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ABSTRACT

Routing is one of the most challenging open problems in
disruption-tolerant networks (DTNs) because of the short-
lived wireless connectivity environment. To deal with this
issue, researchers have investigated routing based on the
prediction of future contacts, taking advantage of nodes’
mobility history. However, most of the previous work fo-
cused on the prediction of whether two nodes would have a
contact, without considering the time of the contact. This
paper proposes predict and relay (PER), an efficient rout-
ing algorithm for DTNs, where nodes determine the prob-
ability distribution of future contact times and choose a
proper next hop in order to improve the end-to-end deliv-
ery probability. The algorithm is based on two observa-
tions: one is that nodes usually move around a set of well-
visited landmark points instead of moving randomly; the
other is that node mobility behavior is semi-deterministic
and could be predicted once there is sufficient mobility his-
tory information. Specifically, our approach employs a time-
homogeneous semi-markov process model that describes node
mobility as transitions between landmarks. Landmark tran-
sition and sojourn time probability distributions are deter-
mined from nodes’ mobility history. A simulation study
shows that this approach improves the delivery ratio and
also reduces the delivery latency compared to traditional
DTN routing schemes.
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1. INTRODUCTION

Wireless ad hoc networks have been traditionally modeled
as connected graphs with stable end-to-end paths. However,
for emerging wireless applications, such as sensor networks
for wildlife tracking and MANETS operating in challenging
environments [1, 2], wireless links are short-lived and end-to-
end connectivity turns out to be sporadic. Such phenomena
are prevalent in disruption tolerant networks (DTNs) [3, 4,
5, 6], where the connection between nodes in the network
changes over time, and the communication suffers from fre-
quent disruptions, making the network partially connected.
The intermittent end-to-end paths and the changing topol-
ogy make conventional MANET routing protocols fail, as
they are designed with the assumption that the network
stays connected. Routing in DTNs is an especially chal-
lenging problem because of the temporal scheduling element
in a dynamic topology, which is not present in traditional
MANETSs. Nodes have to decide who the next hop is, but
also when to forward, as they route packets to destinations
in a store-and-carry way.

Researchers have proposed a number of broad methods
to solve the above issue. In general, previous related works
fall into three categories: mobile resource-based, opportunity-
based, and prediction-based. In the first category [7, 8],
systems employ mobile resources (data mules and mobile
agents) as message ferries. These can be directed to pick
up, move towards the next hop, and deliver messages to
implement end to end store-and-carry message delivery. In
opportunity-based schemes [9, 10], nodes forward messages
during contacts that are unscheduled or random. For the
prediction-based schemes [11, 12] inter-node contacts and
mobility behavior are predicted, generally using prior con-
tact history. The next hop and the contact in which a mes-
sage is forwarded are selected using the predictions such that
a quality of service (QoS) metric (e.g. delay or delivery ra-
tio) is maximized. Most of the existing prediction-based
routing protocols focus on the prediction of whether two
nodes would have a contact in the future without consider-
ing when the contact happens. We believe that lack of con-
tact timing information undermines the contact prediction
accuracy, and consequently reduces routing performance.

In this paper, we propose predict and relay (PER), a rout-
ing method for DTNs that relies on predicting future con-
tacts. We use a model based on a time-homogeneous semi-



markov process model to predict the probability distribution
of the time of contact and the probability that two nodes will
have a contact in the future.

Our study is inspired by two observations from reality
pointed out, in [13]. One is that nodes in a network within
a social environment do not move completely randomly. In-
stead, they usually move around a set of well-visited loca-
tions that we call landmarks [14] in this paper. Specifically,
nodes show preference for a small number of landmarks and
would move less often to the neighborhood of other land-
marks [15]. While near a landmark that is visited by other
users, a communication device may use the opportunity to
establish contacts with other nodes and exchange DTN mes-
sages. The second observation is that in some social envi-
ronments the node trajectory in time is almost determinis-
tic [16]. This means a node has its own mobility schedule
and it generally moves between landmarks according to that
schedule, subject to few random deviations. For example, a
student on a campus moves between classrooms, the dormi-
tory, cafetaria, and the gym. The dwell time at each land-
mark and the landmark trajectory are fairly regular, with
small variations. Nodes keep one schedule for a relatively
long interval (e.g. a semester), so it can be assumed they
operate in steady state with a few deviations.

