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Abstract—Mobile data offloading is an approach to alleviating
overloaded cellular traffic through alternative communication
technologies on smartphones. Inspired by the prospect of spon-
taneous, peer-assisted, bulk data transfer through NFC or Wi-Fi
Direct between proximate users’ smartphones, we propose a
model for mobile data offloading through the opportunistic
proximity (e.g., Wi-Fi Direct) links with bounded content delivery
delay and differential interests in content. Unlike the previous
formulation of mobile data offloading as a target-set selection
problem, which, essentially, asks the question “who (will down-
load the content through the cellular link),” we ask ‘“who” and
“when.” We present methods for individual users to locally esti-
mate (their and their acquaintances’) topological importance on
the opportunistic proximity-link-based networks and aggregated
interests in content. These factors are consolidated into a time-
dependent function that embodies the concept of users’ patience
for the content. Each individual user, then, periodically make
a probabilistic cellular download decision based on its patience
at that time. Our motivation and insights are: 1) Involving
topologically important, but otherwise disinterested, users in
downloading and forwarding content helps improve offloading
efficiency; 2) situation awareness embodied in the time-dependent
patience function is desirable, since it allows users to react to
hard-to-predict contact opportunities on the fly. Through trace-
driven simulations, we corroborate our insights, and demonstrate
the effectiveness of our proposed method in reducing cellular
costs.

Index Terms—mobile data offloading, probabilistic algorithm,
distributed algorithm, ego-centric betweenness centrality, interest
aggregation, patience.

I. INTRODUCTION

The cellular infrastructure is overloaded by an expanding
user base and increasing bandwidth demand from smartphone
applications. Indeed, driven primarily by smartphones, AT&T’s
wireless data traffic has grown 20000% over the five years
between 2007 and 2011 [1].

Mobile data offloading, or mobile cellular traffic offloading,
exploits alternative communication technologies on smart-
phones, and user mobility, to deliver information originally
scheduled for transmission over the cellular networks. Previous
works [2, 3, 4] demonstrate the feasibility of offloading cellular
traffic by peer-to-peer assisted forwarding through Bluetooth.
Recent developments in communication technology, embodied
in the latest smart mobile devices (including Google Nexus 7 [5]

Fig. 1: Users’ interests in content complicates the offloading strategy. Shaded
nodes represent interested users; solid lines link acquaintances; dashed lines
and nodes represent nodes’ mobility.

and the rumored iPhone 5 [6]) that support NFC [7] and Wi-
Fi Direct [8], makes spontaneous bulk data transfers between
proximate users a reality. Furthermore, the current data usage
cap and tiered pricing model [9] incentivizes smartphone users
to offload their cellular data. These developments make further
research in mobile data offloading relevant and worthwhile.

Inspired by this vision, in our paper, we study the problem
of offloading cellular traffic through proximity-based links
(proximity link, for short) such as Wi-Fi Direct. In our model,
we include a factor that was missing in existing mobile data
offloading models: users’ interests in content. Users’ interests
are particularly relevant for large-scale networks: Nobody
desires (or is able) to consume all generated content. This lies
behind the quest for better search engines and the rise of social
taxonomy, or folksonomy, in tagging content. Additionally,
we consider bounded delivery-delay tolerance to model the
general case where the content, though having no hard real-
time requirement, still needs to be delivered before too long,
lest it becomes stale.

Figure 1 illustrates the complication brought by users’
interests: When a, b, and ¢ meet through a proximity link
and if, due to limited budget, one and only one of them
will download a piece of content through the cellular link:
Who, among them, should download? Though b has more
acquaintances than a does and therefore, in some sense, is
more socially important, few of b’s acquaintances are interested
in the content, when compared with those of a: It is more
cost effective for a to download and carry the content than



b. In another comparison, ¢ is more socially important than
a, and most of ¢’s acquaintances are interested in the content:
Though c is not interested in the content, if ¢ downloads and
carries the content, ¢ can serve more users within a reasonable
time than a can. In general, a cost-effective offloading strategy
involves an interplay between users’ interests and their social
importance.

In addition to deciding who shall download the content
through cellular links, as in the target-set selection formula-
tion [4], we ask when. To appreciate the benefits of including
time in the model, we consider a few scenarios.

o Every user downloads his' interested content through the
cellular link immediately after the content is released. No
offloading through the proximity link takes place in this
case. This is the baseline diligent strategy that mobile
data offloading measures against.

o Every user initially waits, in the hope that someone will
download the content and forward the content (through the
proximity link) to him through one of his acquaintances.
However, nobody will receive the content, since nobody
has downloaded it. Even if the content is eventually
downloaded by some random user, and is forwarded to
other interested users, it may have expired. This is the
lazy strategy that introduces an unacceptably long delay.

