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Abstract—The database-driven spectrum access system re-
cently attracted increasing amounts of attention. It has more
benefits compared to the traditional sensing-based systems. To
build a more practical and reliable system, a hybrid sensing-
based and database-driven spectrum access system is a promising
solution. In this paper, we consider the integration problem of
the database information and sensing results, which is a very
important factor in order in realizing the hybrid system. We
propose the integration framework, which is implemented on
the database engine. The framework is divided into two main
components. The first one is to process the sensing results, which
contains the predictions for locations without sensing results, and
the fusion policy on the sensing samples. The second component is
the dynamic integration process of the generated sensing results
and the database information. We first model the evaluation of
the integration results as a Partially Observable Markov Decision
Process (POMDP), which enables the database engine to know its
current status. Then, we propose an iterative algorithm for the
database engine to dynamically adjust its integration policy. In
this way, the balanced status of the generated spectrum map is
maintained. Simulations are conducted to reveal the performance
of our framework.

Index Terms—Dynamic spectrum access, database-assisted, hy-
brid spectrum access systems, integration policy.

I. INTRODUCTION

To solve the spectrum congestion problem, spectrum sharing
between primary users (PUs) and secondary users (SUs) is a
promising solution [1], [2]. In order to make the spectrum
sharing more practical, the key issue lies in the protection of
PUs, which requires each SU, or node, to make sure that no
active PU exists when accessing the spectrum. Therefore, an
effective spectrum access system is necessary.

Many existing works are built on the spectrum sensing-
based systems [3]–[5], which have SUs to sense the spectrum
and only access it when PUs are inactive. However, it has very
high requirements on the sensing accuracy. Also, it is time-
consuming and degrades the network performances for SUs.
Moreover, the sensing results tend to be more aggressive, since
it predicts the spectrum opportunities only based on a certain
time period. Once the PUs become active, the corresponding
SUs need to quit from the spectrum in order to protect PUs.

Nowadays, a new spectrum access system, which is based
on the spectrum database, has attracted more and more at-
tentions [6], [7], which is currently applied in TV white
space. The spectrum database usually contains static data, e.g.,
regulatory rules. Given the SUs’ location and time information,
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Fig. 1. Motivations for the integration framework.

the database is able to calculate the access rules. However, the
existing methods for calculating the spectrum access rules are
overly conservative, which reduces the spectrum opportunities
for SUs, especially in metropolitan areas.

Given the pros and cons of sensing-based and database-
driven spectrum access systems, one obvious solution comes
up, which is a hybrid system of both. The information provided
by a spectrum database can give the conservative spectrum
access schemes, while the SUs’ sensing results can be used
for local adjustments to provide more spectrum opportunities.
However, the hybrid system is not easy to achieve. One
question arises: how does the integration of the database
information and sensing results work?

To answer the integration question, several issues from
different aspects need to be considered. The first one is the
coverage issue of sensing results. Since the sensing results
are provided by SUs, not every location has the reported
sensing results. We need to make use of some statistical
methods to predict the sensing results at some locations.
The second question is the weighted integration of database
information and sensing results. We know that, in general, the
database information is conservative and the sensing results are
aggressive. But how to quantify the conservative or aggressive
levels is a problem. Other issues, like how to format the
sensing results to be compatible with database information,
are not within the scope of this paper. They are more related
to the sensing techniques used and the propagation models of
the physical layer.

An example is shown in Fig. 1. Suppose there is a PU and
several SUs, {i, j, k}. When the PU is active, the information
given by the database will claim that nodes within boundary B
cannot transmit data. However, it is possible that the sensing



results of node i and/or other nodes claim that the boundary
of the PU area is A. Therefore, for node i, it cannot access the
spectrum based on database information while it can see the
spectrum opportunity under the sensing results. Therefore, an
appropriate integration scheme is necessary. Also, as discussed
above, the sensing results cannot cover every location. In this
example, we can make use of the sensing results from {i, j, k}
to make predictions for their nearby locations.

In this paper, we consider the integration problem under
the hybrid spectrum access systems of the database-driven
and sensing-based models. We assume the existence of the
database engine, which takes inputs from database and sensing
results, and implements the integration phases. We propose our
integration framework, which solves the problem from two
components. The first component is to construct the sensing
information for locations that have no sensing results reported.
The second component is to find a balanced combination of
the database information and the sensing results.