The objective of our work is to explore the solutions to
the routing problem in DTNs with a semi-markov model.
The main contributions of this article are: a) a landmark
trajectory prediction method that uses a time-homogeneous
semi-markov process to determine the probability distribu-
tion of node arrival time at landmarks, b) a method to de-
termine a probabilistic contact profile that predicts inter-
node contacts, and c) a set of message forwarding rules that
improve the message delivery ratio by controlling the selec-
tion of the contact in which a message is transmitted to the
next hop. Simulation results show that our approach raises
the delivery ratio using the improved contact prediction ac-
curacy, compared with other traditional routing protocols.
Furthermore, results show that PER algorithms also reduce
the delivery latency in DTNs.

The remainder of this paper is organized as follows. In
Section 2, we discuss the existing routing approaches in
DTNs. Section 3 describes the overview of the predict and
relay schemes. Section 4 presents the system model and de-
tailed routing schemes in our protocol. Section 5 provides
simulation results and we conclude our work in Section 6.

2. RELATED WORK

In the past, several routing schemes have been proposed
to improve the routing performance in DTNs. This section
reviews the related work in the literature and highlights the
differences among them. Due to the limited space, we focus
on results that inspired our work or that are widely cited.

As mentioned before, there are three categories for cur-
rent routing schemes [17, 18, 19, 20, 21] in DTNs: moving
resources-based, opportunity-based and prediction-based. In
the first category, systems usually employ extra moving re-
sources, such as data mules and moving agents, as ferries for
message delivery. Researchers in [7] present an architecture
to collect data in sparse sensor networks, which uses data
MULEs to pick up data from the sensors when in close range,
buffer it, and drop off the data to wired access points. Sim-
ilarly, in [8], buoys monitor the water quality on a lake and
onboard sensors relay measurements using nodes on tourist

tour-boats and pleasure cruisers. Both of these approaches
improve routing performance with additional mobile nodes,
although controlling these resources leads to extra cost and
overhead.

The opportunity-based schemes utilize neither the mobile
resources nor the prediction methods for routing. Instead,
messages are exchanged only when two nodes meet at the
same place by chance. For example, Vahdat and Becker [10]
use the epidemic routing scheme by flooding. Further, the
ZebraNet [22] project applies such an approach to research
on animal migrations and inter-species interactions. Data is
flooded in the network and eventually reaches access points.
Spray and Wait [23] protocol is a multi-copy routing protocol
that controls the flooding overhead by limiting the number of
message copies distributed in the Spraying phase and then
relies on direct delivery when a message is transmitted to
the final destination, then waits until the destination meets
one of them. Harras et al. [24] have improved and evalu-
ated the controlled message flooding schemes with heuris-
tics, for instance, on hop limits or timeouts. Approaches
falling into this category usually distribute multiple copies
in the network, to ensure a high reliability of delivery and a
low latency. But they also bring in a high price of the buffer
occupancy and bandwidth consumption.

In the prediction-based schemes, nodes’ mobility is esti-
mated based on a history of observations. A typical exam-
ple is utility-routing [25, 26], where each node maintains a
utility value for every other node that is updated using the
time between contacts. A node forwards a message copy
only to nodes with a higher utility for the message des-
tination. The utility value is considered as the predictor
of two nodes’ future likelihood of contact. In [27], Burns
et al. propose a routing protocol that uses past frequen-
cies of contacts, as well as the past contacts. LeBrun et
al. [28] propose a routing algorithm for vehicular DTNs that
uses the current position and trajectories of nodes to predict
their future distance to the destination. In [11], researchers
present MaxProp, a protocol that mainly relies on the pre-
diction of the path likelihoods according to historical contact
data. Protocol performance evaluations are conducted on 60
days’ trace data from a real DTN network deployed on 30
buses. MobySpace [29] is another prediction-based generic
algorithm for DTN routing, that uses a high-dimensional
FEuclidean space constructed upon nodes’ mobility patterns.
The frequency of visits of nodes to each possible location is
recorded as the basis of the future distance calculation in the
Euclidean space. Most of these protocols focus on whether
two nodes will have a contact without sufficiently consid-
ering when the contact happens. Our approach, however,
employs a time-homogeneous semi-markov process model to
predict both the contacts and their time. We predict when
two specified nodes have a contact based on their history
information. Since time is considered, our future contact
prediction is more accurate than the traditional ones.

3. PREDICT AND RELAY

We consider a DTN with a finite number of mobile nodes
with unique IDs that move mostly between a set of land-
marks. A landmark is defined as a place where nodes can
communicate directly, i.e. any two nodes that are located
at a landmark at the same time can establish a contact to
exchange messages. Nodes at different landmarks cannot es-
tablish a contact. Landmarks are also assigned unique IDs.
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Figure 1: An example of a landmark-based mobility
model. The solid line denotes the mobility behav-
ior of nodes. The dashed line stands for forwarding
packets.

