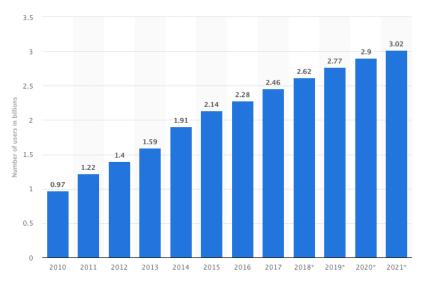
Non-Submodularity and Approximability: Influence Maximization in Online Social Networks

Huanyang Zheng, Ning Wang, and Jie Wu Google

Rowan University

Center for Networked Computing, Temple University

- Online Social Networks (OSNs)
 - Facebook, Twitter, and so on

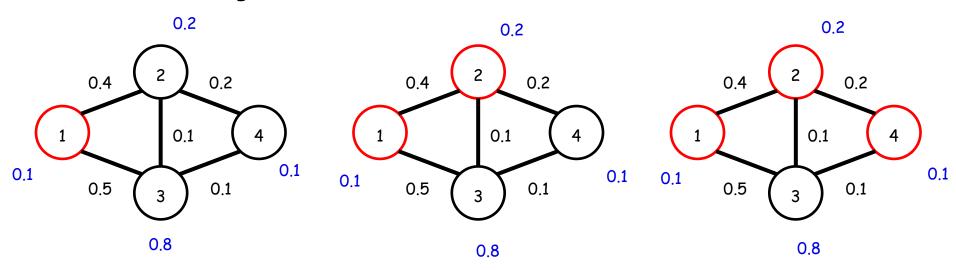


How does influence propagate in OSNs?

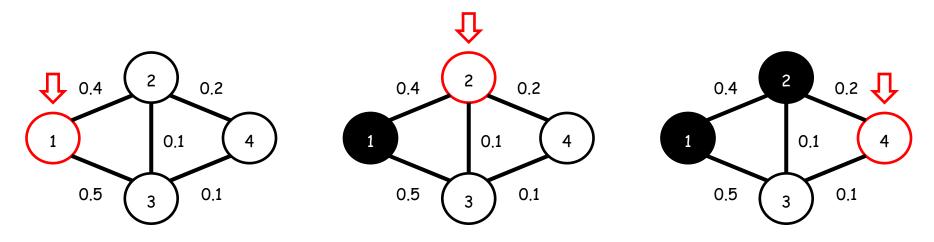
- Social influence maximization
 - Virtual marketing, personalized recommendations, feeds/news ranking ...

- Influence propagation models (NP-hard for both)
 - Linear threshold
 - Independent cascade

- Linear threshold model
 - Some nodes are initially active
 - Influence spread unfolds in discrete steps
 - Each node has a threshold in the interval [0,1]
 - A node becomes active if the sum of weights of active neighbors exceeds its threshold.



- Independent cascade model (ICM)
 - Some nodes are initially active
 - Influence spread unfolds in discrete steps
 - A active node has a single chance to activate its neighbors
 - Activation probability depends on the edge weight

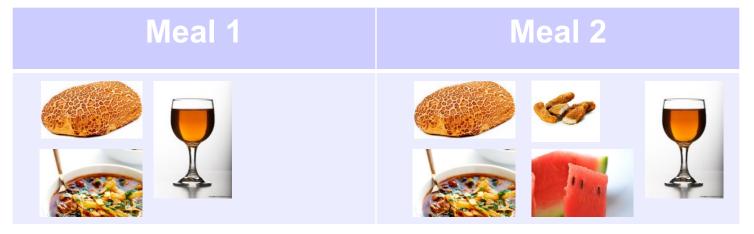


Social Influence Max Problem (SIMP)

- Objective
 - Let 5 be the set of seed nodes (initially active)
 - \circ Let $\sigma(S)$ be the number of eventually active nodes under ICM
 - O Maximize $\sigma(S)$ s.t. |S|=k
- Properties
 - Monotone
 - $\sigma(S') \leq \sigma(S)$ if S is a subset of S'
 - Submodular
 - $\sigma(S' \cup \{v\}) \sigma(S') \le \sigma(S \cup \{v\}) \sigma(S)$, i.e., diminishing return

Social Influence Max Problem (SIMP)

Monotone & Submodular -> diminishing return



- Greedy leads to a 1-1/e approximation ratio.
- Some problems are not monotone or submodular
 - Submodular, but non-monotone, e.g., max-cut problem
 - Monotone, but non-submodular, e.g., welfare max problem (single shoe vs. a pair of shoes)

