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Abstract—With the development of Location Based Services
(LBSs), both academic researchers and industries have paid
more attention to GPS-less mobile localization on mobile phones.
The majority of the existing localization approaches have uti-
lized signal-fingerprint as a metric for location determinations.
However, one of the most challenging issues is the problem of
uncertain fingerprints for building the fingerprint map, termed
as the jigsaw puzzle problem. In this paper, for more accurate
fingerprints of the mobile localization, we investigate the changes
of Received Signal Strength Indication (RSSI) from the connected
cell-towers over time along the mobile users’ trajectories, termed
as RSSI Time Series (RTS). Thus, we propose an RTS Assisted
Localization System (RALS), which is a GPS-less outdoor mobile
localization system. For localization, an RTS map is built on
the back-end server, which consists of RTS harvested from the
mobile phones, by the way of crowdsensing. The jigsaw puzzle
problem slows down the map construction solely by the regular
unintentional users with short-distance trajectories, and affects
its efficiency. To speed up the map construction, we propose
employing a few advanced intentional users with additional long-
distance trajectories, at a higher cost than the regular user;
this is called extra mile. Our extensional experiments verify the
effectiveness of our localization system.

Keywords—Crowdsensing, jigsaw puzzle problem, outdoor mo-
bile localization, RSSI time series

I. INTRODUCTION

Over 6.8 billion mobile phones were in use all over the
world in 2013 [1]. With an increase in the number of mobile
applications, many outdoor mobile applications are getting a
lot of attention from both academic researchers and industries
[2], such as Waze, and pothole detection [3]. Global Position-
ing System (GPS) is the most popular technology for outdoor
mobile localization, with high accuracy. However, it is well-
known that localization with GPS has high energy consumption
in mobile phones [4]. Second, GPS cannot receive the satellite
signals in “urban canyons” (such as nearby tall buildings, or
by surrounding tunnels) [5], [6]. Third, since not all mobile
phones are equipped with GPS, it is required that the mobile
users additionally take the GPS devices [5], [6].

Therefore, the GPS-less localization system is required
for outdoor mobile applications, which has been investigated
by both academic researchers and industries. The majority
of the existing localization approaches have utilized signal-
fingerprint as a metric for location determinations. Yang et
al. in [7] propose to utilize RSS fingerprints, which can
be the WiFi signal strengths from multiple access points at
every location of an interested area, and accordingly build a
fingerprint database (a.k.a. radio map) in which fingerprints

are associated with the locations where they are recorded.
However, for the outdoor mobile localization, it is difficult to
record and process the fingerprints of all the positions along
the trajectory, due to the large amount of fingerprints. Thus,
the trajectory-fingerprint-based approach has been proposed
for the mobile localization. The phones carried by the mo-
bile users autonomously and continuously record the ambient
conditions, and position information as the fingerprint of the
user’s trajectory [4], [8]. Paek et al. in [9] propose to utilize
a cell-ID sequence-based localization, which is recorded by
changes of the IDs of the connected cell-towers by the mobile
phone along the user’s trajectory. Generally, the mobile phone
captures the signals of multiple cell-towers at one place, and
connects to the cell-tower with the strongest signal strength
[10]. Thus, the existence of the RSSI fluctuation problem can
cause changes to the connected cell-tower, even at the same
place, and also reduces the accuracy of the cell-ID sequence-
based localization.

However, signal-fingerprint-based approaches require a
lengthy and extensive training phase to construct a signal
fingerprinting database or map, which can be constructed
by way of two different approaches. Traditional methods of
building a fingerprint map involve a site survey process (a.k.a.
calibration), in which engineers record the RSS fingerprints
(e.g., WiFi signal strengths from multiple access points) at
every location of an interested area, and accordingly build
a fingerprint database in which fingerprints are related with
the locations where they are recorded [7]. However, site
survey is time-consuming, labor-intensive, and vulnerable to
environmental dynamics. To reduce the cost of map construc-
tion, another approach without site survey has been proposed
[7], [10], by the way of crowdsensing with some regular
unintentional users. Due to the well-known signal fluctuation
problem, the signal-fingerprints at faraway positions may be
similar [11], which cause errors within map construction.
Thus, we investigate the problem of the uncertain signal-
fingerprints in the map construction, termed as the jigsaw
puzzle problem, which requires a large number of the regular
unintentional users. As a result, the problem slows down the
map construction, and severely affects its efficiency.

In this paper, for a highly accurate trajectory-fingerprint
in outdoor mobile localization, we investigate the changes of
RSSI of the mobile phone from the currently connected cell-
tower, which is termed as RSSI Time Series (RTS). Thus, we
propose an energy-efficient, and highly accurate localization
system for mobile users, namely RTS Assisted Localization
System (RALS), by the way of crowd-participatory sensing.