As described in the introduction, the networks of social
nature have nodes follow a semi-deterministic trajectory,
with small deviations from a repetitive sequence of land-
marks with constant dwell times. For illustration in this
article, we use a campus network where the landmarks are
independent WLANSs installed in classrooms and buildings,
while nodes are the students and faculty with PDAs or lap-
tops. We acknowledge that in the real world the WLANSs are
actually connected by a backbone. Another good example
of this type of DTN is a network in a rural area where the
landmarks consist of WLANSs located in villages, intercon-
nected by buses that carry messages on portable computers.
A campus DTN is shown in Figure 1. In both examples,
nodes follow a scheduled route that is subject to random
deviations.

In prediction-based routing schemes, history information
is used to predict nodes’ future mobility, which becomes the
basis of the decision to forward messages towards the desti-
nation. Most of the previous prediction-based DTN routing
methods predict whether two nodes would encounter, but
consider when two nodes will meet insufficiently. We argue
that figuring out when two nodes will meet with a probabil-
ity distribution could improve the delivery ratio, as well as
reduce the delivery latency.

PER is a single-copy DTN routing protocol — only a single
instance of a message is forwarded towards the destination.
Each message carries in its header a time-to-live (TTL) field.
After the TTL, expires the message should be dropped. Mes-
sages are forwarded hop-by-hop in a succession of contacts
using a greedy approach. At each forwarding step, PER se-
lects the next hop that has the highest probability of delivery
to the destination.

When a node u has to forward a message from its queue
(e.g. at the beginning of a contact, or when a message is re-
ceived from an application) it computes a probability metric
f(x) for all nodes currently in contact with u (the set Ny,),
and for itself, z € {u} U N,. This metric indicates the de-
livery performance to the destination if node u selects node
z as the next hop and forwards the message to x.

The current node then selects the next hop h as the node
for which the delivery probability metric is maximized:

h = . 1
arg_ ge}lnguf () (1)

If the selected next hop is the current node (h = ), then
the message will not be forwarded.

The formulation of the probability metric f(z) is detailed
in section 4.3 and is based on predicting node mobility over
a finite time horizon. In contrast with prior research, that
mainly focuses on estimating the probability of contact re-
gardless of the contact time, our method uses landmark tra-
jectory prediction to determine the probabilities of contact
for each time unit. The prediction of nodes’ future mobility
relies on their trajectory history, that is recorded and dis-
seminated throughout the network in an epidemic fashion.
We believe this approach is feasible in a network that has
reached steady state.

Figure 1 gives an example of the PER process. Node A
needs to send a message to node E. Located at the same
landmark with node A are nodes B,C,D. Based on the
history mobility information, A predicts that before the TTL
expires node B has a better delivery performance to node
E than all other nodes in the Lab. Therefore, node A will
forward the message to node B. In this scenario, node B
will leave the Lab landmark later and will meet E in the
Classroom for delivery.

4. SYSTEM MODEL

4.1 Assumptions

In this article we focus on the effectiveness of a time-
based mobility prediction for DTN routing. We make, there-
fore, some simplifying assumptions that will be addressed as
part of our future work. We assume that during a contact,
nodes can successfully transfer all messages that need to
be forwarded. This requires a reliable transport and high
bandwidth or long enough contacts. These conditions can
be more guaranteed when two nodes tend to dwell at the
same landmark for at least minutes in a DTN supported by
802.11a/g/n WLANS, like a campus environment.

Moreover, each landmark has a unique landmark id in the
network, and nodes are aware of which landmark they are
located at at anytime. Also, we assume that the whole net-
work is composed of the neighborhoods of landmarks, which
means a node is always associated to a certain landmark in
the network. Nodes do not spend any time on the transition
between landmarks.

4.2 TH-SMP Mode

We model the mobility of a node m with a time homo-
geneous semi-markov (TH-SMP), (X', T,") with discrete
time. The states are represented by the landmarks L =
1,...,1. A node that moves between two landmarks tran-
sitions in the markov process between the corresponding
states. We assume the transition probabilities between states
have the markov memoryless property, meaning that the
probability of a node m to transition from state X;" to
state X7} is independent of state X;”;. Thus, process
(X') is a standard discrete-time markov Chain. The ran-
dom variable T}" represents the time instant of the transi-
tion X" — X, ;. Random variable T}, — T;;" describes
the landmark sojourn time, or state holding time. Note that
the sojourn time does not include the time when the nodes
are in transit between landmarks. These random variables
are i.i.d., with distributions that do not change over time
(time-homogeneous) and can be different from the geomet-
ric or the exponential distributions (semi-markov).



