An Optical Interconnection Structure Based on

the Dual of a Hypercube
Yueming Li §, Jie Wui, and S.Q. Zheng

iDepartment of Computer Science, Louisiana State University, Baton Rouge, LA 70803
iDepartment of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431

May 12, 1997

Abstract

A new class of interconnection networks, the hypernetworks, have been proposed recently.
Hypernetworks are characterized by hypergraphs. Compared with point-to-point networks, they
allow for increased resource-sharing and communication bandwidth utilization, and they are
especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the
dual of a point-to-point network. Hypercube @,,, where n is the dimension, is a popular point-
to-point network [7]. In this paper, we consider using the dual Q% of hypercube of @,, as an
interconnection network. We investigate the properties of ()},, and present a set of fundamental
data communication algorithms for)},. Our results indicate that the @}, hypernetwork is a
useful and promising interconnection structure for high-performance parallel and distributed

computing systems.

Keywords: hypercubes, hypernetworks, interconnection networks, optical buses, optical intercon-

nections, parallel and distributed computing.

1 Introduction

Designing high bandwidth, low latency and scalable interconnection networks is a great challenge in
the construction of high-performance parallel computer systems. Traditionally, interconnection net-
works are characterized by graphs. Network topologies under graph models have been extensively
investigated. Many network structures have been proposed, and some have been implemented.
Observed the improving electrical bus and switching technologies and maturing optical intercon-
nection technologies, Zheng pointed out the conventional graph structure is no longer adequate for
the design and analysis of the new generation interconnection structures and proposed a new class

of interconnection networks, the hypernetworks [14].

The class of hypernetworks is a generalization of point-to-point networks, and it contains point-
to-point networks as a subclass. In a hypernetwork, the physical communication medium (a hy-
perlink) is accessible to multiple (usually, more than two) processors. Optical fibers and devices
are suitable for implementing hyperlinks. The relaxation on the number of processors that can
be connected by a link provides more design alternatives so that greater flexibilities in trade-offs
of contradicting design goals are possible. The underlying graph theoretic tool for investigating
hypernetworks is hypergraph theory [2]. Hypergraphs are used to model hypernetworks. Hyper-
network designs have been formulated as an optimization problem of constructing constrainted
hypergraphs. Interested readers may refer to [14, 15, 17] for more justifications, design issues and
implementation aspects of hypernetworks.

Existing results in hypergraph theory and combinatorial block design theory, which is closely
related to hypergraph theory, can be used to design hypernetworks. For example, in [15], Zheng
introduced several low diameter hypernetworks based on the concept of Steiner Triple System. In
[17], Zheng and Wu proposed a scheme for constructing a new hypernetwork from an existing one
using the concept of dual graph in hypergraph theory. They showed that the dual H* of any given
hypergraph H is a hypergraph that have some properties related to the properties of H so that one
can investigate the properties of H* based on the properties of H. Since the structure of H and
its dual H* can be drastically different, finding hypergraph duals can be considered as a general
approach to the design of new hypernetworks. They investigated the structure of the dual K of
an n-vertex complete point-to-point network K.

Hypercube is a popular point-to-point network which has many desirable features such as small
diameter, symmetry, and supporting a large class of efficient parallel algorithms. In this paper, we
propose a class of hypernetworks, the @}, (read as @), star) hypernetworks. The @7 hypernetwork is
the dual of the n-dimensional hypercube @),,. We discuss the topological and fault tolerance aspects
of @), and present a set of parallel data communication algorithms for ;. Our results indicate
that the @)y hypernetwork is a useful and promising interconnection network for high-performance
parallel and distributed computing systems.

This paper is organized as follows. In Section 2, we introduce several basic concepts of hy-
pergraphs and hypernetworks. In Section 3, we discuss the relations between a hypergraph and
its dual, and show that hypergraph duals can be used to derive new hypernetworks. We then
introduce the 7 hypernetwork, and show that it possesses a set of desirable properties. In Section
4 we present a set of fundamental data communication algorithms for the @}, hypernetwork, and
analyze their performances based on the bus implementation of hyperlinks. Finally, in Section 5,

we discuss the generalizations and implications of this work.

2 Preliminaries

Hypergraphs are used as underlying graph models of hypernetworks. A hypergraph [2] H = (V, E)
consists of a set V' = {vy,v9,---,v,} of vertices, and a set E = {e1, ez, -, en} of hyperedges such
that each e; is a non-empty subset of V and {v|v € e;,1 <i <m} = V. An edge e contains a vertex
vifv €e Ife Ce; implies that ¢+ = j, then H is a simple hypergraph. In this article, we only
consider simple hypergraphs. When the cardinality of an edge e, denoted as |e|, is 1, it corresponds
to a selfloop edge. If all the edges have cardinality 2, then H is a graph that corresponds to a
point-to-point network. A hypergraph of n vertices and m hyperedges can also be defined by its
n X m incidence matrix A with columns representing edges and rows representing vertices such that
a;; = 0ifv; € ej, a; j = 1 if v; € ¢;.