« Some well-connected, or socially important, users, whose
acquaintances are interested in the content, download
the content through the cellular link, and forward the
content to their acquaintances when they meet through
the proximity link. As time passes by, and the risk of the
content becoming stale increases, those users who have
not received their interested content through either link
become impatient in waiting, and eventually download
the content through the cellular link if the content has
still not been received after a long delay. This adaptive
strategy is neither too diligent nor too lazy, and provides a
trade-off between cellular traffic load and content delivery
delay.

A challenge is to design such an adaptive strategy without
resorting to central scheduling and coordination through the
cellular link, which is costly and less scalable. Although human
mobility exhibits patterns [10, 11], contact opportunities are
hard to predict precisely. Therefore, effective central scheduling
and coordination require prohibitively costly updating.

We address the challenge as follows. Users estimate their rela-
tive social importance in the dynamic, opportunistic, proximity-
link-based network with a weighted ego-centric betweenness
centrality metric (Equation (2)); users estimate their (and their
acquaintances’) aggregated interests (Equation (3)) based on
their chances of meeting each other (Equation (1)); users use
a function (Equation (4)), which embodies the concept of
users’ patience for the content, to consolidate users’ social
importance with aggregated interests. This function gives rise
to a probabilistic cellular offloading strategy (Equation (5)) that
assigns a cellular download probability to a user, according

L“He” (“his”) is to be read “he/she” (“his/her””) henceforth.

to his capability to help offload the topical cellular content.
Users then periodically decide whether to download the content
through the cellular link by their patience at that time.

Thus, our solution is social, content, and situation-aware:
Involving topologically important, but otherwise disinterested,
users in downloading and forwarding content will help reduce
the cellular traffic and improve the offloading efficiency, while
satisfying users’ content demand.

In the following sections, we formulate the problem (Sec-
tion II), describe the design of our patience-based cellular
offloading strategy (Section III), analyze its properties (Sec-
tion IV), and complement the analysis with trace-driven simu-
lations (Section V). Works that inspire ours are summarized
in Section VI

II. MODEL

Consider a group of smartphone users: Each user has a
smartphone that can access the Internet through the cellular link,
and connect with nearby smartphones through some proximity
link. For example, Bluetooth is the current standard for linking
proximate devices: Han et al. evaluated and confirmed the
feasibility of using Bluetooth to offload cellular data [4]. Other
possibilities include Wi-Fi co-location (two users connect to the
same Wi-Fi access point) and the upcoming Wi-Fi Direct. The
cellular link is persistent but expensive, while the proximity
link is opportunistic but free: A smartphone can access the
Internet immediately on demand through the cellular link, while
two smartphones can connect with each other through the
proximity link only when they are nearby. An opportunity for
two smartphones to connect through the proximity link is an
encounter between them.

The users are interested in some content that is generated
and released by some publisher on the Internet. Each piece
of content is tagged before its release. We model two aspects
of the user-content relationship: users’ interests and content’s
freshness. For a user u:

o The interests of u are represented by a set of tags I,,: u
is interested in a piece of content if the content has a tag
in 1.

o For a tag g, u prefers to receive a piece of content with
tag g, within a delay of up to f,. Otherwise, if u has not
received the content within that time, the content becomes
stale for u. We call f, the freshness of tag g.

The publisher publishes an aggregate feed, containing the
summary, the tags, and the download link for each piece of
released content. A user is notified through the feed when new
content is released.

The problem is to find a localized strategy that minimizes
the number of cellular downloads (which incur costs) while
maximizing fresh content deliveries. A localized strategy is
one in which each user makes decisions based on information
obtained through encounters rather than requiring (global)
coordination through the cellular link. Communication through
cellular link incurs cost, and keeping track of local changes for
global coordination aggravates the problem. In comparison, a
localized strategy is cost-effective and adaptive. The decisions



to be made include whether to download a piece of content
through the cellular link and, if the answer is yes, when.