The associated time-homogeneous semi-markov kernel
is defined by:

Q5 () = PXph=4T0n — T <tXg", ..., X'
", .., Tn")
= P(Xph =5, T T <X =)
Suppose P™ = |p;}| is the transition probability matrix

of the (X') embedded markov chain for node m. Then the
transition probability from state 7 to state j is
pij = [lim Qi (t) i,j € L.
Also, we derive the probability Si"(t) that node m will
leave the neighborhood of landmark ¢ on or before time unit
t:

SP(t) = P(T, — T < 4| X1 =

l
=2 @nm. @

Note that Si"(t) also indicates the distribution of the dwell
time at landmark i for node m, regardless of the next land-
mark.

Let Z™ = (Z;",t € IN*) be another TH-SMP that de-
scribes the state (landmark) occupied by node m at time
t. The transition probabilities for process Z are defined by

7 (t) = P(Z{" = j|Z5* =1i). In the following, we drop the
™ superscript to simplify the notation. If we know that a
node is currently in state i, after ¢ time units, it will be in
state j with probability ¢;;(t). ¢ provides the prediction
of the node’s location at a landmark at an arbitrary time
t > 0 knowing its current location. The derivation of ¢ is
described next.

For a fixed current state i, ¢;;(t) forms the probability
mass function of the random variable that indicates the state
at time ¢. Thus, 23:1 ¢i;(t) = 1 for any initial state ¢ and
future time ¢ > 0. For the border case t = 0, ¢;;(0) = d;;,
where ¢ is the kronecker symbol.

To determine ¢;;(t) we start with a special case when
the process stays in state ¢ between time 0 and ¢, with no
transitions.

P(Xt :i|X0 =14,T1 zt) = P(T1 —To >t | Xo :Z)
1—Si(¢).
If the node transitions at least once between times 0 and ¢,
we consider on the time k of the first transition from ¢, and

on the state r to which the process moves immediately after
state . We obtain:

P(X: =j| Xo =1 and at least one transition)

= ZZQW Ybrs(t = k),
r=1k=1
where Q”(k) = %@W = Qir(k) — Qir(k — 1) is the time

derivative of @), assuming a time step equal to the unit.
Putting it together, we obtain:

l

)3+ > ZQW

r=1k=1

bi5(t) = (1 - Jori(t — k) (3)
We first note that ¢ can be calculated iteratively, as ¢q;(t)
depends on probabilities ¢;;(t — k) computed in the previous
steps.

Specifically, since we consider the time discrete in our
model, Eq. 3 is rewritten as follows,

dij(k) = P(Zk:ﬂZo:i)
= dij(k) + sz” T)brj(k —7), 4)

where dm(k) = (1 — Sl(k))ém, ’Uij(k) = sz(k)7 and k£ € IN.
Furthermore, v;;(k) can be approximated by the following
equation,

{ Qi;(1) for k=1
vij(k) =
Qij(k) — Qij(k—1) for k> 1.

Using the assumption that the landmark dwell time random
variables are independent from the embedded state transi-
tion process (Xj;), we derive:

Qij(k) = P(Xnt1=j,Tnt1 —Tn < k|Xn =1)
= P(Xpt1=j|Xn =1)"
P(Tot1 — Tn < k| Xnt1 = j, Xn = 1)
= pi;Si (k)

577 (k) is the probability that node m will move from land-
mark ¢ to landmark j at, or before time k. The time param-
eter k can be used to represent a relative time offset. Based
on the Markov property of the underlying processes, if the
state ¢ of a node is known at a time ko, than at time k > ko,
the probability of that node being in state j is ¢s;(k — ko).

With sojourn time probability distributions S;; and the
transition probability matrix P™, we can predict the future
landmark location of node m based on its current location
using probability distributions ¢;7 (k). Section 4.4 describes
how to derive these probabilities.

4.3 Contact Probabilities

In this section we propose additional metrics to be used for
studying various probabilistic delivery probability metrics
f(x) during the packet forwarding defined in section 3.

Distributions ¢7; (k) give the probability that the future
location at time k£ of a node m will be j considering that
at time 0 the location was landmark 7. Assuming that tra-
jectories of nodes are independent of each other and that
the most recent known state of node a is s, (at time k),
and for node b is sp (at time kp, with ko < k,kp < k), the
probability of contact between a and b at a landmark ¢ at
time k is

Cop(k) = ¢%,i(k — ka) - ¢Zbi(k —ky) for k>0

Then, the probability that a and b are in contact at a time
k at any landmark is

(k) = Ciy(k) for k> 0. (5)

ieL
We note that Cqp(k) does not define a proper probability

mass function, as 0 < >, Cay(k) § 1.

