

Multi-resource Energy-efficient Routing in Cloud Data Centers with Network-as-a-Service

Lin Wang*, Antonio Fernández Anta°, Fa Zhang*, Jie Wu⁺, Zhiyong Liu*

*Institute of Computing Technology, CAS, China

°IMDEA Networks Institute, Spain

[†]Temple University, USA

Developing the

Science of Networks

Data center and data center network

- Background
- Motivation
- Problem description
- Algorithms
 - Multi-resource green routing
 - Topology-aware heuristic
- Numerical validations
- Conclusions and future work

Data center and data center network

- Data centers have been ubiquitously deployed for providing computation and storage capabilities for cloud computing
- Data center network: the internal network for interconnecting the numerous servers in a data center

Traditional networking model

Layer 2/3 functions such as forwarding and routing

	- 5		
Destination	Egress port		
10.0.0.2	1		
10.0.0.3	2		
•••	***		

Payload

 Link bandwidth is the most important criterion for performance evaluation

Header

Middleboxes are relevant

- Middleboxes: providing other network functions
 - Firewall, proxy, deep packet inspection, load balancer, NAT, WAN optimizers etc.
 - Comparable number to switches

- The process of deploying middleboxes is inflexible and prone to misconfiguration
- There are no available protocols and mechanisms to explicitly insert these middleboxes on the path between endpoints

SDN & NFV lead to Network-as-a-Service

- Software-defined networking
 - Separating the network control plane and the data plane
 - Global visibility and logically centralized control
- Network function virtualization
 - Low cost with commodity hardware
 - More flexibility with software control
- Network-as-a-Service

What's new?

- In-network packet processing becomes reality
 - Application-specific on-path aggregation
 - NetAgg [Mai et al. CoNEXT 2014]

- Design processing pipelines for different processing logics
- Optimization problems will be different under this new networking model

Network optimization

- From single-resource to multi-resource settings
- Old optimization methods are not efficient or even not applicable

Single resource

link bandwidth processing capacity

Multiple resources

Why energy efficiency matters

- Energy consumption comparison
 - Power consumption of a server is almost three times that of a switch

Cisco Nexus 3548: 265W HP 5900AF-48XG: 260W Juniper QFX 3600: 345W

Dell PowerEdge R715: 1100W HP ProLiant DL80: 900W Lenovo ThinkServer RD550: 750W

- Device level energy-saving mechanism: power-down
- Network global energy-saving strategy: traffic engineering
 - Consolidating network flows to a subset of network devices and turning idle devices into low-power modes

Modeling

- Modeling the network
 - A network G = (V, E)
 - K different types of resources, namely CPU, memory...
 - Capacity C_k, normalized to 1
- A set of flow demands $D = \{d_1, ..., d_M\}$ where $d_m = (v_m^s, v_m^t, R_m)$, $R_m = (r_{m,1}, r_{m,2}, ..., r_{m,K}), \text{ and } r_{m,k} \in [0, 1]$

Multi-resource energy-efficient routing

- Solution: path P_m for each flow d_m such that $|A_v| \le 1$ for $v \in V$ where $A_v = \sum_{m: v \in Pm} R_m$ is the aggregation of the resource demand vectors of flows that are routed through v.
- Objective: minimize the set of nodes that are used to carry flows

$$\begin{array}{ll} (\mathbb{P}_1) & \text{minimize} & \sum_{v \in \mathcal{V}} y_v \\ \text{subject to} \\ & || \sum_{m \in \{1,2,\ldots,M\}} \vec{R}_m \cdot x_{m,v}||_{\infty} \leq 1 \quad v \in \mathcal{V} \\ & x_{m,v} \leq y_v \quad v \in \mathcal{V}, 1 \leq m \leq M \\ & x_{m,v}, y_v \in \{0,1\} \quad v \in \mathcal{V}, 1 \leq m \leq M \\ & x_{m,v}: \text{ flow conservation} \end{array}$$

Complexity analysis

- *K* = 1: capacitated network design
 - Link version: polylogarithmic approx. with polylogarithmic congestion [Andrews et al. FOCS 2010]
 - Node version: a $O(\log^5 n)$ -approx. with $O(\log^{12} n)$ congestion [Krishnaswamy et al. STOC 2014]
- K > 1: multi-dimensional node capacitated network design
 - Theorem Solving the multi-resource energy-efficient routing problem is NP-hard.

Proof sketch: build a polynomial time reduction from Vector Bin Packing (VBP) problem which is NP-hard. the

 Theorem There is no asymptotic PTAS for the multi-resource energy-efficient routing problem unless P=NP.

Multi-resource green (MRG) algorithm

- Key observations:
 - Flows preferably follow paths that consist of more active nodes (that already carry some traffic)
 - Load balance among all resource dimensions could be the new measuring method for resource efficiency
- A greedy routing scheme (Multi-resource Green, MRG)
- Time complexity: $O(|E|M^2)$

Node weight assignment: inversion counting

- **Definition** Given two vectors $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$, an **inversion** is defined as the condition $x_i > x_i$ and $y_i < y_i$, for $1 \leq i, j \leq n$.
- **Property** Given two vectors in *n* dimensions, the total number os inversions is upper bounded by n(n-1)/2.

Link weight assignment

- Node weights to adjacent link weights
 - For *src* and *dst*, node to link directly
 - For intermediate nodes, divide by two

The min-weight routing problem remains the same.

Topology-aware heuristic: Hierarchical green routing

 Taking advantage of the hierarchy of data center network topologies (e.g., fat-tree)

- HGR: solving a series of vector bin packing instances using a norm-based greedy algorithm [Panigrahy et al. ESA 2011]
 - Bin-centric
 - In each iteration, choose the item that minimizes the weighted l_2 -norm of the bin residual capacity and the demand
- Time complexity $O(M^2)$, speedup $\Omega(|E|)$

Numerical validations

- Python implementation
- Topology: fat-trees in different scales
- Flow demands: randomly generated
 - Endpoints: uniformly at random
 - Resource requirements: normal distribution (positive)
- Comparison
 - Single-Resource Shortest Path (SRSP)
 - Multi-Resource Shortest Path (MRSP)
 - Single-Resource Green (SRG)
 - Multi-Resource Green (MRG)

i**M**dea networks

Performance of MRG

- The MRG algorithm outperforms the others with a factor of over 25% in energy efficiency
- The MRG algorithm converges to a stable energy saving level with respect to the number of resource dimensions

Performance of HGR

typical number of resource dimensions = 3

Less than 10% energy savings degradation, but having a speedup of over 180

Running Time (second)							
# of flows	20	40	60	80	100	120	
MRG	5.37	16.63	37.00	58.26	92.93	101.89	
HGR							

Conclusions

- The new networking paradigm pushes network optimization models from single-resource to multi-resource
 - Multi-resource traffic engineering requires new techniques
 - The network energy efficiency problem becomes more prominent with the Network-as-a-Service model
- We study the multi-resource energy-efficient routing under the Network-as-a-Service model
 - Problem formulation and complexity analysis
 - A greedy algorithm and a topology-aware heuristic
 - Up to 25% more energy efficiency could be achieved
- Our solution could be extended and applied to many practical networking scenarios

Future lines

- Model extension
 - Online: dynamic flow joining and leaving
 - Heterogeneity: different resource demands on different in-path nodes
 - Both algorithms can be extended to those cases
- Practical application scenarios
 - Named data networking (prefix matching, data caching)
 - Server-centric data center network architectures
 - BCube [Guo et al. SIGCOMM 2009]
 - SWCube and SWKautz [Li et al. INFOCOM 2014]
 - Network function orchestration

THANK YOU!