Before moving on to describe the concrete design, we make
our assumptions explicit. Since the proximity link is virtually
free, routing on the proximity-link-based network is not a
focus of this paper: To maximize coverage, the content is
epidemically forwarded across the opportunistic proximity-link-
based network once it is downloaded through the cellular link.
A more sophisticated forwarding strategy [12] can be adopted,
but is beyond the scope of this paper. The users are honest and
cooperative. In other words, each user will follow the protocols
by honestly sharing information and cooperatively reducing
the overall cost:

o A user will honestly report their interests to others upon
request.

« If downloading, storing, and forwarding a piece of content
will reduce the overall cellular cost of the whole network,
a user will do it even if he is not interested in the content.

Enforcement and incentive [9, 13, 14], while important, are
orthogonal to the current problem and are left for further
studies.

III. DESIGN
A. Overview

Intuitively, two groups of users are favored for directly
downloading a piece of content with tag g through the cellular
link:

o Those who are interested in g and meet with users who

are interested in g;

o Those who are socially important, or equivalently, topo-
logically important in the dynamic proximity-link-based
network.

The rationale for favoring the first group is obvious: Those
users have better chances of directly obtaining or forwarding
the content to interested users. However, the scope of this case
is restricted to direct acquaintances and is thus oblivious of
the topology of the proximity-link-based network, for which
the second case tries to remedy. The membership in the two
groups may overlap; those who are members of both groups
are favored over those who are members of only one group.

Concretely, a user decides his topological importance in the
dynamic proximity-link-based network by locally computing
his weighted ego-centric betweenness centrality (Section III-C).
Along with the aggregated interest of both himself and his
acquaintances (Section III-D), the user determines his patience
for the content and periodically decides, with a temporal-
dependent probability based on his patience, whether to
download the content through the cellular link if he has not
yet received the content (Section III-E).

In this section, we focus on the design details. Discussions
on intuition and rationale are deferred to Section IV.

B. Temporal tie strength

Let the set of users that v has met through the proximity
link be U,,: U, is the set of u’s acquaintances. For v € U, let
the chronologically ordered sequence of encounters between

and v be [ay, b1], [a2,bs], ..., [ak, bk], and the current time be
t; the average interval between consecutive encounters §,(v)
is defined as:

k—1
. _ (b= k) + 2 0imy (@ig1 — bi) w and v have met.
8u(v) = k

+00

otherwise.

By definition, §,(v) is symmetric: §,(v) = §,(u); §,(v) > 0;
u can locally compute $,(v) for all v € U,.

Based on §,(v), the temporal tie strength (tie for short)
8y (v) is defined as:

0 Su(v) = +o0, %

5u(v) = {exp(—as§u(v)) su(v) € [0, +00),
in which a; > 0 is a scaling parameter, adapting to the given
scenario, to prevent the tie s, (v) from dropping too fast with
the increase of the average inter-encounter interval 8, (v).
Greater s,(v) corresponds to stronger tie between u and
v; sy (v) € [0,1]. Like §,(v), s,(v) is symmetric: (s, (v) =
$y(u)) and u can locally compute s, (v) for all v € U,.

C. Weighted ego-centric betweenness centrality

For v,w € U,, u can obtain §,(v), §,(w), and §,(w) (or,
equally, §,(v)) during their encounters. « can construct his
neighborhood graph G, of which nodes are {u}UU,, and the
edge between v,w € U, U {u} has a weight §,(w) = §,,(v)
if 8,5 (v) # +o0. For v,w € U, and v # w, let p(v, w) be the
proposition “(v, u, w) is a shortest path between v and w”; this
can be determined by, for example, the Dijkstra’s algorithm [15].
From G, u can compute a weighted ego-centric betweenness
centrality 3,:

[p(v,w)]
v,wEUgy,vEW

2(%5 )
0 otherwise.

Bu = 2

In Equation (2) and the following, when p is a proposition,
the notation [p] is the propositional indicator function:

1 pis true,
[p] = {

0 pis false.

From Equation (2), 8, € [0,1].

D. Interest aggregation

User u records the interests [, of user v when they meet.
u’s aggregated interest i, (g) on tag g is:

iu(9) =9 € L]+ D sulv)lg € L]. 3)

veU,

1u(g) > 0; 1,(g9) < 1 only if g ¢ I,,.