For our study of probabilistic delivery probability met-
rics f(z), we define the probability that two nodes begin
their first contact at time k. Note that when we talk about
that nodes a and b begin their first contact at time k, it
means that they had no contacts in any prior time units in
a considered interval. Assuming that node trajectories are



independent, the probability of the first contact at time k is
defined as,

Ray(k) = Cap(K) 1:[(1 — Cu(t)) for k> 0. (6)
t=0

Denote the maximum message acceptable delivery delay
by D, which means packets are required to reach the desti-
nation in time D. Moreover, Let n. be the chosen neighbor
for evaluating the delivery probability metrics, and d is the
destination. The prediction metric functions are defined as
follows:

Function 1: This prediction metric function is defined in
terms of the maximum probability of contact in time [1, D],
which is defined as,

fi = maxCr.a(k),1 < k <D (7)

Function 2: We define Function 2 based on the maximum
average probability of contact in time [1, D], which is,

D
fo= Z Chn.a(k) (8)
k=1

Function 3: For this prediction metric function, we mainly
focus on the first contact probability. Thus, maximum prob-
ability of the first contact before the deadline is the basis of
Function 3, which is,

fs = Ru.a(k) 9)

Relay node selection is done based on the above prediction
functions. For each message that is taken from the queue
during a contact, the prediction metric is computed using
only one of the three prediction metric functions for each
neighbor (another node that is in contact with the current
node). In a greedy approach, the node with the highest met-
ric value is picked as the relay node to forward the packet.
Intuitively, the chosen neighbor should have the largest con-
tact probability with the destination in the future D time
steps. We refer to the PER algorithms using Function 1, 2,
and 3 as PER1, PER2, and PER3, respectively. Once the
relay nod is determined, the message is forwarded to it. If
the selected node is the current node itself, then the mes-
sage will be kept in the queue for a later transmission.The
corresponding algorithm is shown in Algorithm 1.

Algorithm 1 Predict and Relay Algorithm

[1] Node exchanges and updates the history mobility infor-
mation of other nodes with its neighbors.

[2] Node uses one of the three prediction functions (PERI,
PER2, and PER3) to picks a neighbor as the next hop.

[3] Node forwards the packet to the chosen node in [2].

Figure 2 is an example to illustrate the PER algorithm,
where node A sends a packet to node C at time ¢t. Note
that at time ¢, node A is at landmark L1 and node C is
at landmark L2. With the history mobility information, A
first uses one of the three prediction metric functions, for
example f1, to find the neighbor node B, who is most likely
to meet the destination node C in the future. Then A relays

L1 L2 L1 L2

L4 L3 L4 L3

(a) Network Topology at (b) Network Topology at
Time ¢ Time t + At

Figure 2: An example to illustrate the process of
PER.

the packet to B. After At, B carries the packet and moves
to landmark L3, where it meets node C. Finally, C' gets the
packet from B.

4.4 Deriving Mobility Parameters
44.1 Two Parameters

To determine the prediction functions f, PER needs to
compute two parameters, the transition probability matrix
P™ and the sojourn time probability distribution matrix,
577 (k) for each node m. In this section we describe a method
to determine these two parameters using node mobility his-
tory.

P™ is the transition probability matrix of the embedded
Markov chain for node m. Figure 3 shows an example tran-
sition probability matrix for node m that visits four land-
marks: Classroom, Gym, Dormitory, and Lab.

Pl pia Pl Pia
pm— | PA PR PE o ph
P31 P32 P33 P34
pii pis pis Pl
At any on those landmarks, the node could pick to stay
for a while or move to another landmark according to its
preferred probability. For example, if the node is at the
gym, it then may: 1) move to the Lab with probability pJs;
2) or stay in the gym with the probability pj}; 3) or go to the
dormitory with probability pj3; 4) or head for the Classroom
with probability pji. Those mobility probabilities constitute
the transition probability matrix P™. Note that each node
has its own transition probability matrix that reflects its
trajectory.
We now define the P™ probabilities as follows.

Definition 1: The probability p;; that node m moves from
landmark ¢ to landmark j is defined as the observed transi-
tion frequency:

mo m m
pi; = mnumg/num;’,

where num;" stands for the number of transitions from land-
mark ¢ without considering the next landmark, and numj;
is the number of transitions from landmark ¢ to landmark j.
Obviously, num;; < num;" and pj; < 1. By keeping track
of num;" and numj;, each node could generate and refine
its own P matrix over time.

We calculate the sojourn time probability distribution

Sij(k), k € IN as follows.



Figure 3: The markov model of the node m’s mobil-
ity.