The requirement for the phone configuration is that the phone
can provide the information of the connected cell-tower in-
cluding the RSSI and the cell-ID, which are supported by most
of the mobile phones. Here, the cell-ID is used to narrow the
searching range. A mobile user can query the location from the
server, by sending the RTS along his traveled trajectory. The
server matches the received RTS with the fingerprint database
(a.k.a. RTS map) for searching the continuous road segments
with the similar RTS. Thus, the server can track the road
segment where the querying user currently moves. In addition,
with the help of the peaks along the RTS on the current road
segment, the server can locate the user’s position, and feeds it
back to the querying user.

To speed up the map construction with the jigsaw puzzle
problem, we propose a novel crowdsensing-based scheme by a
few advanced intentional users. The advanced intentional user
additionally moves a longer trajectory with non-overlapped
positions, termed as extra mile, but with a higher cost than
a regular user. The basic idea behind this scheme is that, a
long-distance trajectory without overlapped road segments has
more contributions to speed up the map construction, because
it has a higher probability of distinguishing the uncertain
signal-fingerprints in the RTS map. Many studies propose that
the mobile nodes with social characteristics generally visit
community homes frequently, while other locations are visited
less frequently [12]. For example, in a campus, the students
always move from one building to another, such as from a
dormitory, a teaching building, or a restaurant. Although the
costs of harvesting the fingerprints from regular unintentional
users are cheap, their trajectories are generally short, which
make it difficult to distinguish the uncertain RSSI-fingerprints,
and cause the jigsaw puzzle problem. We discuss the efficiency
of the crowdsensing-based scheme, by considering the cost of
the intentional users, and comparing the sequential and parallel
patterns for employing the intentional users.

We conduct a comprehensive investigation of the GPS-less
mobile localization, and our technical contributions are multi-
fold, including: (1) We propose an RTS assisted localization
system, namely RALS, which utilizes the RSSI time series
for energy-efficient mobile localization. RALS utilizes the
similarity of RTS on the same road, and the peaks along the
RTS. The system is based on the way of crowdsensing by the
regular unintentional mobile users. (2) To speed up the map
construction with the jigsaw puzzle problem, we propose a
novel crowdsensing-based scheme called extra mile, combined
with the regular unintentional users, and a few advanced in-
tentional users. (3) Our extensional real experiments verify the
effectiveness of RALS and our crowdsensing-based scheme.

The remainder of this paper is organized as follows: Section
II introduces the RTS assisted localization system, based on
our observations with real experiments; in Section III, we
present the crowdsensing-based scheme of map construction;
Section IV evaluates the performance of the proposed system;
in Section V, we survey the related work; the last section
concludes this paper and presents our future work.

II. RTS ASSISTED MOBILE LOCALIZATION

In this section, we first discuss the existing solutions for the
energy-efficient mobile localization, with some observations

(a) (b)

Fig. 1. The connected cell-towers along the same route

from our real experiments. Then, we introduce the RTS assist-
ed mobile localization. At last, we introduce the architecture
of our system RALS.

A. Energy-efficient Mobile Localization

The traditional celltower-based localization is highly
energy-efficient, but it incurs errors as high as 500 meters,
which may be insufficient for the outdoor mobile localizations
[9]. Furthermore, many studies propose some energy-efficient
mobile localization schemes without the road map, for the
applications based on the arrival time prediction [9], [10],
because the travel time under them is more important than
the physical position [13]. Paek et al. in [9] present a cell-
ID sequence as the trajectory-fingerprint for outdoor mobile
localization. However, due to the RSS fluctuation problem, the
connected cell-tower at the same place can be changed. Thus,
on the same path, the cell-ID sequence recorded by the mobile
node can also be different, as can the cell-ID transition points,
which have been discussed in [9], [10].

Our real experiment is as follows: we drive a car along the
same path several times in Chengdu, China. The mobile phone
records the information of the connected cell-towers, which
includes the ID and position (i.e. longitude and latitude). The
interval time of two consequential records is less than one hour.
Figure 1 shows the two cell-ID sequences on Google Map. We
notice that the connected cell-towers along the two trajectories
are different. Moreover, the cell-ID transition points are also
changed. Zhou et al. in [10] propose a top-k cell-tower set
sequence matching method to classify the reported cell-tower
sequences, which requires to record the information of neigh-
boring cell-towers. However, many mobile phones can only
provide the information of currently connected cell-towers, and
cannot provide the information of neighboring cell-towers.

B. RSSI Time Series

For more accurate fingerprints of mobile localization, we
investigate the RSSI time series (RTS) from the connected
cell-towers along the mobile users’ trajectories. An RTS is
a sequence of data points, typically measured at successive
points in time spaced at uniform time intervals, as follows:

rts = {(t1, rssi1), (t2, rssi2), · · · , (tn, rssiw)},

where ti denotes the time index, rssii denotes the RSSI at
each time slot, and w denotes the real-valued observations.