E. Patience and the probabilistic cellular downloading strategy

From the centrality (3, (Equation (2)) and aggregated interest
iu(g) on tag g (Equation (3)), v determines his patience p,, 4

for tag g as a function:
0,1} — [0, 1], “4)

defined as (for two scaling parameters a; > 0 and ag > 1,
which correspond to the interest aggregation i,(g) and the
centrality 3, respectively):

(1 - e‘“ﬂu(g)) xag*%u)
(1 — e‘am‘u(g)) 1- 1;)0‘231725”

Pu,g :

ge[’tﬁ
g ¢ 1L,

The patience function defined by Equations (4) and (5) gives
u a strategy to make cellular download decision. u, according
to the strategy and based on the situation at that time (Have u
received the content? How close to the content expiration?),
periodically (at a pre-defined interval for all users) makes a
probabilistic cellular download decision as follows. At the
moment ¢ + = - f, (x € [0,1]) between the time ¢ that u
first learns about a piece of content with tag g and the time
t + f4 that the content becomes stale for u, u flips a biased
coin and, with a probability p,, ,(z), downloads the content
through the cellular link. As a stipulation, if u is interested in
the content himself, but has neither downloaded nor received
the content by the time ¢ + f,;, v will download the content
directly through the cellular link to satisfy his content demand.

pu,g(:E) = (5)

IV. ANALYSIS

In this section, we take a closer look at the various parts of
our design and how they fit together to make an efficient mobile
data offloading strategy. Our agenda is to discuss the intuition
behind the design and show the following: The probabilistic
cellular downloading strategy based on the patience function
defined by Equation (5) behaves in intuitively desirable ways.

A. Probabilistic cellular downloading strategy based on pa-
tience

We take the patience function p,, 4(z) defined in Equation (5)

apart:

o The maximal probability that « will download the content
through the cellular link in one round is 1 — e~ itul9)
which is monotonically increasing on 4,(g): Greater
aggregated interest i,,(g) corresponds to higher maximal
cellular downloading probability.

o The shape (i.e., bends upward or downwards, or math-
ematically, concave or convex) of the patience function
Du,g depends on u’s centrality 3,: B, = % corresponds
to the diagonal; 3, > % (u is more socially important)
corresponds to a concave (bends upward) curve; (3, < %
(u is less socially important) corresponds to a convex
(bends downward) curve.

o In all cases, the patience function p, 4 is monotonic. The
direction of change (i.e., increasing or decreasing) depends
on whether u is interested in g himself, i.e., g € I,, or
g ¢ I, If g €I, p,, is monotonically increasing; if
g ¢ I, pu,g is monotonically decreasing.

The effect of the parts on the patience function p,, 4 is illustrated
in Figure 2a. The effects of the scaling parameter «; and ag
are shown in Figures 2b and 2c, respectively.

The probabilistic downloading strategy based on the patience
function in Equation (5) has a few desirable properties.

Property 1. If u has higher chances of serving users (possibly
including himself) before content expiration, the maximal
probability that u will download the content in one round
is higher.

We can validate Property 1 by noticing that the probability
1—e~%(9) is a monotonically increasing function depending
only on 4,(g) (given the system scaling parameter «;): We will
see in Section IV-D that the intuition behind ,,(g) is exactly
to reflect the chances of u being able to serve content in time.

Property 2. Other things being equal, more socially important
users have higher cellular downloading probability.

Property 2 is evident by comparing each pair of 3, = 0
and 3, = 1 curves with the same set of other parameters.
Analytically, by Equation (5), it is straightforward to verify
that a larger 3, leads to a larger p,, ,(x) for the same z € [0, 1].

The intuition behind Property 2 is that a more socially
important user has better chances of meeting others, and passing
on the downloaded content. Therefore, letting them download
with higher probabilities may help offloading the cellular traffic
to the proximity link.

Property 3. If u is not interested in a tag g, u’s downloading
probability will decrease over time; otherwise, u’s downloading
probability will increase over time.

Property 3 is evident by noticing that, in Equation (5),
Py, 1s monotonically increasing if g € I,, and monotonically
decreasing if g ¢ I,,.

The intuition behind Property 3 is as follows.

If u is not interested in a tag g, u is being purely altruistic
in downloading content with g. uw can start downloading with
a high probability in the hope that he can forward the content
to others when they meet later. With the chances of meeting
others (and hence forwarding the content to others through
the proximity link) dwindling over time, the value of celluar
downloading decreases. This is reflected by the monotonically
decreasing downloading probability in the second case in
Equation (5).