Definition 2: The sojourn time probability distribution
at landmark ¢ when followed by a transition to landmark j,
Sii(k), is defined as:

Sij (k) = P(tij < k),

where t;; is the sojourn time or state holding time at land-
mark ¢ when j is the next visited landmark. We assume
that when the network reaches steady state, the mobility
history provides a representative sample from which the so-
journ time distribution can be drawn. Therefore the proba-
bilities P(t;; < k) are computed with the equation:

P(ti; <k)= P(tj; =n), (10)

n=0

In markov processes, the sojourn time is usually consid-
ered to have an exponential distribution. Our use of a semi-
markov model eliminates this constraint and is more reflec-
tive of real world processes.

Computing probabilities P(t;; < k) is relatively simple.
For example, node m can measure all times ¢;; whenever it
moves from landmark ¢ to landmark j. In that way, the dis-
tribution of the sojourn time probability is a discrete distri-
bution. For instance, assume that we have 6 measurements
for 77, which are 2, 4, 4, 5, 4, 6. Then the P(t;; < 5) is 2/3.

Next we describe how a node can determine the sojourn
time distributions for all other nodes in the network.

4.4.2 History Information Exchange

To predict node mobility in the PER algorithms, every
node needs to know other nodes’ mobility history infor-
mation. Specifically, the history mobility information is
defined as a 5-tuple (nodelD, P, S, Trcc, Landmarkl Deyr),
where P is the transition probability matrix, S is the sojourn
time probability distribution matrix, 7Tre. is the recording
time when the record is generated, and Landmarkl Dy, is
the recorded landmark where the node is located when the
record is generated. Whenever two nodes become neigh-
bors, they will exchange the history mobility records they
have. A node adds the record of its new neighbor into its lo-
cal database, and updates the history information with the
new data by comparing the parameter Tr... Note that it
is possible that nodes only have a partial view of the whole
network. However, when a node calculates ¢;;(k) for the
neighbor and the destination, it is very possible that Tiec
from their records be different, which means the start time

for computation is different. Therefore, the equations for
prediction in the above are not right any more. To improve
the accuracy of prediction under this scenario, we utilize the
following modifications.

When node A wants to send a packet to node B, node A
first looks up B’s history mobility information locally, which
is (nodel D, Pg, SB, Trec, Landmarkl Dey-g). If A needs
to know where node B is at time t, the following equation
is used,

(ZSLandmarkIDcuTBj (t - Tr'ecB)
= P(Z:=j|Zr,..; = LandmarkIDcyrB)for j € L,

where Z; is the landmark where the node is at time ¢.

Similarly, node A can adjust the calculation of ¢;;(k) for a
neighbor. The only difference is that it finds the neighbor’s
latest record, and replaces the start time with the recording
time Tyec in the record, as well as the start landmark with
the recorded landmark Landmarkl D, in the record. Note
that the predicted time window for those two nodes may be
different in this way, to make sure that the mobility behavior
at the same future time spot is predicted.

The reader will notice that the size per node of the P
matrix (|L|?) and especially the S matrix could be large —
|L|>H for S, where H is the prediction window. Neverthe-
less, we expect in the real world these matrices to be very
sparse due to the typical routine found in DTNs with social
nature, where the node trajectory is almost deterministic
with small deviations, such as the network of students in a
campus or in public transportation.

5. PERFORMANCE EVALUATION

In this section, we would like to evaluate our three PER
algorithms, and contrast their performance against several
simple single-copy routing algorithms and epidemic routing.
Our main object is to investigate whether the three PER
algorithms can increase the delivery ratio, compared to other
single-copy routing algorithms. Also, we want to see how
the three PER algorithms provide better end-to-end delivery
latency.

5.1 Evaluation Methodology

We have used a custom packet-based simulator imple-
mented in Java to evaluate and compare the performance
of the different routing protocols.

Mobility Model: In our simulation, we utilize a land-
mark based DTN model, where there are several predefined
landmarks in the network. Nodes usually resolve around
these landmarks. That is, nodes would stay in the neigh-
borhood of a landmark or move to the neighborhood of
other landmarks with their own preferred probability. Two
nodes can only communicate when they are associated to
the same landmark. In our case, we simulate scenarios with
12 landmarks and 30 nodes. Initially, nodes are uniformly
distributed among the landmarks. Moreover, we assume ev-
ery node has a trajectory deviation probability p, which is
used to simulate nodes’ semi-deterministic mobility behav-
ior. That is, every node has a probability 1 — p to visit
a landmark from where it is currently, and visit any other
|L| — 1 landmarks with probability p/(|L| — 1). We also re-
quire that the probability that a node moves from landmark
¢ to landmark ¢ is 0, P;; = 0. p is a simulation parameter
that varies from 0 to 0.5 with a step of 0.1.
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We define the maximum sojourn time that a node moves
from a landmark to another as 2 + w, where w is called
the sojourn time width window and varies from 0 to 20 time
units. The sojourn time of a node is uniformly picked in
2,2+ w].