For the first component of our framework, we can make use
of the spacial-based statistical methods to predict the sensing
information for locations that have no sensing results reported.
The database engine first collects the sensing results from SUs.
It decides the optimal sample size for the fusion of sensing
results. Then, it depicts the spectrum map purely based on the
collected and predicted sensing information. The constructed
spectrum map is not for spectrum access, but for the use of
integration. In this way, for any location, both the sensing
results and the database information are accessible.

For the second component of our framework, we need
to find a balanced combination of the database information
and sensing results. Obviously, this is not a one-step work.
Instead, we need to evaluate the current weight assignments
and make iterative adjustments. To evaluate current settings
of the integration, we formulate the process as a Partially
Observable Markov Decision Process (POMDP). The database
engine needs to first find out if the current combination of
database information and sensing results is too aggressive,
conservative, or balanced. However, it is difficult for the
database engine to tell its current status. The formulation of
the POMDP solves the problem for the database engine.

After the database engine evaluates its current status, it
needs to make adjust, or simply keep the settings if it is
balanced. We propose an algorithm, which uses a stepwise
based scheme for weight adaptations. It is performed by the
database engine iteratively, combined with the POMDP, to
maintain the balanced status of integration policy.

The main contributions of our work can be summarized as
follows:

• We propose an integration framework for the hybrid
spectrum access systems, which solves the problem of
how to combine the static database information and
dynamic sensing results.

• We solve the coverage issue of the sensing results by
applying spatial statistics-based methods, and make the
database engine aware of the optimal sampling sizes for
the fusion of sensing results.

• We formulate the evaluation of integration policy as a
POMDP, which enables the database engine to become
aware of the current status.

• A stepwise-based algorithm is proposed for the database
engine to dynamically adjust the weights for integration,
which maintains the produced spectrum map in a bal-
anced status.

Our paper proceeds according to the following organization.
In Section II, we discuss the related works. We introduce
two preliminaries in Section III. The problem formulation is
shown in Section IV. We discuss our integration framework
in Section V, which provides the details of main components.
The performance evaluation is described in Section VI. We
conclude our paper in Section VII.

II. RELATED WORKS

In this section, we discuss our related works from two
aspects. One is about the practical issues for applying ge-
olocation databases on spectrum sharing. Another is about
the performance improvement under the spectrum database
framework.

A. Practical Issues for Applying Geolocation Database

There have been many works done on the TV white space
area. The model “SenseLess” in [7] is under the database-
driven white space network. It provides a complete service to
ensure an efficient white space networks while protecting PUs.
Authors in [8] provide the overview of the radio environment
map for the realization of dynamic spectrum access. Their
model makes use of multi-domain information from gelocation
databases, e.g., characteristics of spectrum use, geographical
terrain models, propagation environment, and regulations. The
work in [9] compares different estimation methods and studies
the accuracy of the signal strength estimation for a primary TV
network, which is used for including measurement data into a
database’s prediction process.

B. Performance Optimization for Database-driven Framework

Many efforts are put into the improvement of the perfor-
mance for the database-driven spectrum access system. In
[10], a game theoretic approach is proposed for the database-
assisted white space access point network design. They model
the channel selection problem as a distributed game in each
access point, and prove the convergence of a state-based Nash
equilibrium. Regarding the security aspects, authors in [11],
[12] study the location robustness and privacy issues in the
database-driven networks. In [13], they focus on improving the
accuracy of the geolocation databases through their collected
spectrum sensing samples in a TV network area. Since the
database requires the SUs’ locations to run spectrum infor-
mation queries, it becomes challenging when SUs are mobile.
Authors in [14] propose a framework to support mobile users.



C. Differences of Our Work

Our work proposes a framework to make the application of
the geolocation database more practical. We consider both the
practical issues and the performance improvement. The dif-
ferences of our work contain several aspects. Our framework
enables the hybrid spectrum access system of both database-
driven and sensing-based schemes. Our focus is the integration
of the information from both sources and to provide a more
reliable and useful spectrum map for each SU. Also, we
improve the performance by considering the optimal sample
sizes and the dynamic update of the integration policy.