Conversely, if u is interested in a tag g, w is helping both
himself and others in downloading content with g. u can afford
to start downloading with a low probability in the hope that
he can receive the content from another user who has the
content, and thus, save cellular bandwidth. With the chances
of meeting others (and hence receiving the content from others
through the proximity link) dwindling over time, u becomes
increasingly impatient in waiting. This is reflected by the
monotonically increasing downloading probability in the first
case in Equation (5).
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Fig. 2: The patience function py 4 and the scaling parameters «; (interest iy, (g)) and ag (centrality 3y). (a) Given the scaling parameters «; and ag,
the patience py g4 function is jointly determined by the aggregated interest i, (g) and the centrality 3,. For o; = 1 and aig = 2, the patience functions
corresponding to the 12 (3 x 2 x 2) combinations i,,(g) = 0.29,0.69, 1.39 (corresponding to 1 — e~ %i?u (9) = 0.25,0.50,0.75; blue, red, green), By, = 0,1
(dashed, solid), and the cases g € I, g & I. (1ncreasmg, decreasmg) are plotted for comparison. (b) The effect of the (1nterest) scaling parameter o;. The
maximum of the patience function (1 — e~ ®i%u(9)), which corresponds to the maximal probability that v will download the content through the cellular link
in one decision, are plotted against the inverse exponential of the aggregated interest (e =%« (9)) with a;; = 0.25,0.5, 1,2, 4 (greater than 1: blue; less than 1:
red; equal to 1: green) for comparison. (c) The effect of the (centrality) scaling parameter cg. For (interest) scaling parameter o; = 1 and aggregated interest
1w (g) = 1.39 (corresponding to the maximal cellular downloading probability 1 — e~“itu(9) = (.75), the patience functions Pu,g corresponding to the 12
(2 X 2 x 3) combinations 3,, = 0, 1 (dashed, solid), « 8 = 2,4,6 (blue, red, green), and g € Iy, g ¢ I, (increasing, decreasing) are plotted for comparison.

B. Temporal tie strength

The average interval between consecutive encounter §,(v)
quantifies the frequency of encounters between u and v (thus,
the opportunities to offload the cellular traffic to the proximity
link), based on their past encounters: If they met frequently
in the past, they are more likely to do so in the future. The
assumption behind this is that human social contacts are regular
and thus predictable, which is confirmed by studies on human
mobility [10, 11, 16] and is taken by previous social-assisted
routing schemes [12, 17].

84 (v) can be computed efficiently by keeping a running sum
of past intervals, a count of encounters, and the timestamp of
the last encounter. This is amenable for implementation in a
large network where the nodes, which are resource-constrained,
have to keep track of a large number of neighbors.

The temporal tie strength s,(v) between u and v is a
monotonically decreasing function on §,(v) that maps into
[0,1]: The more frequently w and v meet, the stronger their
(social) tie is. The reason for making s, (v) a number between
0 and 1 is to avoid marginalizing u’s own interests in the
aggregated interest i,,(¢) in Equation (3), which will be further
discussed later in Section IV-D.

C. Weighted ego-centric betweenness centrality

The weighted ego-centric betweenness centrality 3, defined
in Equation (2) is inspired and loosely based on the ego-centric
betweenness centrality [18]. The difference between the two are
the weights on the edges and that, for a pair of u’s opportunistic
neighbors v and w, we do not divide [p(v,w)] by the number
of shortest (weighted) paths between them. The reason is
that, given the heuristic nature of the centrality metric, minor
relaxation is justified by computation efficiency. The rationale

for considering a weighted graph is that, on an intermittently
connected graph like the proximity-link-based network, the
delay (characterized by the weights on the edges of the graph)
matters.

Intuitively, 3, is the ratio (thus, 3, € [0,1]) that, among
all pairs of w’s opportunistic neighbors, u can pass on content
with the shortest delay (the geodesic, or the shortest path). The
greater [3, is, the more topologically important, or socially
important, that « is on the proximity-link-based network.

D. Interest aggregation

u’s aggregated interest i,(g) on a tag g (Equation (3))
gives an estimation on the content demand by w and u’s
acquaintances.

The rationale for u to weigh an acquaintance v’s interests
by their tie s,(v) is as follows. u needs to decide whether
downloading a piece of content will help meet v’s content
demand. This is restricted by their chances of meeting each
other, as characterized by their tie s, (v). Even v is interested
in a piece of content, if w has little chance of meeting v, there
is little point for u to download the content for v.

Again, the rationale for making the tie s,(v) a number
between O and 1 in Equation (1) is to avoid marginalizing u’s
own interests in the aggregated interest i,,(¢g) in Equation (3).
Downloading a piece of content that w is interested in, himself,
will immediately satisfy his content demand, while others’
content demand will be met by u’s celluar downloading only if
they meet some time later, before the content expires. Therefore,
in u’s cellular downloading decision, u’s own interests are
more important than others: Making s, (v) a number between
0 and 1 does exactly that in Equation (3).