In our real experiments, three drivers drove their cars at
different speeds, on the highway from Chengdu to Wenjiang
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Fig. 2. Similar RTS on the same road with different average moving speeds

in China, where their mobile phones in their cars recorded the
RTS as shown in Figure 2. The RTS in Figure 2(b) is gathered
two days after Figure 2(a), and the RTS in Figure 2(c) is
gathered three days later after Figure 2(a). Due to the different
speeds, the lengths of the RTS are different. Intuitively, we
notice that the shapes of the three RTS in Figure 2 are similar.
Like many studies on similarity [7], we utilize the Euclidean
distance for measuring the similarity between two RTS, and a
small distance between two RTS means they are more similar.
However, the speeds of the mobile users on the same road
can be different, which cause different lengths of RTS. For
the alignment of RTS, we adopt the algorithm of dynamic
time warping (DTW). Dynamic Time Warping is a classic
dynamic programming algorithm which has been widely used
for alignment and measuring similarity between two temporal
sequences, which may vary in time or speed [14].

We did the same type of experiment with different drivers
in three different places, 10 RTS from each place. Figure
3(a) shows the average pairwise distances of RTS from these
places. The three places are as follows: (1) HCW denotes
a highway from Chengdu to Wengjiang in China, with an
average moving speed of 15.5 m/s; (2) SJU denotes the route
of the campus bus in Shanghai Jiaotong University in China,
with an average moving speed of 5.9 m/s; (3) Montgomery
denotes West Montgomery Avenue on the main campus of
Temple University in USA, with an average moving speed of
1.3 m/s. We notice that the RTS from the same road are much
more similar than those from different roads.

C. Peaks of RTS

For indoor localization, some studies [15], [16] propose to
utilize the trend of the received WiFi signal strength changes
from increasing to decreasing when moving along the pathway.
To mitigating the RSS fluctuation problem, we investigate the
peaks along the RTS from connected cell-towers for outdoor
localization, as shown in Figure 4(a). The peaks of the RTS
are defined as the sets of the continuous data points with
local maximum RSSI, in a section of RTS with the trend
of RSSI changing from increasing to decreasing, searched
by a sliding window. Figure 3(b) shows the average pairwise
physical distance of the aligned peaks from every two places or
the same place. The distance errors of different places vary, due
to the different moving speeds. The average distance errors are
less than 200 meters, which is much less than the traditional
celltower-based localization mentioned above. Especially, the
average distance error on Montgomery is the smallest, which
is less than 12 meters. Thus, the peaks of the RTS along the
same path appear to be the same positions.

For illustrating the reason for using the peaks of RTS to
mitigate the RSS fluctuation problem, Figure 4(b) shows an
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Fig. 3. Compare the RTS from different places

example in which a vehicle first travels through the coverage
of a cell-tower, and then travels through an overlapped area
between the coverage of two cell-towers. A, B and C are the
transition points of the connected cell-towers in its trace. For
the coverage of the single cell-tower, the signal strength at the
middle point M1 can be larger than those at A or B, since M1

is the nearest position to the cell-tower. Generally, the mobile
phone captures the signals of multiple cell-towers at one place,
and connects to the cell-tower with the strongest signal strength
[10]. For the overlapped area between the coverage of two cell-
towers, the connected cell-ID at the middle point M2 may be
changed, due to the existence of the RSSI fluctuation problem.
However, the signal strength at the middle point M2 is also
the highest, relatively speaking. Thus, RALS utilizes the peaks
of RTS as landmarks for localization, which is introduced in
the next section.

D. System Overview

Based on the observation and the analysis of RTS, we
propose the RTS Assisted Localization System (RALS). Figure
5 shows the architecture of RALS. RALS includes two major
components, which are the mobile users and the back-end
server. The mobile users have two responsibilities: (1) probing
user, who uses mobile phones as well as the sensors to sense
and report the RTS to the server; (2) querying user, who
queries the location and LBS information (such as alert infor-
mation). The back-end server is responsible for collecting the
RTS from the probing vehicles, and intellectually processing
such information so as to build the RTS map.

The system of RALS includes two phases, which are the
training phase, and the locating phase. The training phase is
completed by both of the probing users and the back-end server
by the way of crowd-participatory sensing. The probing users
gather the RTS while they are moving. Then, they upload the
recorded RTS to the back-end server, when there is an available
connection to the Internet, such as WiFi and 3G/4G. In the
locating phase, the querying user also gathers the RTS where
it has moved, and then uploads it with the locating query to
the back-end server. The back-end server matches the uploaded
RTS with the RTS map, and tracks the road segment where the
querying user currently moves by the matchable RTS. Thus,
with the help of the peaks, the server can locate the position
of the querying user at the RTS map, and also predicts the
arrival time of the alert information for the querying user.

Before uploading the RTS to the back-end server, the
mobile phone partitions the RTS into several segments with
the markable intersections. Many approaches can be used
for sensing the intersections. One available approach is to
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sense the features of surround by the mobile phones, such
as the traffic lights at the intersections [17], or the ambience
fingerprinting [18]. Another available approach is to sense the
motions of the mobile users by the acceleration sensors in the
mobile phones, such as in a stop-and-go pattern [19], [20], or
the way of dead-reckoning [7], [21]. For the noises from the
raw RTS, the mobile phone filters the RTS by the median filter
algorithm (a classic filtering method), due to its computational
efficiency. In order to reduce the overhead of data transmission,
the uploaded RTS is compressed by the Shannon sampling
theorem with a pre-defined sampling frequency. By comparing
the similarities among the uploaded RTS, the back-end server
merges the similar RTS as the same overlapped road, and
connects the road segments by the order along the trajectories
in the RTS map (fingerprint database).