Routing Protocols: We have implemented and com-
pared the following routing schemes. Note that the names
in the parentheses are used to refer to the routing schemes
in result plots. We mainly focus on the single-copy schemes
in our simulation study.

Epidemic routing (“Epidemic”): a node would spread the
message it has to any nodes it encounters that have not seen
it yet. Eventually, every node in the network will obtain a
copy of that message. This protocol relies on multi-copy
delivery, such that messages can reach the destination on
multiple paths. We implement this approach to investigate
the optimal end-to-end delivery latency between two nodes.

Utility-based routing (“Utility”): each node maintains a
utility value for every other node in the network, based on
a timer indicating the time elapsed since the two nodes last
encountered each other. Here, the smaller the time elapsed
is, the bigger the utility value will be. A node would forward
the message only to the neighbor who has the larger utility
for the destination.

Random selection (“Random”): a node would randomly
pick a neighbor as a relay node to forward the message until
the message reaches its destination.

Direct delivery (“Direct”): source does not forward the
message to anyone unless it encounters the destination.

PER (“PerX”): a node would distribute a message with

the schemes described in this paper. Since we have three
different criteria to indicate whether to forward messages
for a node, we employ Perl, Per2, and Per3 to refer to our
three schemes respectively. The prediction time window for
the three PER algorithms is fixed to 60 time units.

Message Generation: we use the poisson distribution
to model message generation in the network. In detail, we
regulate that the average message arrival rate in the network
is 10 time units. For each message, we randomly select a
pair of nodes as source and destination respectively. In all
scenarios considered, each message is assigned a TTL value
of 40 time units.

To apply our PER algorithms, a node needs to generate its
transition probability matrix P and sojourn time probabil-
ity distribution S;;(k) first. Note that at the beginning, the
acquired P and S;;(k) is not stable, since the collected mo-
bility history information to generate those two parameters
is not sufficient enough. Therefore, to better evaluate the
system performance, we run the simulation for a “warm-up
period” to reach steady state and make the collected history
mobility information sufficient enough to generate P and
Si;j(k). After that, the simulator runs 2048 time units for
each scenario to collect data, and we run each scenario ten
times to report the average.

The common goals of any DTN routing protocol is to
maximize the delivery ratio, and to minimize the latency
between source and destination. Therefore, to compare the
performance, we use the following metrics: 1) Delivery ratio
is defined as the ratio of the number of successfully deliv-
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ered messages to the number of all messages generated in
the network; 2) Delivery latency is the average end-to-end
delivery latency between a pair of source and destination in
the network.

5.2 Simulation Results

We first investigate the performance of three PER algo-
rithms under different trajectory deviation probability p and
the sojourn time window width w. Specifically, we would like
to see how those two parameters affect the delivery ratio and
the end-to-end delivery latency of the three PER algorithms.
With this motivation, we plot those three PER algorithms’
performance separately. Figure 4 records the delivery ratio
of the three PER algorithms as a function of p and w. As
can be seen there, all three PER algorithms have similar
trends for the delivery ratio with p and w varying. The de-
livery ratio increases as p decreases and w declines. In other
words, the more deterministic the node behavior is, and the
less sojourn time a node has, the better the prediction of all
three PER algorithms are. Actually, when p becomes 0, it
indicates that a node only has one successive landmark to
go from where it is. When w becomes 0 means a node moves
more often. In the extreme case, where p is 0 and w is 0,
the network is very deterministic and messages can always
be successfully delivered with sufficient mobility in the net-
work. There is a similar trend in Figure 5, which presents
the end-to-end delivery latency of the three PER algorithms.
To better evaluate, we also draw the delivery latency of epi-
demic routing as the optimal value, since epidemic routing