By Equation (3), if u is interested in a tag g (g € I,),



iy (g) > 1: The only possibility that i,,(g) < 1 is that g ¢ I,,.
The greater i,(g) is, the more likely that u downloading a
piece of content with tag g will help satisfy users’ content
demand through the proximity link.

V. SIMULATIONS

We compare the performance of the proposed patience-based
offloading strategy with a recent work by Han et al. on cellular
offloading, which is based on the target-set formulation [4].
The comparison is based on simulations driven by two
publicly available contact traces: a real-world collected trace,
Haggle INFOCOM 2006 [19], and a synthesized trace, NUS
contact [20].

A. Methodology

1) Dataset: The Haggle INFOCOM 2006 contact trace
(Haggle, henceforth) contained Bluetooth sightings of 78
attendees and 20 stationary nodes in the conference venue
during the 3 days of the 2006 INFOCOM conference. It is
widely cited due to its closed-world nature: The attendees met
each other often in the conference venue, which produced
a trace with repetitive contact patterns in a short time and
a confined space. The time-resolution of this dataset is one
second.

The NUS contact trace was synthesized from the class
schedules and rosters for the Spring 2006 semester in National
University of Singapore (NUS). Students attending the same
session of a class were considered to have contacts with each
other. In our simulation, we chose a group of 1,000 students
who shared a class schedule with at least one other student in
the group. The time-resolution of this dataset is one hour.

2) Procedure: Han et al. [4] proposed a deterministic,
centralized, and heuristic algorithm to choose a set of nodes to
serve as the offloading target set, i.e., nodes that download the
content at the beginning and serve as initial seeds for subsequent
proximate propagation). Although the target-set formulation of
the cellular offloading problem is elegant, to select the target
set, the algorithm (the emphtarget-set strategy henceforth) is
centralized and requires the SP to collect individual nodes’
contact information (which intrudes users’ privacy) through
either cellular links (which is costly under the current mobile
computing business model) or other non-cellular links (e.g.,
WiFi, which is either inconvenient or untimely). Moreover, it
is unclear what is the best size for the target set. Follow the
method used by Han et al. [4], we resolved this by statistically
summarizing the simulation results on multiple target sets with
different sizes. Since Han et al. did not consider users’ interest
in their model [4], to fairly compare their target-set strategy
with our patience-based one, we set the upper limit on the
target set’s size to the number of interested users, to eliminate
the cases that (unfairly) favors patience-based strategy due to
the absence of a parameter in the target-set model; this allows
us to assess the performance of the patience-based offloading
strategy more objectively.

In contrast, the patience-based strategy is localized and
adaptive. The parameters in Equation (5) can be used to
tune the balance between maximizing offloading efficiency

[ eager | moderate | lazy |

o 05 ] 0.1 [ 0.05
Haggle | ag 2

Qs 0.01

; 005 ] 0.03 001
NUS ag 2

s 0.01

TABLE I: Parameters (from Equations (5) and (2)) for the three instances
(eager, moderate, lazy) of the patience strategy used in the simulation.

and minimizing content delivery delay in the patience-based
strategy. To study this flexibility, we used three sets of param-
eters to instantiate the patience-based strategy. The resulting
instances differ in their maximal downloading probability
(1—exp(—ayiy(g)) in Equation (5); explained in Section IV-A)
or, more intuitively, the eagerness in downloading the content
through the cellular link early. The three instances are identified
as eager, moderate, and lazy and their parameters (from
Equations (5) and (2)) are shown Table I.

Since the focus of our study was on reducing cellular traffic,
we adopted a simple strategy in the opportunistic forwarding
between proximate users: Once a node u obtained a piece of
content (by either downloading through the cellular link or
receiving from other nodes through the proximity link), the
content would be forwarded through the proximity link to all
of u’s neighbors when they met u. This is known in literature
as epidemic forwarding or flooding.

We simulated the cellular downloading decision processes
under these strategies with various numbers of interested users.
For each given number of interested users, we generated over
100 interest distributions among the users, and for each interest
distribution, the stochastic decision process was repeated 50
times to reduce statistical bias.

3) Metrics: Performance of the strategies are measured by
two metrics, downloading ratio and content delivery delay.