E. Matching RTS of the Road Segment

To track the current road where the querying user is
moving, the back-end server matches the uploaded RTS from
the querying user with the RTS map in the locating phase.
The matching process includes two steps: first, to narrow
the searching range, the server selects the RTS of the road
segments in the RTS map which has partially similar cell-IDs
of the uploaded RTS to match; second, the server calculates the
Euclidean distance between the uploaded RTS and the selected
RTS, which are aligned by DTW. Generally, for two aligned
RTS of road segments rtsi = {rssi(i)1 , rssi

(i)
2 , · · · , rssi(i)w }

and rtsj = {rssi(j)1 , rssi
(j)
2 , · · · , rssi(j)w }, define their differ-

ence (or dissimilarity) δij by the Euclidean distance as follows:

δij =
∥∥rtsi − rtsj

∥∥ =

√√√√ w∑
h=1

(rssi
(i)
h − rssi

(j)
h )2

If the dissimilarity δij is smaller than a threshold ε, then
they are treated as the same road segment. Otherwise, if δij >
ε, rtsi and rtsj are treated as two different road segments.
The determination of ε is based on the fingerprint samples
collected at a given location, as introduced in [7].

A querying user sends a query for localization to the
server, which includes the RTS and connected cell-ID sequence
along the trajectory where the user has moved. The server
matches the uploaded RTS with the RTS map in the database,

for tracking the roads where the querying user has moved.
Obviously, the longer length of RTS can increase the accuracy
of matching, which will be discussed in Section IV.

F. Localization on the Matchable Road Segment

After matching the road where the querying user moves,
RALS utilizes the travel times among the peaks of an RTS for
estimating the speed and the position of the querying user
on the matchable road. The peaks of an RTS are denoted
by the sequence of RSSI as: peaks = [pk1, pk2, · · · , pku],
where pki denotes the ith peak. The server aligns and matches
the peak sequence of RTS from the querying user with the
peak sequence of RTS in the RTS map. For example, the
two peak sequences of RTS in Figure 2(a) and 2(b) are
[−67,−64,−73,−48,−53], and [−48,−79,−52,−53], ob-
tained by the way of sliding window. The server aligns the
two peak sequences by the algorithm of DTW. The aligned
index sequences are [1, 2, 3, 4, 5] and [1, 2, 2, 3, 4], so the
aligned two peak sequences are [−67,−64,−73,−48,−53]
and [−48,−79,−79,−52,−53]. For the duplicate peaks (such
as -79 in the second peak sequence), the server reserves
the aligned pair between the two sequences with the mini-
mum distance. As a result, the two aligned peak sequences
are [−67,−64,−73,−48,−53] and [−48, \,−79,−52,−53],
where \ denotes the vacancy because of non-matchable peak.

For two aligned peak sequences on the same road, let t(q)ij
denote the travel time of the querying user between the two
peaks pki and pkj , and let t̄(s)ij denote the average travel time
between the two peaks pki and pkj from the uploaded RTS on
the back-end server. The average speed between the two peaks
pki and pkj from the uploaded RTS on the back-end server is
denoted by v̄

(s)
ij . Because the peaks of RTS on the same road

appear at the same positions, the distances among them are
fixed. Thus, the ratio (denoted by rq,s) between the speed of
the querying user (denoted by v

(q)
ij ) and the average speed in

the server can be calculated by their travel times between the
same pair of peaks, i.e. rq,s = v

(q)
ij /v̄

(s)
ij = t̄

(s)
ij /t

(q)
ij .

If the interval time of the querying user after leaving from
the peak pkj is denoted by ∆t

(q)
j , the server can locate the user

with the interval time ∆t
(s)
j leaving from the peak pkj on the

RTS map, which can be calculated as: ∆t
(s)
j = ∆t

(q)
j ·rq,s. The

server can also estimate the moving distance from the peak pkj
with the average speed as: lj = v̄

(s)
ij ·∆t

(s)
j . On the contrary,

for the arrival time applications as discussed in Section II-A,
if the average interval time on the RTS map from the peak
pkj to the target place is denoted by ∆t

(s)
j , the interval time

of the querying user from the peak pkj to the target place can
be estimated as: ∆t

(q)
j = ∆t

(s)
j /rq,s.