III. PRELIMINARIES

In this section, we discuss two preliminaries for our frame-
work. The first one is the format consistency issue of the
database content and sensing data. The second one is the
overview of POMDP.

A. Format Consistency

Our framework focuses on the integration process, which
defines the fusion policy. However, it is not obvious regarding
how to format the sensing information in a consistent manner
with the database content. The raw sensing data is very likely
to have the different formats as the database records, especially
considering when different sensing techniques are used. The
formatting process depends on the specific sensing technique
used by the SUs [3], [15]. In our paper, we study the scenario
of energy detection, and the target data field is the interference
to PUs. The raw sensing data contains the received signal
strength. Without loss of generality, the collected sensing
samples contain two cases, with or without PU signals. There
are many existing works [4], [16] regarding the decision policy
of sensing results. Moreover, the propagation model plays
an important factor during the formatting process, which is
highly related to the terrain information. It takes the detected
signal strength, terrain information, etc., as inputs, and outputs
the estimated detected interference level. In our following
sections, we omit the formatting part of the physical layer,
and concentrate on the integration process of the conservative
and aggressive data.

B. Overview of POMDP

The speciality of POMDP is that instead of tracking one
explicit state, it maintains a probability distribution of all
possible states, which is a belief state. During the update
process, the belief state provides a confidence score. The
POMDP framework is very general for modelling a sequential
decision process. The optimal action maximizes/minimizes the
expected rewards. The factors of a POMDP usually include
states, actions, state-transition probabilities reward function,
observation, and observation probabilities. We will give more
detailed descriptions in our modeling process. The reason we
apply POMDP here is because the database engine, which will
be introduced later, cannot directly observe its current state of
the integration process. The underlying process is a Markov
Decision Porcess. The database engine can only maintain a

probability distribution over the set of possible states, making
observations based on SUs’ feedbacks. The modeling and
decision process will be introduced in the following sections.

IV. PROBLEM FORMULATION

In this section, we first describe the network environment
and assumptions. Then, we discuss the objectives and chal-
lenges of our problem.

A. Network Environment

We assume that there exists the spectrum database, which
enables the database-driven spectrum sharing. The database
is able to provide the channel availabilities based on static
information, such as regulatory rules. The information pro-
vided by the database is usually too conservative. It may
mark some locations that are capable of dynamic spectrum
access as unavailable. The database is centralized, although
its architecture can be hierarchical to enable fast access.

Suppose there are a set of SUs, denoted as N , in the
area, covered by the centralized database. SUs access the
spectrum based on the information of database. Also, SUs
perform spectrum sensing, which is independent from database
information. But the sensing results are only reported to the
database, instead of being used directly by SUs for spectrum
access. The sensing results by SUs can be too aggressive, since
the sensing results are only valid for a certain time period.
Also, it is impractical for the sensing results to cover every
location.

The integration of the database information and sensing
results is necessary, in order to provide a more accurate
spectrum map for dynamic spectrum access. We assume that
the database has a database engine, which is able to collect
the sensing results from SUs, and has the processing ability
to perform integration. Another assumption is that SUs are
willing to report their sensing results to the database, to get a
better spectrum access performance in the long run.

B. System Objective

The integration results can be viewed as a generated spec-
trum map at each location. The accuracy of the spectrum map
can be evaluated through two metrics: 1) missing detection,
pm; 2) false alarm, pf . pm is the probability of missing the
detection of an active PU, and pf is the probability of falsely
reporting an available spectrum opportunity as unavailable.
Our objective is to minimize pf + pm through the integration
process. The constraint of our problem is protecting PU
sessions from being interfered with.

Due to the coverage and accuracy limitations of database
information and sensing results, it poses two main challenges
to our model:

1) The sensing results are impractical to cover every loca-
tion. Therefore, for a certain location, the database is
unable to perform the integration process without the
sensing results;

2) The database has no knowledge about the conservative
level of the database information, or the aggressive level



of the sensing results. It needs to find an approach to
combine the results from two resources.

With the above challenges taken into accounts, in the
following sections, we propose our solution to achieve the
objective. We consider the practical issues as well as the
performance requirements, and present our approach from two
main components.

V. INTEGRATION FRAMEWORK

In this section, we propose our framework for the integration
of database information and sensing results. We first describe
our framework overview. Then, we present the two compo-
nents of our approach in detail.