For a subset E of E, we call the hypergraph H'(V', E') such that V' = {vjv € e,e € E'}
the partial hypergraph of H generated by the set E . For a subset U of V, we call the hypergraph
H"(V" E") such that E" = {e, NUle;NU # ¢,1 < i < m} and V' = {v|v € e,e € E"} the
sub-hypergraph induced by the set U. Note that such an induced sub-hypergraph may or may not
be a simple hypergraph.

The degree dp(v;) of v; in H is the number of edges in V that contain v;. A hypergraph
in which all the vertices have the same degree is said to be reqular. The degree of hypergraph
H, denoted by A(H), is defined as A(H) = max,,cy dg(v;). A regular hypergraph of degree k
is called k-regular hypergraph. The rank r(H) and antirank s(H) of a hypergraph H is defined
as r(H) = maxi<j<m |ej| and s(H) = minj<;<m, |ej|, respectively. We say that H is a uniform
hypergraph if r(H) = s(H). A uniform hypergraph of rank k is called k-uniform hypergraph. A
hypergraph is vertex (resp. hyperedge) symmetric if for any two vertices (resp. hyperedges) v; and
vj (resp. e; and e;) there is an automorphism of the hypergraph that maps v; to v; (resp. e; to e;).

In a hypergraph H, a path of length ¢ is defined as a sequence (vi,, €, iy, €y, 5 €5, Vig)

such that (1) v;;,vi,, -, v;,,, are all distinct vertices of H; (2) e;,,ej,,- -+, ej, are all distinct edges

q
of H; and (3) v;,, v, € ej, for k=1,2,---,q. A path from v; to vj, i # 7, is a path in H with
its end vertices being v; and v;. A hypergraph is connected if there is a path connecting any two
vertices. We only consider connected hypergraphs. A hypergraph is linear if |e; Nej;| < 1 for i # j,
i.e., two distinct buses share at most one common vertex. For any two distinct vertices v; and v;
in a hypergraph H, the distance between them, denoted by dis(v;,v;), is the length of the shortest
path connecting them in H. Note that dis(v;,v;) = 0. The diameter of a hypergraph H = (V| E),
denoted by 0(H), is defined by 6(H) = max,, ,,ev dis(v;,v;). More concepts in hypergraph theory
can be found in [2].

A hypernetwork M is a network whose underlying structure is a hypergraph H, in which each
vertex v; corresponds to a unique processor F; of M, and each hyperedge e; corresponds to a
connector that connects the processors represented by the vertices in ej. A connector is loosely

defined as an electronic or a photonic component through which messages are transmitted between

connected processors, not necessarily simultaneously. We call a connector a hyperlink.

Unlike a point-to-point network, in which a link is dedicated to a pair of processors, a hyperlink
in a hypernetwork is shared by a set of processors. A hyperlink can be implemented by a bus or
a crossbar switch. Current optical technologies allow a hyperlink to be implemented by optical
waveguides in a folded-bus using time-division multiplexing (TDM). Free-space optical or optoelec-
tronic switching devices such as bulk lens, microlens array, and spatial light modulator (SLM) can
also be used to implement hyperlinks. A star coupler, which uses wavelength-division multiplexing
(WDM), can be considered either as a generalized bus structure or as a photonic switch, is another
implementation of a hyperlink. Similarly, an ATM switch, which uses a variant TDM, is a hyper-
link. In the rest of this paper, the following pairs of terms are used interchangeably: (hyper)edges
and (hyper)links, vertices and processors, point-to-point networks and graphs, and hypernetworks
and hypergraphs.

The problem of designing efficient interconnection networks can be considered as a constrainted
optimization problem. For example, the goal of designing point-to-point networks is to find well-
structured graphs (whose ranks are fixed, as a constant 2) with small degrees and diameters.
In hypernetwork design, the relaxation on the number of processors that can be connected by
a hyperlink (i.e. the rank of the hyperlink) provides more design alternatives so that greater
flexibilities in trade-offs of contradicting design goals are possible. The detailed discussion is beyond

the scope of this paper.