III. BUILDING MAP WITH CROWDSENSING

In this section, we first introduce the approach of building
the RTS map with crowdsensing. Then, we investigate the
uncertain fingerprints in map construction, termed as the jigsaw
puzzle problem. To speed up the map construction, we propose
an approach called extra mile, which employs the regular
unintentional users and a few advanced intentional users.
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Fig. 6. An example of clustering the RTS

A. Building RTS Map without Site Survey

The back-end server of RALS manages the RTS map. Due
to the drawbacks of the map construction with site survey
mentioned above, that of RALS is without site survey. On the
back-end server, the RTS map is built by the uploaded RTS
from probing users. The mobile users upload the RTS along
their trajectories to the back-end server, and the uploaded RTS
is divided into several segments by the intersections of roads.
The server clusters multiple RTS based on their similarities,
and the similar RTS are put in the same cluster, which are
regarded as the same road segments. As shown in Figure 6(a),
four probing users (A, B, C, and D) upload the RTS along
their trajectories to the server, as an intuitive example. Each
of their trajectories covers two road segments. For example, A1

and A2 are the RTS of two road segments along A’s trajectory.
When the server harvests the RTS by the way of crowdsensing,
it calculates the pairwise RTS differences (or dissimilarities)
δ, and stores them as a distance matrix, denoted by D. D is
a n-by-n matrix, where n denotes the number of the RTS.
The matrix is a symmetric, square matrix with zeros along the
diagonal, and each cell D(i, j) denotes the Euclidean distance
between the ith and the jth uploaded RTS mentioned above.
Figure 6(b) shows the distance matrix of the RTS uploaded by
the four probing users. The lattice with the cold color (blue)
indicates the small distance between the two RTS, and that
with the warm color (red) indicates the large distance.

For visualization, the server can map these RTS into a d-
dimensional space by multidimensional scaling (MDS) [22],
based on the distance matrix D. MDS is a set of related
statistical techniques often used in information visualization
for exploring similarities or dissimilarities in data. Seeing inter-
device distances as a metric of dissimilarity, many approaches
of network localization adopt MDS as a tool for calculating
the locations of wireless devices [7]. An MDS algorithm
starts with a matrix of item-item dissimilarities, then assigns
a location to each item in d-dimensional space, where d
is specified a priori. MDS returns the coordinates in a d-
dimensional space for these RTS, and the RTS of each road
segment is denoted by an RTS node. The resulting locations
of RTS for the example are displayed in a 2D graph, as shown
in Figure 6(c). Each RTS node denotes the RTS of a road
segment, and each directional edge denotes the order of the
two RTS in the same trajectory.

The server clusters these RTS in the d-dimensional space
by applying k-means clustering [23] (a classic clustering
method), which is chosen due to its computational efficiency.
Here, k is set to be the number of road segments in a real map.

In Figure 6(c), the integer number near each node denotes the
index of the cluster which the node belongs to, by k-means
clustering. The arrows denote the order of the RTS nodes along
the trajectories. The RTS in the same cluster is regarded as
being from the same road segment. However, we notice that
A1, B2, C1, and D2 are put into the same cluster, which is not
correct. This is because the dissimilarity of RTS between the
two road segments is not clear enough for distinguishing by
k-means clustering, due to the RSSI fluctuation problem. We
term the problem of the uncertain fingerprints as the jigsaw
puzzle problem, which need more RTS from the unintentional
users, and slows down the map construction.

B. Jigsaw Puzzle Problem with Uncertain Fingerprints

In the map construction of RALS, each road segment can
be regarded as a puzzle piece. While two RTS are adjacent
in a trajectory, they are two compatible puzzle pieces, which
can be merged into a bigger RTS. However, due to the RSSI
fluctuation problem, the RTS of different road segments may
be similar, which causes the false positive problem in the
clustering of the map construction, as a problem of jigsaw
puzzle. In k-means clustering, we set k as the number of road
segments in this area. Thus, if the RTS from the different road
segments are allocated in the same cluster (i.e. false positive),
some other RTS from the same road segments can be divided
into two clusters (i.e false negative).

As a result, our goal is to detect the uncertain clusters with
uncertain fingerprints. We define a confidence value to measure
each cluster obtained by k-means clustering. The confidence
value of the ith cluster is calculated as: cvi = e−

τi
α , where τi

denotes the average distance of all elements in the ith cluster
to its centroid, and α is an coefficient. The confidence value
of a cluster is determined by the dissimilarity (or distance)
among the RTS in the cluster. If the confidence value is smaller
than a predefined threshold, we term the cluster with the low
confidence value as an uncertain cluster.

After detecting the possible uncertain clusters, the system
needs to distinguish whether the RTS nodes of each clus-
ter are from the same road segment. Thus, we propose a
crowdsensing-based scheme, and the basic idea is that the
trajectory with non-overlapped road segments, which covers
the road segments with similar RTS, can help to distinguish
these RTS in the corresponding uncertain cluster.