A. Framework Overview

Our framework can be divided into two main components.
One is the generation of sensing information for some lo-
cations without their corresponding sensing results reported.
Another one is the dynamic combination of the database in-
formation and sensing results. The overview of our framework
is as follows:

• For a certain location, if there are sensing results reported
by SUs, then nothing needs to be done. Otherwise,
the database engine needs to apply spatial statistics-
based methods, as to generate the corresponding sensing
information. Then, the database engine purely uses the
sensing information to depict the spectrum map;

• After the spectrum availabilities are generated by sensing
results, the database engine combines the results with
the corresponding availability information existing in the
database. This integration process is formulated as a par-
tially observable Markov decision process. The weights
of both resources are adjusted dynamically, based on
feedbacks of pf and pm values.

We assume that the sensing results reported by SUs are
accurate. The security related issues are out of the scope of
this paper. When SUs need to access the spectrum for data
transmission, they perform spectrum sensing, and report the
sensing results to the database. The database performs the
integration, and the integrated results would be returned to
the SUs. With the spectrum map returned by the database,
SUs access the spectrum and return the feedbacks back to
the database. The feedbacks contain information regarding
whether PUs are found or SUs sessions are interrupted by
PUs. We will discuss the details in the following subsections.

B. Depicting Sensing Results

The depiction of the collected sensing results is performed
by the database engine. It contains the process of retrieving
information from the collected sensing results, which can
be further divided into two phases: 1) estimate the sensing
information for locations without sensing results reported; 2)
process the collected and estimated sensing results to compute
the spectrum availability for each location.

Algorithm 1 Depicting sensing results by database engine.
1. for each location li do
2. if si is not collected then
3. Calculate si using Eq. (1);
4. Calculate the availability using Theorem 1;
5. return The generated spectrum map.

1) Measurement-based estimation: There are many algo-
rithms that can be applied for the measurement-based esti-
mation. We apply the inter- and extrapolation here. This is
because, in our model, the local spatial correlation regarding
the spectrum sensing results can be found easily.

We adopt the interpolation by Delaunay triangulation. Sup-
pose that the sensing results are expressed by sensed signal
strength. For a node i, we use si to denote the sensed signal
strength by node i, and vector li to denote the location of i.
li =< lxi, lyi >, where lxi is the latitudinal direction and lyi
is the longitudinal direction. To predict the sensing results at
a given location, we assume that the sensed signal strength at
the location of node i is unknown. Then, suppose that node i
and three other nodes h, j, k, are within a convex hull, and
the sensing results at these three nodes are unknown. Then, si
can be calculated as:

si = sh + αsj + βsk, (1)

where

α =
lxilyk − lyilyk
lxj lyk − lyj lxk

,

β =
lxilyk − lyilyk
lxklxj − lyklyj

.

For scattered signal outside the convex hull, extrapolation
can be applied by calculating the gradient of the boundary. The
inter- and extrapolation is straightforward for illustrating our
framework. Other methods can also be used under different
scenarios.

2) Fusion policy: Another problem that arises here is the
fusion policy of each node’s sensing results. This is important
in our model, since we put the calculation at the database
engine, and the fusion policy is a key factor for the spectrum
database to depict the retrieved sensing results. Traditional
AND/OR rules are simple and easy to compute. However,
since the database engine can have very powerful calculation
ability, we can adopt the optimal voting rule for the fusion of
our framework, which is represented as Kopt-out-of-K voting
rule (the proof can be found in [17]):

Theorem 1. Suppose the total sample size is K, the optimal
voting rule for minimizing pf + pm at the database engine is:

Kopt = min
(
K,

⌈
K

λ

⌉)
, (2)

where λ is the measurement of each node’s sensing ability,
and ⌈·⌉ is the ceiling function.
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Fig. 2. An example of the integration and spectrum access.

Having both the measurement-based estimation method and
the fusion rule ready, the algorithm that runs on the database
engine is described in Algorithm 1. After the spectrum avail-
ability is generated for each location, the spectrum map can be
obtained. One thing to notice is that the information contained
in the spectrum map is multi-dimensional, which could contain
the location, available time duration, and spectrum frequencies.
The information of spectrum map can be altered based on
different user queries.

