vimeo allows all subscriberseof different coordinate sequences. Since the feature spartagy
channel to upload their videos. After a new video is being upis stochastically established, some messages may not be abl
loaded, in the initial phase, most queries about it are red@d  to reach the communities with the target feature coordmate
to by the central servers. For improving the availabilittfs Once a message reaches the destination communities, it uses
new videos, SocialVoD uses a pre-fetch scheme, which pushes random walk-based scheme to search the videos in the
the new contents to other peers from the same per-channiliffers of the community’s peers. Later, we test the impatts
community. Whenever a new video is generated, the sourceessage copy numbers on both feature space routing and inner
node sends out several random walkers, carrying the video, tommunity routing. In our simulation, we are interestedha t
his resided community. When a walker stops, the latestedsit following two metrics: (1) Average hitting rate: the pertage
peer will store the video in cache. of queries having found the corresponding videos from P2P



100 T T 100

100

90
90 ] 90

o5l ] 85 80 -
80
75
70
65

70 -

60 -

hit rate %
3

hit rate %

hit rate %

hit rate %

—m— NetTube
—— SocialTube |

50

—&— NetTube NetTube

NetTube l

o —A— SocialVoD | ] ot +§g§:g:€gge sof ey or ’

55 L L L L L 50 . L L L L 825 85;.0 87‘.5 96.0 92‘.5 95;.0 97‘.5 10601025 3%?25 85.0 87‘5 960 92‘5 95‘0 97‘5 10601025

! 2 ° ¢ ° ! 2 ° ¢ ° erference rate % preference rate %
buffer size buffer size P
. e e a) Uniform distribution b) Normal distribution
(a) Uniform distribution (b) Normal distribution @ (®)
: . . Fig. 8. The impact of users’ watching preferences
Fig. 6. The impact of the buffer size 9 P gp

95

—— A A A [
NetTube | |

—@— SocialTube| 90 1 85
[—A— SocialVoD | |

80 -
80 -

100
100 — T T T T T T 90 T T T T T

NetTube | | sol
—@— SocialTube|
[—A— SocialVoD | | 70}
70h

] ] ol | ]
E = es5) ]
50 { = 4o} ]
60 | NetTube | | 60 - NetTube 4
“of ] or 1 SocialTube| 55| ~®@— SocialTube |
30 J 20} ] SocialVoD [-A— SocialVoD

50 . . . . . 50 . . . .
ol v v 8 10 e 0 5 10 15 20 25 30 0 5 10 15 20 25 30
1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 9

arriving rate % arrive rate %

(a) Uniform distribution (b) Normal distribution

Fig. 7. The impact of the new content’s arriving rate

75+

hit rate %

hit rate %
hit rate %
hit rate %

number of links number of out-links
(a) Uniform distribution (b) Normal distribution

Fig. 9. The impact of each peer’s total number of links

become useless. Here, we let the average query rate of each

overlays. This value shows the percentage of workloads thgfeer he75% per session, and the size of a peer's bufferibe
have been reduced from the server. During simulation, we

mainly consider this metric. (2) Average delay: the average Next, we study the influence of the users’ watching pref-
waiting time before watching a video. Note that all threeerences. Based on the feature coordinates of users’ shedcri
approaches first search the videos on P2P overlays, and theRannels, each user has his own watching preferences. How-
resort to the server. Hence, the delay has a upper bound vallgver, any user may also explore other types of videos with
Generally speaking, the shorter the average delay is, tierbe Similar feature coordinates. In Fig. 8, we gradually deseea
a P2P overlay design is. the probabll!ty of (_explorlng new features for each queryrro
18.5% per dimension t®%, and we can see that the average
hitting rate of all methods goes up. Note that each video has
several dimensions. For example, if the exploring prolitghd

ot ; ; o o 30% and there aré dimensions, the query rate for a peer’s own

We first investigate the impacts of the buffer’'s size. The . o : X ;

buffer temporarily stores the videos that have been watchegtPScribed channel's video is aboit%. Since SocialvoD
before. Clearly, the bigger the buffer is, the higher the's sfpeC|aIIy d_eS|gnehdbfor exrf)lonrr]lg otfherhwdeo feat_l;dres, :
probability is for finding a video by P2P overlay. However, pher ormance |§_muc . ettertl anthato .oth_erﬁ, especidignw
the benefits for using buffers do not grow linearly. In this (N System's dimension exploring rate is high.