We define the size of an area as the number of the road
segments in this area, and define the length of a trajectory as
the number of non-overlapped road segments covered by this



(a) 2D graph (b) 3D graph

Fig. 7. Virtual temporal map with four road segments

trajectory. Thus, in an area with a size of k, the number of the
possible similar pairs is equal to

(
k
2

)
= k(k−1)

2 . For a trajectory
with a length of m, the number of the possible distinguishing
pairs is equal to

(
m
2

)
= m(m−1)

2 . We define the certainty as
the probability of distinguishing a pair for a trajectory in the
area, which can be calculated as follows:

Certainty(m, k) =

(
m
2

)(
k
2

) =
m(m− 1)

k(k − 1)

Theorem 1: The certainty for a long trajectory with m
non-overlapped road segments is larger than the sum of
certainties of g short trajectories, with m1,m2, · · · ,mg road
segments, respectively, where m ≥

∑g
i=1 mi, and mi > 0. i.e.

Certainty(m, k) >
∑g

i=1 Certainty(mi, k).

Proof:

Certainty(m, k)−
∑g

i=1 Certainty(mi, k)

=
m(m−1)−

∑g
i=1[mi(mi−1)]

k(k−1) ≥ m2−
∑g

i=1[m
2
i ]

k(k−1)

≥ (
∑g

i=1 mi)
2−

∑g
i=1[m

2
i ]

k(k−1) =
∑

1≤i,j≤g,i ̸=j [2mimj ]

k(k−1) > 0

Thus, Certainty(m, k) >
∑g

i=1 Certainty(mi, k).

Therefore, short-distance trajectories cause difficulty in
distinguishing the two distant roads with similar RTS, which
cause the jigsaw puzzle problem.

For the ith possible similar pair of RTS, its probability of
being distinguished by the trajectory X with a length of m, can
be calculated as: Pi = Certainty(m, k). Thus, the entropy of
the trajectory X with a length of m in the area with a size of
k, can be calculated as follows:

H(X) = −

k(k−1)
2∑

i=1

Pi log2 Pi = −m(m− 1)

2
· log2

m(m− 1)

k(k − 1)

We notice that for a fixed size of the area, the shorter
trajectory has larger entropy, i.e. higher uncertainty of being
distinguished among the uncertain fingerprints.

C. Speeding up the Map Construction

RALS employs some regular unintentional users in the
map construction. The regular users sense RTS unconsciously
along their normal trajectories, with the cheapest costs. As
mentioned above, many studies propose that the mobile nodes
with social characteristics generally visit community homes
frequently, while other locations are visited less frequently
[12]. As a result, the distances of the trajectories from the

regular unintentional users are generally short. To speed up
the map construction, RALS employs a small number of the
intentional users with an additionally longer trajectory, termed
as extra mile. The issues of the incentive schemes for mobile
phone sensing [24] is out of the scope of the paper.

For an intentional user, the challenging issue is to design
a long trajectory without overlapped roads. One way is to hire
the mobile node moving on the pre-defined trajectory without
overlapped roads, such as the passengers on a bus. Another
way is to help the intentional user randomly move without
overlapped roads solely by the commonly available cheap
sensors in the mobile phones, which combines the following
information of sensing: (1) sensing the intersections as in
the aforementioned introduction; (2) sensing the landmarks
at the intersections, such as cell-ID, surround sensing [18];
(3) sensing the turning direction at each intersection with
the cardinal directions, by acceleration sensors and orientation
sensors with arbitrary orientations of the mobile phones, which
has been presented in [20]. Consequentially, the mobile phones
of the intentional users record the landmarks and the turning
directions of all the intersections along their trajectories, in or-
der to avoid moving onto the overlapped road segments, which
have the same entrance intersection and turning direction.

The cost of intentional users should be higher than that
of unintentional users. Let ci(m, k) denote the cost of the
trajectory with a length of m in an area with a size of
k, which is defined as: ci(m, k) = am

k , where a is the
coefficient with a small value between 1.3 and 2. For the
selection of the coefficient a, we define a cost-effectiveness
ratio as the ratio between the certainty and the cost of the
trajectory with a length of m in the area with a size of k,
i.e. Certainty(m, k)/ci(m, k). We notice that: (1) a longer
trajectory has a higher certainty, but the cost-effectiveness ratio
is not monotonically increasing with the length of trajectory;
(2) the small size of the area has a higher cost-effectiveness
ratio. Thus, in order to narrow the area for the intentional users,
their trajectories should have the same cell-IDs as the RTS in
the uncertain cluster. Because the mutual coverage range of
these cell-towers is limited, the size of the area is also limited.

As shown in Figure 6(a), the system additionally employs
an intentional user E, who travels a trajectory with the length of
3, i.e. E1, E2, E3. After k-means clustering, the RTS nodes A1,
B2, C1, D2, E1, and E3 are put in the same cluster. However,
due to E’s trajectory with non-overlapped road segments, the
RTS nodes E1 and E3 should be partitioned into two different
clusters. According to the dissimilarities from E1 and E3 in
the distance matrix, the other RTS nodes in this cluster are also
partitioned into two clusters. The revised result of clustering
is shown in Figure 6(d).