The sensing results are used for integration, rather than the
spectrum access at each node. An example is given in Fig. 2 to
illustrate the process. Suppose there are four locations of nodes
{h, i, j, k}. The sensing results are collected by the database
engine at locations {lh, lj , lk}, and there are no sensing results
at li reported. The database will first estimate the spectrum
sensing results at li, and calculate the spectrum map for the
four locations using Algorithm 1. However, the four nodes do
not use the sensing results for spectrum access, but use the
spectrum map returned by the database. The sensing results
are integrated with the database information, and are written
to the database by the database engine in this example. Later,
if node i sends queries for spectrum access, the spectrum map
returned by the database will include the updated results.

C. POMDP Formulation For Integration Assistance

As discussed above, the integration of the database and
sensing information needs to minimize pf + pm. Given the
information from two resources, we need to adjust the weights
for the values, e.g., availability, signal strength, transmission
parameters, and so on, of both resources.

For the database engine, given the current settings of weight
distribution, it needs to first decide whether its current combi-
nation is balanced, or too conservative or aggressive. However,
it cannot directly identify the situation without any measure-
ments or observations. Also, after each measurement, e.g., the
feedbacks collected from SUs, the database engine needs to
decide whether to continue waiting for more measurements,
or to conclude its current state. If it concludes its current
state from balanced, then no adjustments on the weights are
necessary. Otherwise, an adjustment on the weights is needed,
based on whether the current weight settings are conservative
or aggressive.

To solve this problem, we formulate it as a POMDP.
The following parts specify the ingredients for it, which are

states, actions, state-transition probabilities reward function,
observation, and observation probabilities.

We denote C as the conservative state, A as the aggressive,
and B as the balanced state. A conservative state indicates a
large value of pf , and an aggressive state comes with a large
value of pm. Then we have the following definition for states:

Definition 1. States. The possible states in our POMDP is
denoted as S = E ∩ {τ}, where E = {C,A,B} and τ is the
termination state.

Note that the termination state means that the databases
takes no further measurements.

Definition 2. Actions. The actions are denoted by set {a}. We
use a = 0 to denote taking a measurement, and a ∈ {1, 2, 3}
means to take conclusions and produce the result. We use a =
1 to represent the conclusion that the current state is C, a = 2
to represent A, and a = 3 to represent B.

Each measurement here means that the database engine
collects the feedbacks from SUs for a static period of time.
The results produced here are one of states in E .

The state-transition probabilities describe how the state
evolves at each step, after taking one action. In our model,
even though the database engine takes more measurements,
the actual state remains the same. If the database takes no
more measurements, then the state changes to the termination
state.

Definition 3. State-transition probabilities. The state-
transition probabilities are:

T (e′|e, a) =


1 if (a ̸= 0, e ∈ E , e = e′)

or, (a = 0, e′ = τ)

0 otherwise.

(3)

The reward function is defined based on whether the
database identifies its current state correctly. Also, as pointed
out before, each measurement takes the time cost of the
database engine and the SUs. Therefore, we have the following
reward function definition.

Definition 4. The reward function R is:

R(e, a) =


−M if a = 0 and e ̸= τ,

1 if a ̸= 0 and e = ea,

−1 otherwise.

(4)

M is the average cost for each measurement, ea is the
corresponding concluded state of taking an action a, where
a ∈ {1, 2, 3}.

Obviously, if the database takes more measurements, the
reward relates to the cost. If the conclusion about the current
state is correct, the reward is 1. Otherwise, it is -1. Then,
the database needs to produce the correct conclusion within



the time range, which means the maximum time allowed for
measuring before making a conclusion. The overall rewards
would be the 1 or −1, which depends on whether the con-
clusion is correct, minus the total measurement cost. The
observations are the measurements based on the feedbacks
from SUs. Therefore, we can have the following definition.

Definition 5. Observations. The observation space is the set
of possible measurements from SUs, denoted as O = {o}.

For simplicity, we use the average transmission time over
the static measurement period, and the average number of
channel switches to denote the measurements. A larger value
of either pf or pd (conservative or aggressive) will cause
the average transmission time to decrease. A larger value of
pd (aggressive) will cause the average number of channel
switches to increase.

Definition 6. Observation probabilities. The observation
probabilities are:

O(e, a, o) =

{
P (o|e, a) if a = 0 and e ∈ E ,
0 otherwise.