3 Dual Hypernetworks and); Hypernetworks

The dual of a hypergraph H = (V, E) with vertex set V = {vy,ve,---,v,} and hyperedge set
E = {e1,e9,---,en} is a hypergraph H* = (V*, E*) with vertex set V* = {v],v3,---, v} } and
hyperedge set E* = {ef, €3, -, e, } such that v} corresponds to e; with hyperedges e] = {v}|v; € e,
and e; € E}. In other words, H* is obtained from H by interchanging of vertices and hyperedges
in H. The incidence matrix of H* is the transpose of the incidence matrix of H. Thus, (H*)* = H.

The following relations between a hypergraph and its dual are apparent [17].

Proposition 1 H is r-uniform if and only if H* is r-reqular.

Proposition 2 The dual of a linear hypergraph is also linear.

Proposition 3 A hypergraph H is vertex symmetric if and only if H* is hyperedge symmetric .

Proposition 4 The dual of a sub-hypergraph of H is a partial hypergraph of the dual hypergraph
H*.

Since (H*)* = H, all the above propositions still hold after interchanging H with H*.

Proposition 5 §(H) — 1 <d(H*) < 6(H) + 1.

Propositions 1 - 5 show that some properties of the dual hypergraph H* of a given hypergraph
H can be derived from properties of H. For example, if H is a ring, then H* is isomorphic to
H. However, in general, the structures of H and its dual H* can be drastically different. Finding
hypergraph duals can be considered as a general approach to the design of new hypernetworks.

We consider using the dual @) of the hypercube (), as a hypernetwork. An n-dimensional
hypercube @),, consists of 2™ vertices, each being labeled by a unique n-bit binary number. Two
vertices are connected by an edge if and only if their binary labels are distinct in one bit position.
Properly labeling the vertices and hyperedges in)}, can greatly simplify its use as a communication
network. Vertex labels are used as processor addresses. Similarly, hyperedge labels are used as the
unique names of hyperlinks.

Let I,, be the set of non-negative integers that can be represented by n-bit binary numbers. For
l,u € I, we use d(l,u) to denote the number of different bits in the binary representations of [and
u, i.e. d(l,u) is the Hamming distance between the binary representations of [and u. We use a

pair of integers to label a vertex in the @}, hypernetwork.

Definition 1 Let N, = n2" ! for n > 2. The Q hypernetwork is a hypergraph with vertex set
{{l,w)|l,u € I, | < u, and d(l,u) = 1} of N, vertices and 2" hyperlinks, ey, e, --,ean_1. Each

vertex (/,u) is connected to exactly two hyperedges e; and e,.

Example 1 The incidence matriz A of Q3 is

€y €1 €2 €3 €4 €5 €5 €7
1100 0 0

S U B W W N

—~ ~ — T e D T O TS~

~N O Ot

ST R RTINS N ~FTS S
o O O O o O o = O O =
S O = O O O = O O = O
O O O O O R O O = O
o O O O R O O O = = O
o O = = O O O = O O O O
S = O = O O = O O O O O
_ O B O O R O O o O
— = 0O O = O O O o o o

N

The transpose of A is

€0,1 €0,2 €1,3 €2,3 €0,4 €15 €2,6 €3,7 €4,5 €46 €57 €6,7
vw (1 1 0 0 1 0 0 0 0 0 0 O

vy 1 01 0010000 00
vy 01 01 00100 O0O00O
AT = oy 001 1 0 0010 0 00
v4 00001 0001100
vs 00 00 01 001010
vg 0000 0 01 001 01
vy 000000 0 1 00 11

Clearly, A” is the incidence matrix of the hypercube Q3. Figure 1 shows the bus implementation
of the 5 hypernetwork, whose incidence matrix A is given above. Its corresponding hypercube,

whose incidence matrix is A’ is shown in Figure 2, where each edge is labeled by its two end

vertices.
* *
Q, ! | Q3
€7
€6 ! ° ! ° [
e 5 ! !
I I
€4
€3
e 2 I I
€1 i i
I I
ey ° ° : ° :
IlJ Ilﬂ C I 1 Ilﬂ C i i1 0 A ar
<0,1> <1,3> <0,4> <2,6> <4,5> <5,7>
<0,2> <2,3> <1,5> <3,7> <4,6> <6,7>

Figure 1: Bus implementation of ()3.

Figure 2: Hypercube Q3 corresponding to ()3.

The @} (n > 1) hypernetwork can also be defined in a recursive way. One can easily observe
that Q7 can be constructed using two copies of QF | and 2" ! additional vertices placed in between

(see Figures 1 and 3). For brevity, we omit the recursive definition of Q).