For each road segment, the server calculates the average
travel time and the average RTS, with the aligned RTS in
the corresponding cluster by DTW. We assume all the road
segments are bi-directional, and both directions on the same
road segment have the same average moving speed. The
distance between two samples along the RTS of the same
road segment is defined as the travel time between them.
After clustering, the server obtains the adjacency among the
clusters (i.e the road segments), with the help of the orders of
RTS along the trajectories, which is denoted by the arrows in
Figure 6(d). Thus, all the road segments are connected, and
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Fig. 8. Performance of map construction with crowdsensing

TABLE I. EXPERIMENT SCENARIO

Route Description Distance Speed
HCW Highway from Chengdu to Wengjiang, China 5 km 63 km/h
HCC Highway from Chengdu to Chongzhou, China 25 km 80 km/h
SJU Campus shuttle bus of SJU, China 3 km 22 km/h
CDC Roads at the downtown of Chengdu city, China 5 km 28 km/h

Temple Main campus of Temple University, USA 5 km 5 km/h

the distance between two samples from the RTS of different
road segments is calculated by the shortest path based on the
travel time along the RTS. Based on the pairwise distances
among the samples of all the road segments, the server can
obtain a virtual temporal map by MDS, as shown in Figure 7.
In the map, each small node denotes a sampling point along
the RTS, and its color denotes the RSSI at the sampling point.
The big black nodes denote the intersections.

IV. IMPLEMENTATION AND EVALUATION

In this section, we first present our experiment environment
and methodology. We evaluate the map construction with
crowdsensing, the impact of the length of RTS on matching,
and analyze the accuracy of localization.

A. Experimental Methodology

We implement a prototype system on the Android platform
with different types of mobile phones, and collect the real data
over a 3-month period in years 2012 and 2013.

1) Experimental Scenario: We did the experiments at five
different places, which are listed in Table I. The routes HCW
and HCC are the highways with an average speeds of 63 km/h
and 80 km/h. The route SJU is the campus bus in SJU with
an average speed of 22 km/h. The route CDC is on the roads
of downtown Chengdu, with an average speed of 28 km/h.
The route Temple is on the roads of Temple University’s main
campus, by walking with the average speed of 5 km/h.

2) Mobile Phone: We have tested different mobile phones
are as follows: (1) China TeleCom in China: Huawei C8650
with Android 2.3, HTC S710d with Android 4.0, Samsung
Galaxy SIII with Android 4.1; (2) T-Mobile in USA: Samsung
Galaxy SIII with Android 4.1, Motorola MB860 with Android
2.3, Google Nexus 4 with Android 4.3.

3) Back-end Server: We implement the back-end server on
the Dell DCD0, with Intel Xeon X5473 3.0 GHz Processor, and
16GB Memory. The localization service can be implemented
in a computing cloud, which has been discussed in [10].

B. Map Construction

We did the experiments on the main campus of Temple
University, which includes 12 one-way roads. The trajectory
of each unintentional user includes two road segments, and the
trajectory of each intentional user includes four road segments.
We compare the sequential and parallel patterns for advanced
intentional users. The system hires a single intentional user
during each round in a sequential pattern, and hires multiple
intentional users during each round in a parallel pattern. We
limit the number of rounds to 6. To evaluate the quality of
the clustering for the map construction, the metric of mutual
information is introduced [25], [26], which is based on the
Shannon information theory. Let the set {xi} denote the cluster
assignments by RALS, and let set {yi} denote the correct
results generated by GPS; then mutual information shows how
much information is mutual for the information from {xi}
and {yi}. The mutual information is equal to 0 if the cluster
assignment is totally different with the correct result, and it
is equal to 1 if the cluster assignment is consistent with the
correct result, which is the goal of map construction.

Figure 8(a) shows the mutual information (or quality) of
map construction by only unintentional users. We notice that
the mutual information by unintentional users increases slowly,
due to the uncertain clusters. Figure 8(b) shows the incremental
mutual information by adding intentional users after the map
construction with different numbers of unintentional users,
which is compared with the sequential and the parallel patterns
during each round. We notice that large numbers of parallel
intentional users can improve the quality of map construction.
Figure 8(c) shows the number of rounds by adding intentional
users. We notice that large numbers of intentional users during
each round can reduce the number of rounds, and speed up
the map construction. In addition, with more unintentional
users, the number of rounds decreases. Figure 8(d) shows the
average efficiency, defined as the average ratio between incre-
mental quality and total number of intentional users. Although
parallel intentional users can increase the incremental quality
and reduce the time of map construction, the efficiency is
decreased, due to the increasing number of intentional users.
For visualization, we plot the 2D and 3D virtual temporal maps
of the 12 road segments by MDS according to the results of
map construction, as shown in Figure 9.

C. Impact of the Length of RTS on Matching

In the locating phase of RALS, the server should track the
road where the querying user is currently moving, by matching
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Fig. 9. Virtual temporal map with twelve road segments
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Fig. 12. Error of arrival time prediction

the RTS uploaded from the query user with the RTS map. We
evaluate the impact of the length of the uploaded RTS on the
accuracy of matching for tracking the query user. We utilize
false positive for evaluating the performance of matching
between the uploaded RTS and the RTS map. The experiment
scenarios include three different types of roads, which are
the highway (HCC), the urban city (CDC), and the campus
(Temple). Figure 10 shows the false positive for matching
over different lengths of uploaded RTS. We notice that the
false positive of matching is decreasing, while the length of
uploaded RTS is increasing, due to the more information for
matching. The performances on different roads are different,
because of the different speeds on these roads.