simulation, we let a peer’s query probability B&%, different The number of links that each peer connects to essentially
dimension’s exploring probability b85%, let 5% of peers affects the query’s efficiency. A well-connected community
generate new contents per simulation session (with thengbe has a relatively short mixing time, and the random walk-dase
20 sessions). As shown by Fig. 6, with the growth of thequeries from the same peer can quickly become independent of
buffer, the average hitting rates go up. SocialVoD always haeach other. Moreover, for the overlay in feature space,ngavi
the highest average hitting rate. Moreover, when the pojpyila more outlinks from a peer can increase the routing success
of subcategory values follows normal distribution, theihg  rate. In Fig. 9, we gradually increase the number of outlinks
rate of SocialVoD is lower than that of the uniform distrilant ~ per node fron® to 25, and keef 0% of the outlinks connecting
condition. However, SocialVoD still beats others. to other communities. We can see that the average hitting

In Fig. 7, we consider the impacts of the new Contents,rate gradually becomes higher and higher. Note that, due to

L . ; ew content existing, and the stochastic feature of ourlayer
arriving rates. If a lot of new videos are generated in a Shorgtructure the average hitting rate cannot reaabs
time, only a few peers may cache the files. As a result, with thé ’ '

growth of the new content arrival rate, the average hittatgs In the next two figures, we study the impacts of the length
quickly drop down, which is much faster than the changingof the searching paths during the random walk-based query.
speed of the average delay. In simulation, we let the geinarat For SocialVoD, when there are less query budgets for inter-
rate of each peer change froh% to 8%. We assume that community routing, it will only use the shortest paths’ cidier
peers know about the new contents. As more contents amate sequences. However, if there are more query paths, then
generated, users have more choices for the queried contentse SocialVoD algorithm can also adopt the coordinates af no

If a node’s query frequency is slower than the system’s nevshortest paths. In general, the number of non-shortess figth
content’'s generating frequency, the cached files will sooitmuch greater than that of the shortest paths. So, the success

B. Smulation results



TABLE IIl. T HE IMPACT OF THE PUSH OPERATION FOR NEWLY

GENERATED CONTENTS group links for routing, while, SocialTube independentgks

files from each related dimensions. As a result, SocialVoD

Method | SocialVoD | SocialVoD (push) | SocialTube | SocialTube (push) gets more impacts when there is few inter-group links (i e
Delay 14.369 14.003 26.121 25.912 h . R
Hit rate | 97.39% 98.357% 7710% 77.63% (1 —p)(1—g)=1). But, for most cases, SocialVoD still has
better hit rate than SocialTube.
100 T T 100 ;/;’_A___‘___‘_A
ol « | sl ] VIl. RELATED WORK
80| 1 The research on P2P architecture has existed for a decade.

ol ] Many papers have proposed different schemes [12]-[15]. PA-
o :;://'/./':':' 1 — & & & VoD [7] and NetTube [8] are the two most classic unstructured
wl igié.l”ﬁige | o ’ P2P systems. PA-VoD builds a video's overlay by grouping all