(5)

If the state is τ , any value of the observation probability
does not matter. This is because after the termination τ , the
database engine takes no more measurements and the value
of the observation probability does not affect the solution. If
a ̸= 0, no measurement is observed. The value of P (o|e, a)
denotes the probability of observing o, given last action a and
current state e. We set thresholds on the average number of
channel switches and the average transmission time. Based
on the settings of the thresholds, a larger value of channel
switches and a smaller value of transmission time indicates
a higher possibility of state A. A smaller value of channel
switches and a smaller value of transmission time indicates a
higher possibility of state C. Otherwise, it indicates B.

The database engine keeps its belief state b to contain
its past information. Given the previous belief state b, the
updating of the belief state, b′, is based on the last action
a, the current observation o:

b′(e′) =
O(e′, a, o)

∑
e∈S T (e′|e, a)b(e)∑

e′∈S O(e′, a, o)
∑

e∈S T (e′|e, a)b(e)
. (6)

The policy of a POMDP is to map the current belief state
into an action. Therefore, the optimal policy should maximize
the value function of the belief MDP. Suppose the initial belief
state is b0 and the time horizon is X . Then, the Bellman
function is:

V ∗
H(b0) = maxa

(∑
e∈S

b0(e)R(e, a) + E
[
V ∗
H−1(b1)|b0, a

])
,

where b1 is the belief state after taking action a at b0, and E[·]
is the expectation of VH−1(b1) given b0 and a. We use Q to

Algorithm 2 Dynamic integration to calculate Ĩ .
1. status = conservative; // status has three values.
2. unchanged = true, step = w/2;
3. while status ̸= balanced do
4. if unchanged = false then
5. step = step/2;
6. if status = conservative then
7. w = w − step;
8. else
9. w = w + step;

10. Ĩ = w × Id + (1− w)× Is;
11. Update status based on the POMDP output;
12. if status’s value is changed then
13. unchanged = false;
14. else
15. unchanged = true;
16. return Ĩ .

denote the value function of taking action a at state bx, where
0 ≤ x ≤ X . Then,

QX−x(bx, a) =
∑
e∈S

bx(e)R(e, a) +E
[
V ∗
H−x−1(bx+1)|bx, a

]
.

We denote the optimal policy as π∗. Then, given state bx
is, the optimal action π∗(bx) is:

π∗(bx) = arg maxaQX−x(bx, a). (7)

Generally, the stationary optimal policy can be achieved if
the value of X is sufficiently large. Our focus here is to
show how to formulate the problem as a POMDP, and will
omit the theoretical approximation parts here. There are many
approximation algorithms that can be directly applied, since it
is impractical to achieve the stationary optimal policy. In our
simulations, we will use the heuristic value iteration algorithm,
by setting different upperbound values of X .

D. Dynamic Integration Policy

After the database engine decides whether its current weight
distributions are balanced, or too conservative or aggressive,
it can dynamically adjust the weight distributions. Here, we
apply the stepwise of weight adaptations, which is combined
with the POMDP to dynamically integrate the database infor-
mation and sensing results.

We study the threshold of maximum allowed interference at
a given location. The other information stored in the database
can be integrated with the sensing results in the similar way.
The main idea of this dynamic integration process is very
straightforward. We set the weight of the database information
as w, with the initial value 1. Then, the weight of the sensing
results is 1 − w. For a given location, we use Id to denote
the maximum allowed interference in the database, and Is to
denote the value in the sensing results. How to retrieve the
value of Is from sensing results has been studied a lot. We
omit the part here, and will use the average value in a certain
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Fig. 3. Main flow graph of database engine.

time duration for simulations. Then, the integration function
of the maximum allowed interference at a given location is:

Ĩ = w × Id + (1− w)× Is. (8)

By setting the initial value of w as 1, it makes sure that
PUs are not initially interfered with. Then, the algorithm is
shown in Algorithm 2. The three values of status denote
if the current weight settings are balanced, conservative, or
aggressive. The process is to dynamically adjust the value of
w until the status is balanced. The stepwise is initially large,
and would be reduced to reach the balanced status. There are
oscillations of the status values. Increasing or decreasing the
value of w depends on the current value of status.