Download ratio. An offloading strategy’s efficiency can be
measured the number of cellular downloads by the end of
the decision process (which is determined by the content’s
freshness). Quantitatively, if there are n; users who are
interested in the content and, by the end of the offloading
process, the content is downloaded through the cellular link
d times, the downloading ratio of the offloading strategy is
n% x 100%. An offloading strategy that can satisfy users’ content
demand with fewer cellular downloads is more efficient.
Content delivery delay. While delay is inevitable for an
offloading strategy that does not have every interested user
download a piece of content as soon as it becomes available, it
is desirable that the delay is minimized. Thus, another aspect
of an offloading strategy’s efficiency is the content delivery
delay that it introduces. Quantitatively, for a piece of content
u that is released at the moment 0 and must be delivered
by the moment 12, let the time of delivery to an interested
user ¢ € I, be t4(7), the (average) content delivery delay is
> icr, ta(i)/|L,], which is a value between 0 and 1.

2We can normalize the delay by content’s delivery deadline to make the
delivery delay to 1. Since all interested users who have not received the content
by the delivery deadline download the content directly through cellular link,
normalized content delivery delay is never greater than 1.
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nodes) and content delivery deadline (200, 350, and 500 seconds) are compared. For the patience strategies, a downloading decision is made every 50 seconds.
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While it would be nice to have an offloading strategy that
has low downloading ratio and content delivery delay, these
objectives are not always compatible with each other: A trade-
off between cellular bandwidth usage and content delivery
delay often needs to be made. This is discussed in more detail,
in the context of simulation results, in Section V-B.

B. Results

The simulation results of the Haggle dataset are shown in
the form of boxplots® [21] in Figures 3a and 3b, respectively.
Results with different numbers of interested users (10, 20, and
30 interested users out of the 98 nodes) and content delivery
deadline (200, 350, and 500 seconds) are compared. As noted in
Section V-A2, the target-set strategy was enhanced to eliminate
the cases in which the size of the target set is greater than
the number of interested users; this allows us to access the
performance of the strategies more objectively.

An ideal offloading strategy has a small download ratio
and short delivery delay (Section V-A3). In reality, these two
goals are usually not compatible. This is evident in the three
variants of the patience-based strategy: While the eager variant
has the shortest delivery delay (Figure 3b at the expense of
largest download ratio (Figure 3a), the lazy variant has the
opposite performance trade-off and the moderate variant comes
in between. Patience-based strategy, through its parameters
(e.g., Table I), provides a control over the trade-off between a
small download ratio and short delivery delay.

One type of content that benefits the most from the situation
awareness in our patience-based offloading strategy is the
content that needs to be delivered quickly. One example is the
content that expires after 200 seconds in Figures 3a and 3b: All
variants of the patience-based strategy deliver the content with
a significantly lower celluar download ratio and delivery delay
than that of the target-set strategy. In this case, an interested user
who chooses to wait for content is very likely to either 1) receive
the content quickly from other users through the proximate
channel or 2) do not receive the content till the content delivery
deadline. For the latter case, the patience-based offloading
strategy allow those users to realize that they are unlikely to
receive the content from others (i.e., become impatient) and,
hence, download the content directly. In contrast, the same
group of users will wait the end of content delivery deadline
to download the content under the target-set strategy. This
corresponds to the shorter delivery delay of the patience-based
strategy in Figure 3b.

For a similar reason, the benefit of situation awareness,
which is the essence of the patience function (Equation (5)), is
more pronounced for the type of content with fewer interested
users: The sparsity of the interested users will make those
interested users to have a higher probability than their (probably
uninterested) neighbors to download the content (through the
interest aggregation in Equation (3)); the interested users who

3Boxplots show the second quartile (i.e., the median) along with the first
and third quartiles (i.e., 25% and 75%) in the middle box. The whiskers extend
to the extrema within 1.5 times of the inter-quartile range (i.e., the distance
between the first and third quartiles). Data beyond the end of the whiskers
are outliers and plotted as points [21].

have not received the content will become impatient in waiting
and hence download the content sooner than they otherwise
would under the target-set strategy.

For the popular content that stays fresh longer, such as the
one that is interested by 30 users and has content freshness
of 500 seconds, the target-set strategy may have a smaller
(i.e., better) download ratio than some variants of the patience-
based strategy, as shown for the case of eager variant with 30
interested users in Figure 3a. An examination of corresponding
cases in Figure 3b suggests that this advantage of the target-
set strategy is attained at the expense of a significantly longer
delivery delay (3 times as long as that of the patience-based
strategy). It also suggests that, in these situations (i.e., many
interested users and long content freshness), having only a few
users to download the content initially and allow the content to
propagate through the proximate channel could greatly reduce
cellular downloading cost. The patience-based strategy could
be optimized for these situations by tuning the parameters to
have a small maximal downloading probability (Equation (5)),
as demonstrated by the lazy variant of patience-based strategy
in Figure 3a.