Two SIMP Variations

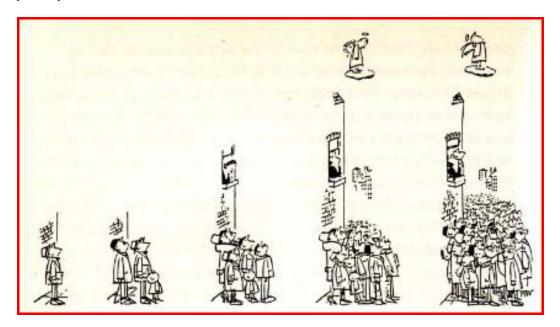
- Profit-maximization SIMP*
 - O Profit maximization of a seed set, S, with the cost of the seed set $\sigma'(S) = \sigma(S) c(S)$
 - Submodular, but non-monotone

- Crowd-influence SIMP (this paper)
 - Crowd influence in addition to individual single seed influence
 - Monotone, but non-submodular

^{*}Tang et al, "Profit maximization for viral marketing in online social networks," IEEE ICNP'16.

Crowd-influence

- Justification
 - Most people tend to follow the crowd

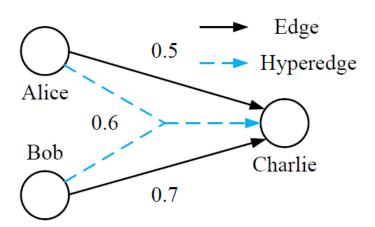


http://tutkimu.blogspot.com/2014/08/the-power-of-crowd.html

- SIMP with crowd influence poses unique challenges
 - Influence is many-to-many through hyperedges

Hyperedge

Influence is no longer one-to-one



Influenced?		Probability to propagate
Alice	Bob	the influence to Charlie
Yes	No	0.5
No	Yes	0.7
Yes	Yes	1-(1-0.5)(1-0.6)(1-0.7)

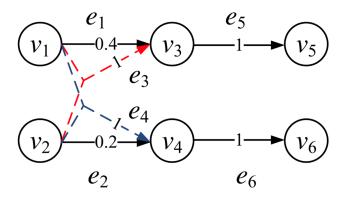
- SIMP with crowd influence poses unique challenges
 - Influence is many-to-many through hyperedges
 - Monotone, but non-submodular

Supermodular degree

- Modularity set*
 - The modularity set of node v

$$M_v = \{v' \mid \sigma(S \cup \{v,v'\}) - \sigma(S \cup \{v'\}) > \sigma(S \cup \{v\}) - \sigma(S)\}$$

i.e., all nodes that might increase the marginal gain of v



- O The supermodular degree is $\Delta = \max_{v} |M_{v}|$
- If k = 2, choosing v_1 and v_2 is the optimal. However, the Naïve Greedy picks v_3 and v_4 .

 $[\]star$ Feldman et al, "Constrained monotone function maximization and the supermodular degree," ACM-SIAM SODA'14.

Naïve Greedy

Select the seed node that brings the largest marginal gain

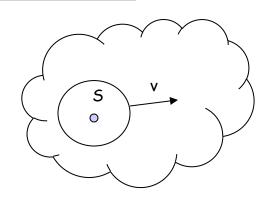
Algorithm 1 Naive Greedy (NG)

Input: a hypergraph, G, and a constant, k.

Output: a set of seed nodes, S, initiated \emptyset .

- 1: while |S| < k do
- 2: Find $v = \arg \max_{v \in V} \sigma(S \cup \{v\}) \sigma(S)$.
- 3: Update $S = S \cup \{v\}$.

Time complexity: O(k|V||E|)



Improved Greedy

- Improved Greedy guarantees $1/(\Delta+2)$
 - Select the seed node and its modularity set that brings the largest marginal gain

Algorithm 2 Improved Greedy (IG)

Input: a hypergraph, G, and a constant, k.

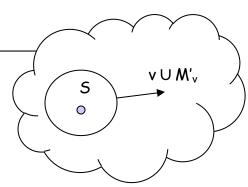
Output: a set of seed nodes, S, initiated \emptyset .

1: while |S| < k do

2: Find $\arg\max_{v \in V, M'_v \subseteq M_v} \sigma(S \cup \{v\} \cup M'_v) - \sigma(S)$ s.t. $|S \cup \{v\} \cup M'_v| \le k$.

3: Update $S = S \cup \{v\} \cup M'_v$.