— =4 sodaveD the peers, who are watching the same video, together. When
a user finishes watching, he no longer acts as a provider and
eventually will be wiped out from the overlay. PA-VoD works,
if there are plenty of users watching the same long vided) suc
Fig. 10. The impact of the length of random walks. as a movie, the typical length of which is2 hours. However,

as for the VoD platform, such as Vimeo, most videos are short,

rate of inter-community will be increased by using morethe median length of which is abo@60 seconds [16]. As a
guery messages. For all approaches, including SocialVoDesult, a majority of short videos’ requests are handledhiey t
SocialTube and NetTube, the hit rate is also related with theentral server, instead of peers. The basic idea of the MetTu
length of intra-community random walks. In the simulation, is that the users, who are watching the same videos, are more
we gradually increase the query’s TTL of intra-group rogtin likely to view the same content in the future. By associating
from 3 to 8, and keep these approaches’ maximum possibl@ cache buffer with each node, NetTube puts the viewers of
overall length of query paths be the same. Fig. 10 gives théhe same video into one overlay, and further allows them to
results. Because SocialVoD first uses a relatively smallerm  search for videos from each other. Unlike PA-VoD, the usérs o
of messages to shrink the searching space of potential,peersNetTube will temporarily store the videos, which were waith
performs better than others in the aspects of hitting ratge N previously, in their local buffer. Therefore, after he oresh
that, since SocialTube is specially designed for YouTubereh finishes watching a video, as long as the buffer contains the
each channel can only belong to one and only one category, ifde, the user will remain in the video's overlay. This unique
intra-category searching becomes less efficient when @ann design significantly improves the resource availabilitaiR2P
have multi-dimensional features. system. However, both NetTube and PA-VoD create an overlay
faor each video, which wastes plenty of network resources.

hit rate %

. . . . . . 50 . . . .
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
TTL TTL

(a) Uniform distribution (b) Normal distribution

In order to increase the average hitting rate, whenever
peer generates a new content, he can push the data to other Hypercup [9] is a typical structured-P2P system, which
peers randomly. Essentially, the operation can increase thorganizes peers into a hypercube structure. Compared to the
availability of the new contents, and there are several waysnstructured system, Hypercup is fault tolerant and slgtab
to implement it. For example, from the new content ownerfor efficient search. However, since Hypercup construces th
he could send out several copies of the new content and userlay by directly connecting peers to peers, as for higlrich
random walk-based approach to spread the content within hisonditions, where peers frequently join and leave the gyste
community. Here, we test the simplest case, where the new suffers from huge maintenance traffic. Unlike Hypercup,
content is directly pushed to the peer’s neighbors. Taltle. | SocialVoD treats a group of users, who have the same watching
shows that the pushing scheme can improve the new contentsteferences, as a node in hypercube. Although a system may
availability on a P2P overlay. Both SocialVoD and Socialdub face the frequent connection and disconnection of peees, th
have less average delays for the queries of the new contentabsence of a whole group is rare. As a result, SocialVoD has a
high searching efficiency and low maintenance costs. The ide

Fig. 11 shows the testing results by using real data. W f node group-based hypercube has existed for a while [17],

collect the category information of Vimeo channels, whoéhav o . - .
more tharB00 subscribers. In total, there ar82 channels and [18]. However, the existing schemes neither consider te@bo

. . . roperty of peers [19], nor are they suitable for short vijeo
13 categories. Users are randomly assigned to different cha : .
nels and the average number of user$2g. The experiment rs)hey simply connect all peers of a group to a super-peer, and

. ; ! use the super-peers to build a hypercube structure. Simce th

{re]sults ?; li_lgs._ 11I(6t")’ (b)'laan. (c)lilredconsstter;tt\rl]wth ufat  size of a VoD channel varies greatly from tens of subscribers