Note that Algorithm 2 ends only when the status is balanced.
However, to be more practical, we can set an acceptable range
to determine if the status is balanced, instead of a specific
value. Another consideration is every time we divide the step
by 2 to converge to the final value. Other similar methods
can be applied to update the value of step, as long as the
balanced status is achievable. The algorithm is run by the
database engine after the POMDP is finished.

Fig. 3 gives an example of the flow process in the database
engine. It takes the initial value of w. The inputs are the
sensing results and database information. After using the
feedbacks, the database engine concludes the status through
POMDP. It outputs the results under the current value of w, if
the status is balanced. Otherwise, the database engine adjusts
w using Algorithm 2 until the balanced status is arrived. The
output results would be used as the spectrum map for nodes
to access the spectrum.

The integration algorithm is conducted by the cognitive
engine, which indicates that we do not need to put too
much effort into reducing the complexity. This is because
the computing ability of the cognitive engine can be very
powerful. Moreover, since the sensing results are dynamic,
the database engine needs to trigger the integration process if
the current balanced status is broken.

VI. PERFORMANCE EVALUATION

In this section, we first describe our simulation settings.
Then, the simulation results are presented.

TABLE I
SIMULATION SETTINGS.

Number of nodes [100, 300]
Number of channels [2, 10]
Average sensing time 0.5s

TX power 23 dBm
Noise power −98 dBm

SINR threshold 10 dB
Number of PUs [10, 50]

PU active duration [20, 30]s
PU active period [10, 20]s

Operation range of each PU [300, 500]

A. Simulation Settings

Table I gives the overview of our simulation settings. Since
our model contains several components, e.g., PUs, SUs, and
spectrum database, we present the parameters from different
aspects. Then, the evaluation metrics will be discussed. Our
simulation area is a network with 2000 × 2000 unit squares.
There are a total of 10 channels in the area. PUs and SUs are
located in the areas. The spectrum databases store the relevant
static information of PUs.

1) PU settings: we randomly distribute a set of PUs in the
area. Each PU has its own transmission power and is randomly
assigned a channel. We apply the SINR threshold for PUs
to calculate their maximal allowable interference at a certain
location. Also, each PU is configured with an active pattern,
and is periodically turned active for the active duration. Details
of the active periods and ranges are shown in Table I. Each
PU is randomly set as active at the beginning, and switches
between the two statuses.

2) SU settings: a number of SU nodes are randomly
distributed in the area. Each SU performs spectrum sensing,
and collects the sensed PU signal strength at all channels.
We omit the sensing technique here by simply using the
setting information to provide expected sensing results. We
also assume that SU has the SINR threshold information of
PUs, and therefore, is able to calculate the maximal allowable
interference from its location to PU’s transmission range. The
calculated maximal allowable interference is sent back to the
spectrum database. It is possible that the nearby PUs are
inactive when a SU performs spectrum sensing. Therefore,
the calculated allowable interference value is too aggressive.
Each SU is assigned with a random transmission task at the
beginning of each slot. The routing issue is not considered and
a SU simply broadcasts the data it has.

3) Database settings: the spectrum information stored in
the database conservatively protects the PUs. The database
marks the transmission range of each PU, whether it is active
or not. The maximal allowable interference stored in the
database ensures that the signals from SUs at any location can-
not cause the interference within the PU’s transmission range.
Therefore, the database excludes many spectrum opportunities,
regardless of the PUs’ status.
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Fig. 4. Comparison of available time percentage under different settings.
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Fig. 5. Comparison of ratio of transmission time under different settings.

4) Evaluation metrics: the evaluation metrics are built from
two aspects. One is the extra spectrum opportunities that are
created by our hybrid scheme, compared to the scheme only
based on spectrum database. The other one is the improved
ratio of the transmission time over the sensing time for SUs,
compared to the sensing-only spectrum access scheme. After
SUs receive the integrated spectrum map from the database,
they simply choose the frequency with the longest avail-
able duration at their locations. This is a simplified criteria.
More advanced criteria contains the scheduling and conflict-
avoidance considerations, which are out of our scope in this
paper. Therefore, the evaluation metrics of our model are as
follows:

• Average available time percentage: we iteratively cal-
culate the percentage of the available time durations
over the total time. We calculate the average value of
all nodes with transmission tasks in the network for
5 mins. In our model, the percentage is indicated by
the integrated spectrum map. We also show the original
database spectrum map, which is not combined with the
sensing results, for comparison.