always provides the lower limit for the delivery latency. We
see that as p decreases and w declines, the delivery latency
roughly decreases. Moreover, the three PER algorithms do
not increase the delivery latency too much, compared to epi-
demic routing. The motivation of Figure 4 and Figure 5 is
to give an overview of how p and w impact delivery ratio
and delivery latency of the three PER routing algorithms.
Next, we compare the delivery ratio and the delivery la-
tency of the three PER algorithms with other approaches
under three different p scenarios with 0.0, 0.2, and 0.5 re-
spectively. In the p = 0.0 case, nodes’ mobility are very
deterministic. Therefore, the nodes’ future mobility predic-
tion becomes accurate. For p = 0.5, the network’s entropy
is higher as nodes move more randomly and the trajectory
prediction becomes less accurate. Case p = 0.2 is on the
middle level. We just want to evaluate how the three PER
algorithms perform compared to other schemes under those
three scenarios. Figure 6 plots the delivery ratio under the
three different p scenarios with different w. We see that all
three PER algorithms gain larger delivery ratios than utility-
based routing, random selection routing, and direct deliv-
ery approach. This is because, the three PER algorithms
have better mobility prediction when forwarding messages,
which could increase the possibility to contact the destina-
tion. Also, as w increases, the delivery ratios of all the rout-
ing schemes go down. A common reason is that because w
rises, message delivery delay increases, even beyond the pre-
defined TTL. Therefore, the delivery ratio goes down. But
for the three PER algorithms, another reason is that when w
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increases, the accuracy of S;;(k) falls, which then noises the
accuracy of the future mobility prediction. Besides, we find
that, in p = 0.0, PER algorithms perform much better than
other routing schemes, while in p = 0.5, the advantage is
reduced and all routing schemes work very similar. In other
words, the more deterministic the nodes’ mobility behavior
is, the better the three PER algorithms will perform.

Figure 7 records the delivery latency under the three dif-
ferent p scenarios where w varies. Although the three PER
algorithms are designed to increase the deliver ratio in rout-
ing, their performance in terms of delivery latency is better
too, compared to other routing protocols. We can see that in
all the three scenarios, the PER algorithms have less delivery
latency, even though, as p increases the delivery latency of
the three PER algorithms becomes closer to other protocols.
Thus, we believe that accurate prediction during messages’
forwarding process could also help reduce the delivery la-
tency. In addition, as w is going up, the delivery latency of
the three PER algorithms is raised. The reason is obvious.
Because nodes become less mobile, it will cost more time to
deliver messages with nodes’ mobility.

We then compare the performance of the three PER algo-
rithms with other approaches under three different w with
0, 10, and 20, respectively. As explained before, w controls
the width of the uniform distribution from which the node
sojourn time is sampled. The intent behind this experiment
is to check how those routing protocols perform under dif-
ferent nodes’ mobility. Note that a larger w implies that
nodes are less mobile. Thus, w = 0 means nodes transfer

frequently among the neighborhoods of the landmarks in the
network, while for w = 20, nodes’ transition between nodes
occurs less often, on average each (2+20)/2=11 time units.
In Figure 8, we show the delivery ratio under the three dif-
ferent w scenarios where p varies. In all three scenarios,
the three PER algorithms present better delivery ratio than
other protocols. Additionally, as p increases, which implies
that node mobility becomes less deterministic, the delivery
ratio of the three PER algorithms falls down. But p does not
influence the delivery ratio of other routing protocols. This
trend indicates that when the node mobility is less random,
applying the PER protocols yields better results.

Figure 9 summarizes the end-to-end delivery latency of all
routing protocols under the three different w scenarios. We
find that the higher the node mobility is and the less random
the transition times are (lower w), the lower the latency is
for PER protocols. When the width of the transition time
window grows (w=20), the PER prediction accuracy falls
and also the time spent by messages in queues grows. As a
consequence, the latency of PER protocols grows compara-
ble to that of the other protocols. Overall, PER algorithms
are more effective when the randomness of the node trajec-
tories is low, as seen in scenarios with reduced trajectory
deviation probability (p) and sojourn time window width
(w). In addition, similar to the trend in the delivery ratio
figures, p does not influence the delivery latency of other
routing protocols much. However, as p grows, which indi-
cates that mobility becomes less deterministic, we see that
the delivery latency of our three PER algorithms goes down.



6. CONCLUSIONS

In this paper, we propose the Predict and Relay scheme,
an efficient routing scheme in DTNs. We introduce a time-
homogeneous semi-markov process model to predict the fu-
ture contacts of two specified nodes at a specified time. With
this model, a node estimates the future contacts of its neigh-
bors and the destination, and then selects a proper neigh-
bor as the next hop to forward the message. This paper de-
fines three different prediction functions to assist in choosing
the proper neighbor for message delivery. Simulation results
show that our approach raised the delivery ratio by relying
on contact time prediction, compared to other traditional
routing protocols. In addition, we see that our algorithms
also reduce the delivery latency when routing in DTNss.

Future work remains to be done on the validations of our
protocols on real data and applications in different environ-
ments. We plan to evaluate the PER algorithms on traces
coming from real social contexts, such as campus networks.
Moreover, we will work on addressing the assumptions, such
as the zero transition time issue, and designing a multi-copy
routing scheme with our model.
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