Although it is not evident from Figures 3a and 3b, we
note that, unlike the target-set strategy that requires collection
of users’ contact traces for offline training (to find the
target set), the patience-based strategy only requires exchange
of information between opportunistically encountered users
while achieving comparable, or even better, performance: The
patience-based strategy is localized and online. The benefit of
the patience-based offloading is that it is more less intrusive to
users, has lower maintenance overhead for the service provider,
is more scalable, and adapts easily to the preference and
connection changes among the users.

Comparable results on the NUS dataset are shown in
Figures 4a and 4b. Despite the increase of scale (from around
100 nodes in Haggle to 1,000 nodes in NUS) and trace
regularity (NUS is synthesized from class schedules and
roasters, as described in Section V-A2), the observation and
discussion on performance trade-off and the benefits and
limitation of the patience-based strategy drawn from Haggle
still hold for NUS.

VI. RELATED WORKS

Mobile data offloading, or mobile cellular traffic loading,
is about the trade-off between the persistent but expensive
cellular links and the intermittent but cheap (often free) local
links. Balasubramanian et al. [22] and Lee et al. [23] conducted
empirical studies, and confirmed the feasibility of offloading
cellular traffic through intermittent Wi-Fi links in urban
vehicular and pedestrian settings, respectively. Han et al. [3]
proposed using Bluetooth to offload cellular traffic. The follow-
ups [2, 4] formulated mobile data offloading as a target-set
selection problem [24], and proved the approximation bound
of a greedy approximation algorithm [25]. Ioannidis et al. [26]
proved the convexity of the “timely content distribution over
mobile social network” problem and studied how the average
age of content changes when the number of users increases.
Our work complements their contributions by studying the



distribution of topical content and modeling users’ content
preference and time-varying patience for content.

The concept of centrality, which originated in sociology
to measure relative importance of social actors, has been
applied in studying computer networks. Borgatti [27] surveyed
common definitions of the centrality concept (degree, closeness,
betweenness, and eigenvector [28]). Hui et al. [17], among
others, used centrality as a hint for routing in delay-tolerant
networks. Kim and Anderson [29] adapted centralities to
temporal-evolving graphs. The significant overhead of gathering
information to compute traditional socio-centric centralities
prompts researchers to investigate alternative ego-centric cen-
tralities, especially ego-centric betweenness centrality [18]. A
finding from these investigations is that although the socio-
centric and ego-centric versions of the betweenness centrality
do not usually match in raw values, they often agree in relative
ranking [30]. Brandes, in seeking a faster algorithm to compute
the (socio-centric) betweenness centrality, implicitly extends
betweenness centrality to weighted graph [31]. Based on the
regularity of human mobility pattern [10, 11, 16], we, adapting
the ideas of Nanda and Kotz [30] and Brandes [31], define
a weighted ego-centric betweenness centrality to help users
locally decide their relative temporal topological importance.

Users’ content preference was previously considered in the
context of content-centric routing [32] and publisher/subscriber
architecture [12]. Given the preference variance for the large
number of cellular subscribers, it is also relevant for mobile
data offloading. Routing through proximity links is not a
focus of this work, and we assume flooding. We include
content preference in our model, discuss its interplay with
social importance and bounded delay tolerance, and provide a
method to consolidate them in an adaptive probabilistic cellular
offloading strategy.

VII. CONCLUSION

In offloading topical cellular content, the virtue of patience
is to allow the more capable to have better chances of serving
the common good. The patience function (Equation (5)) shows
one approach to locally synthesizing topological importance and
content demand for better offloading efficiency. The simulation
results suggest that properly involving topologically important,
but disinterested, users in downloading and forwarding content
helps in reducing cellular traffic.

These are just the beginnings; plenty of work is left to be
done. Enforcement and incentive are two important issues to
be further studied once the offloading framework is established.
Other practical issues, like packetization, buffer management,
and node churning, are omitted in the current work for
simplicity, but are unavoidable in real-world implementations.
We also plan to implement and deploy the proposed patience-
based mobile data offloading strategy in a test-bed environment,
which, we expect, will yield further insights.
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