• Ratio of transmission time over sensing time: we itera-
tively calculate the ratio of the transmission time over the

sensing time. A larger value of the ratio indicates that the
transmission is less frequently interrupted by PUs. SUs
need to perform spectrum sensing if they are interrupted
by PUs. Otherwise, the transmission continues on the
previously found available channels. We use the sensing
based scheme for comparison with our model.

Moreover, we vary three network parameters to study the
influences on our evaluation metrics. They are the number of
nodes, number of PUs, and number of channels. The ranges
of their values are also shown in Table I.

B. Simulation Results

We present simulation results based on two evaluation
metrics, as described in the above subsection.

1) Available time percentage: We vary the number of nodes
from 100 to 300 and calculate the average available time per-
centage. The number of PUs is kept as 10 and the number of
channels is 10. The results are shown in Fig. 4(a). We compare
our integrated results after reaching balanced status with the
spectrum map, purely relying on the database information.
When the number of nodes increases, the average available
time percentage of the database-only scheme does not change
notably. The value of our integrated results increases slightly.
Therefore, the total number of nodes in the network does



not have an obvious influence on the average available time
percentage. In addition, the integrated spectrum map indicates
more available spectrum opportunities than the database-only
scheme.

We vary the number of PUs from 10 to 50. The number
of nodes is set as 100, and the number of channels is 10.
The results are shown in Fig. 4(b). When the number of PUs
increases, the values of both schemes decrease. The integrated
results outperform the database-only scheme by 30% on the
average available time percentage. The gap between the two
lines decreases. This is because when the number of PUs
increases, there are fewer spectrum opportunities.

The total number of channels varies from 2 to 10 in
Fig. 4(c). The number of nodes is 100, and the number of
PUs is kept as 10. The available time percentage increases for
both schemes when the number of channels increases, since
there are more spectrum opportunities. The integrated results
still show more spectrum opportunities than the database-
only scheme. In addition, the integrated results increase more
quickly when the number of channels changes from 6 to 10.

2) Ratio of transmission time: We vary the three network
parameters and calculate the ratio of transmission time over
sensing time. The results are shown in Fig. 5. We compare the
integrated results with the sensing-only scheme. In Fig. 5(a),
the number of nodes is varied from 100 to 300. The number
of PUs is set as 10 and the number of total channels is also 10.
The ratio of the transmission time increases for both schemes.
Nodes access the spectrum based on the integrated results, and
receive a larger ratio of transmission time over sensing time
compared to the ones only based on spectrum sensing.

Next, the number of nodes is kept as 100 and the number of
channels is 10. We vary the number of PUs from 10 to 50. The
results are shown in Fig. 5(b). The ratio of the transmission
time decreases for both schemes. Nodes using the integrated
results have a larger ratio of the transmission time over the
sensing time.

In Fig. 5(c), the number of channels ranges from 2 to 10.
The number of nodes is 100 and the number of PUs is set
as 10. The ratio of the transmission time over sensing time
increases for both schemes when the number of channels
increases. Initially, when the total number of channels is 2,
the difference between the two schemes is relatively small.
The gap increases when the number of channels increases.
This is because when there are few channels, the spectrum
opportunities are essentially few.

3) Summary of Simulation Results: In summary, the spec-
trum map from the integrated results indicates more spectrum
opportunities compared to the database contents. Also, nodes
who access the spectrum based on the integrated results spend
less time on sensing compared to nodes who purely rely on
spectrum sensing.

VII. CONCLUSIONS

We consider the hybrid spectrum access systems of both
the database-driven and sensing-based schemes for dynamic
spectrum access. To build a practical and efficient system,

we focus on the integration problem of the database contents
and sensing data on the database engine. In our integration
framework, we first process sensing results, and retrieve the
sensing information for locations with or without spectrum
sensing reports. Moreover, we describe the dynamic integra-
tion process. To make sure the database is aware of its current
status, we formulate it as a Partially Observable Markov De-
cision Process. This enables the database engine to iteratively
and dynamically adjust the fusion policy, so that the balanced
status is reached. We also propose a straightforward and
effective algorithm for the iterative fusion process. In addition,
we conduct extensive simulations to study the performances
of our integration framework under different network settings.
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