Time complexity: O(2[∆]k|V||E|)



Capped Greedy

- Capped Greedy guarantees $1 e^{-1/(\Delta+1)}$
 - Select the seed node and a capped modularity set that brings the largest marginal gain
 - Try all possible initializations on a seed node and its capped modularity set.

```
Input: a hypergraph, G, and a constant, k.

Output: a set of seed nodes, S, initiated \emptyset.

1: for each v' \in V do

2: for each \Delta' from 1 to \Delta do

3: for each S' \subseteq \{v'\} \cup M_{v'} s.t. |S'| \le \min\{k, \Delta'\} do

4: while |S'| < k do

5: Find \arg\max_{v \in V, M'_v \subseteq M_v} \sigma(S' \cup \{v\} \cup M'_v) - \sigma(S') s.t. |S' \cup \{v\} \cup M'_v| \le k and M'_v \le \Delta'.

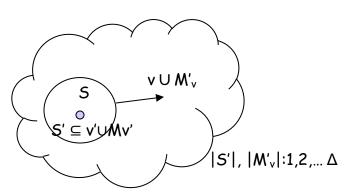
6: Update S' = S' \cup \{v\} \cup M'_v.

7: if \sigma(S') > \sigma(S) then

8: Update S = S'.
```

Time complexity: $O(4^{\Delta}\Delta k|V|^2|E|)$

Algorithm 3 Capped Greedy (CG)



Theoretical Results

Hung et al, "When Social Influence Meets Item Inference" KDD'16:

For the SIMP with crowd influence in general graphs, no algorithm can guarantee a ratio of $|V|^{\epsilon-1}$ for any $1 > \epsilon > 0$

- |V| is the number of nodes in a general graph
- Inapproximable in general graphs

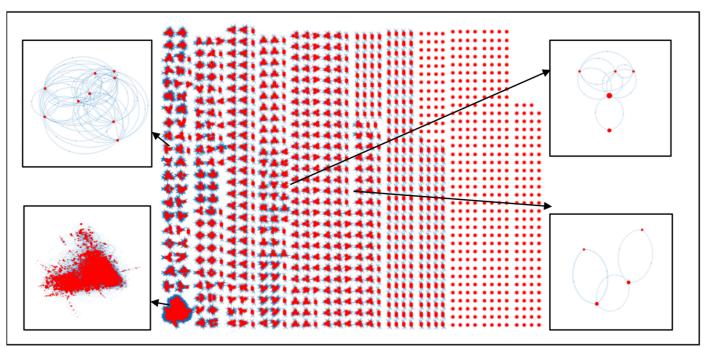
Theorem (our main contribution): The supermodular degree of most scale-free OSNs with \overline{w} and γ has the following:

$$\lim_{|V|\to\infty} \frac{\Delta}{O(|V|)} = 0$$
, when $4 + 6\overline{w} \frac{\gamma-1}{\gamma-2} \le 3\left(\frac{\gamma-1}{\overline{w}^{\gamma+1}}\right)^2$

- Leveraging the structural properties of OSNs
- \overline{w} : average weight of the hyperedge (w < 0.7)
- \circ γ : parameter in power-law distribution, $p_d = (\gamma 1)d^{-\gamma} (\gamma > 2.1)$
- \overline{w} for propagation capability and γ for component size

Experiment Data

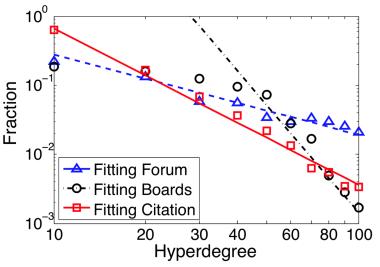
- Three datasets
 - O Forum: user activates in a forum with different topics (899)
 - Board: directors belonging to the boards of companies (355)
 - O Citation: collaborations among paper authors (16,726)

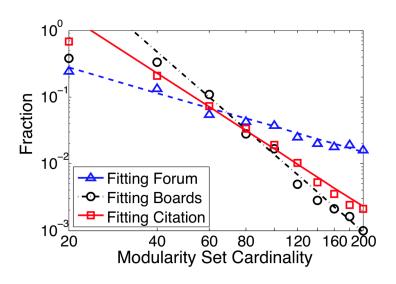


Citation Network Topology

Experiments: Modularity Set

- Trace Validation (through Monte Carlo)
 - Flags represent the real distributions by statistics,
 - Lines are the fitting curves.

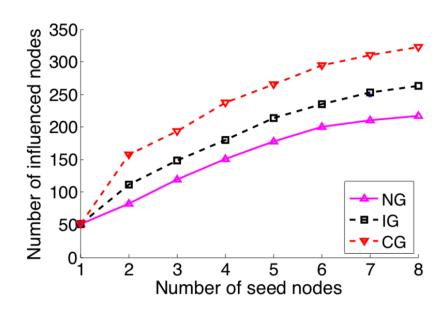




- Result
 - A small fraction of nodes have modularity sets with cardinalities larger than 100.

Experiments: Influence Maximization

- Performance evaluation in Citation dataset
 - Naïve greedy (NG) has the worst performance
 - Improved Greedy (IG) and Capped Greedy (CG) achieve better performance.



Conclusions

- Submodular function is an important property
 - Solving combinatorial problems with bounded results
- However, many real applications are not modeled as submodular and monotone functions
 - Submodular, but non-monotone
 - Monotone, but non-submodular
- The optimization using supermodular degree
 - Applied to OSN-related problems with relatively low complexity