fethsyn Ie Ic S|1mu a |10ns. n h'lgﬁ E )I’ Vf[’ﬁ es etlmsac; to millions, and there are plenty of channels having the same
of the value of(1 —p)(1 —g), which controls the percentage of ..o features, the conventional scheme does not st th
outlinks connecting to Othef communities that have difiére modern VoD system any longer. SocialVoD clusters the peers
feature coordlna_tes._ There IS a trade-off b_etw_een the_ numb9\/ho subscribe to the same channel, into a community, anoi
of inter-community links and intra-community links. Withd ¢ ther puts similar communities close to each other.
growth of intra-group (or inter-group) links, searchingeéil
from the resident community (or other communities) becomes The design of P2P overlay’s structure is highly related with
easier. From Fig. 11 (d), we find that both approaches arasers’ data accessing pattern. Unlike traditionally shieg
affected byp andgq; However, SocialVoD gets more influence. video systems, modern VoD systems, such as Vimeo and
The reason for this phenomena is that, when looking fofyouTube, have social aspects [20]. As shown by papers [10],
videos with different features, SocialVoD utilizes theeint [21], the date-sharing patterns in VoD systems have a small



10

90 T T T T T

80 T T T = ; T T T T 100 T T T T T T ! !
777, SocialVoD a0 77 SocialVoD 1 o ocialVoD 7N /77, SocialVoD
75| =S SocialTube R SocialTube [ 0 SocialTube 1 851 NS SocialTube| |
751+ 80 4
70 B Z 80| 4
. / I .
ES = 70 N ® ®
@ 65+ H 2 N % o 60r i 275 1
© e 17 YA © g
E 6o 1 z® XA = ¥r 1 =t 1
= N N %\ < wl ] <
17N\ i 60 N\ 7§ 65 p
55 N \ 7 30+ ]
Y /
50 55 S 20 60
1 2 3 4 5 3 4 5 6 7 8 9 825 850 875 90.0 925 950 97.5 100.0 102.5 065 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

buffer size TTL

(a) buffer size (b) length of random walk

Fig. 11. Real data-based simulation results.

world property, which suggests that the videos on these sys-
tems have strong correlations with each other. As a re$dt, t 1]
P2P overlay structures of VoD should also possess the smalﬁ
world property. A theoretical model for small-world netker

by paper [22] picture a small world as a loosely connected|[2]
set of highly-connected subgraphs [10]. The structure of ou

proposed SocialVoD overlay exactly satisfies this structur [3]
[4]

VIII. CONCLUSION
(5]

Over the past decade, we have witnessed an explosive
growth of online video-on-demand (MoD) services, such as
Vimeo and YouTube. With the growth of the services’ popular- [6]
ity, the scalability, bandwidth, and delay problems of tla-c
ventional client-server architecture have become inanghs
obvious, which has compelled the development of the peer-to (7]
peer architecture. In this work, we leveraged the existoujed (8]
relationships (i.e. common channel subscription) andaoci
similarity (i.e. the similarity of users’ watching preferees) 9]
to establish a new P2P overlay structure. Unlike other VoD
systems, the users on Vimeo have more social interactiogs: a
subscriber of a channel is allowed to upload his videos to thgio]
channel, and all subscribers can watch and discuss thes/ideo
contents within the channel. Clearly, in such a high-intéem ~ [11]
platform, a channel’s subscribers are likely to watch thieos
from the same channel. Moreover, users’ watching prefeenc [12]
gradually vary, and therefore, they also tend to watch other
unsubscribed channels’ videos, which have similar conteny 5
features (i.e. category values). Based on these propeoties
system, SocialVoD, creates a hierarchical overlay amoegspe [14]
subscribers of the same channel form into a low-level com-
munity, and in high-level overlay, different channels’ gps  [15]
are connected based on their similarity. This unique strect
has three significant features. First, the SocialVoD presid [16]
relatively short query paths when users are searching for th
videos, the features of which are close to their subscribed
channels. The second advantage is that SocialVoD can effit’]
ciently locate the low-level communities with specific faats
via the high-level overlay structure. Third, compared te th 18]
conventional per-channel overlay structure, in SocialvMeéch
peer has low maintenance costs. Extensive simulationtsesul[1g;
show the superior performance of our approach.
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