D. Accuracy of Localization

In the locating phase of RALS, the server aligns two
matchable RTS by DTW. We evaluate the accuracy of the
alignment, which can be regarded as its accuracy of local-
ization. The outdoor localization with GPS has the highest
accuracy, which can serve as the benchmark for our energy-
efficient localization. We define location error as the average
real distance of the GPS positions of the aligned pairs of points
from the two matchable RTS. Figure 11 shows the location
error under different scenarios. We notice that the average
distance error is less than 50m in CDC and Temple, because of
the short distances of the road segments and the lower moving
speed. The average distance error of the campus bus is about
100m, and the average distance error of the trajectories on the
highway is less than 200m, because of the different moving
speeds. The results are are much less than the traditional
celltower-based localization mentioned above.

Moreover, we compare the error of arrival time prediction
under different moving speeds, among our proposed RALS,
the cell-ID sequence-based CAPS [9], and GPS-P. Here, GPS-
P denotes that the prediction of arrival time is only based
on the positions information obtained by GPS, without any

temporal information. We randomly select five points along
each trajectory at different places as the target points, for
the prediction of the arrival time, and compare it with the
actual arrival time from the trajectory. Thus, we define the
error of arrival time prediction as the difference between the
arrival time by the localization system and actual arrival time,
and the results are shown in Figure 12. We notice that the
error of RALS is much less than CAPS, and the accuracy of
RALS is more than two times than that of CAPS. The error
of RALS is better than GPS-P, because RALS also considers
the different speeds of mobile users. Particularly, in the tunnel,
the performance of GPS-P is much worse than that of RALS,
because the GPS device of the mobile user cannot receive the
satellite signals for localization.

V. RELATED WORK

Wireless Localization: Recently, much research has fo-
cused on the problem of locating and tracking mobile users,
which includes indoor localization and outdoor localization.
Bahl and Padmanabhan in [27] propose a radio-frequency
based system (RADAR) for locating and tracking users inside
buildings, which uses signal strength information gathered at
multiple receiver locations to triangulate the user’s coordinates.
Constandache et al. in [21] design and implement Escort, a
system that guides a user to the vicinity of a desired person in
a public place. Shen et al. in [16] define WiFi-Marks, which are
special pathway locations at which the trend of the received
WiFi signal strength changes from increasing to decreasing,
when moving along the pathway.

GPS-less Outdoor Localization: Many studies [21] have
drawn attention to the tradeoff between energy and location
accuracy. While GPS is fairly accurate, its continuous usage
can drain a phone’s battery in less than 8 hours. Thus, Paek
et al. in [4] present RAPS, a rate-adaptive positioning system
for smartphone applications. It is based on the observation
that GPS is generally less accurate in urban areas. For energy-



efficient outdoor mobile localization, Paek et al. in [9] present
CAPS, which is based on the cell-ID sequence of currently
connected cell-towers along the users’ trajectories. Wang et al.
in [8] propose a continuous system location service for outdoor
scenarios (Wheeloc), which relies solely on commonly avail-
able cheap sensors such as accelerometer and magnetometer.

Crowdsensing: Mobile phone sensing is a paradigm which
takes advantage of the pervasive smart-phones to collect and
analyze data beyond the scale of what was previously possible.
Yang et al. in [7] investigate novel sensors integrated in modern
mobile phones, and leverage user motions to construct the
radio map of a floor plan, which was previously obtained only
by site survey. Zhou et al. in [10] investigate the application of
the prediction for the bus arrival time. They do not require the
absolute physical location reference, and they mainly wardrive
the bus routes and record the sequences of observed cell-tower
IDs, which reduces the initial construction overhead.

VI. CONCLUSION

For an energy-efficient and accurate mobile localization, we
design RALS, an RTS assisted localization system. It is divided
into the training and locating phases. In the training phase, the
back-end server harvests the RTS from the probing user by
the way of crowdsensing, and builds the RTS map, based on
the similarities among the RTS. However, the trajectories of
the regular unintentional users are often limited to being short,
and the map construction with short trajectories can cause the
jigsaw puzzle problem. The jigsaw puzzle problem slows down
the map construction, and affects its efficiency. Thus, RALS
hires a small number of the advanced intentional users, who
can move a longer distance for collecting the RTS, in order
to speed up the map construction. In the locating phase, by
matching the similar RSSI time series, RALS can track the
road where the querying user currently moves; by considering
the travel times among the peaks along the RTS, RALS can
locate the position of the querying user on the matchable road.
Our extensional experiments verify the effectiveness of our
outdoor mobile localization system. In our future work, we
will develop RALS for more complicated scenarios.
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