€o
Ilg Ilj Ilj ‘Ilj |
i |
[N A N N Y AN A A A A N N |
<0,1> <1,3> <04> <2,6> <4,5> <5,7> ‘<0,R> <2,10> <4,12> <6,14> ‘<8,9> <9,11> <8,12> <10,14> <12,13> <13,15>
<0,2> <2,3> <1,5> <3,7> <4,6> <6,7> <1,9> <3,11> <5,13> <7,15> <8,10> <10,11> <9,13> <11,15> <12,14> <14,15>

Figure 3: Bus implementation of Q)}.

Based on the properties of hypercube @, and Propositions 1 to 4, we have the following fact:
Fact 1: @, is 2-regular, n-uniform, linear, and vertex and hyperedge symmetric.

Since the diameter of @), is n, Property 5 indicates that the diameter of 0}, is at most n+1. We
show that the diameter of Q% is also n. Let dis((l,u),(I',u')) denote the distance between vertices
(I,u)y and (I',u') in Q*.

Lemma 1 For any two vertices (I,u) and (I',u') in QF, dis((l,u),(l',u)) = min{d(l,'),d(l,u),
(1), d(u,u)} + 1.

Proof. We view (I,u) and (I',u') as two edges in Q,. The minimal path connecting these two
edges is one from one end node of (I,u) to one end node of (I',u'). Therefore, the distance is the

length of a minimal path between two end nodes plus one. O
Lemma 2 For any two vertices (I,u) and (I, u') in QF, dis((l,u),(I",u’)) < n.

Proof. For two hyperedges (I,u) and (I',u') in Q;, if d(1,1'y = n then d(l,u’) < n. By Lemma 1,
d((l,u), (') = min{d(1, 1), d(l,), d(u, '), d(u,u’)} +1 < min{d(l,1'),d(l,u")} +1 < (n—1)+1 <
n. O

Theorem 1 The diameter of Q;, is n.

Proof. From lemma 2, we know that the diameter is less than or equal to n. All we need to do is
to prove that there are two vertices (I,u) and (I', ') such that d({l,u),(I',u')) = n — 1. Actually,
it is easy to see that vertices (000...0,100...0) and (111...1,011...1) meet the above condition. O

In @}, the number of processors is n/2 times the number of the hyperlinks. Each processor is
attached to exactly two hyperlinks, and this simplifies the processor interface circuit design. Each
hyperlink connects n processors. Suppose that a 10 x 10 crossbar switch is implementable and cost
effective, then 7, of 5,120 processors can be implemented using 1,024 such switches as hyperlinks.

Consider the fault tolerance aspect of the Q) hypernetwork. We say that a hypernetwork H
is x-processor fault-tolerant (resp. y-hyperlink fault-tolerant) if it remains connected when no more

than any z processors (resp. y-hyperlinks) are removed. We have the following claim.
Theorem 2 Q) is (2n — 3)-processor fault-tolerant and 1-hyperlink fault-tolerant.

Proof. Consider the hypercube),. Take an edge e and delete all edges that share a vertex
with e, then the graph becomes disconnected. This implies that it is possible to disconnect the
Q; hypernetwork by removing 2(n — 1) processors. However, removing any less than 2(n — 1)
processors from @), will not make the remaining part of @, disconnected. Hence, Q7 is (2n — 3)-
processor fault-tolerant. Since)}, is 2-regular, removing any two hyperlinks that share a vertex v

will disconnect processor v. O

4 Data Communication Algorithms for @)}

In this section, we use the vertex and hyperedge labels to design data communication algorithms
for the @ hypernetwork. For simplicity, we assume bus implementation of hyperlinks. In the
electronic domain, the bus load, i.e. the number of processors that can be connected by a bus,
is limited. Using optical fibers to implement a bus, the bus load can be increased significantly.
Recently, optical bus architectures have received considerable attention (e.g. [5, 8, 9, 10, 12, 16]
). Since a bus is shared by all its connected processors, the performance of a bus depends on the
way it is accessed by processors. For example, one way for processors to share a bus is to use
time-division multiplexing (TDM), which allocates time slots to processors so that they can only
access the bus during their slots. Another way is to let processors compete for bus tenure, and use
an arbiter to grant the bus tenure in an on-line fashion.

We assume a synchronous mode communication. Bus allocations, although operated dynami-
cally, are predetermined by an off-line scheduling algorithm. This bus operational mode has been
used in [3] for analyzing a multiple-bus interprocessor connection structure. Assume that all mes-
sages are of the same length. The communication performance is measured in terms of parallel
message steps. We adopt these assumptions for two reasons. First, under these assumptions, it is

easier to assess the capability and limitation of the proposed hypernetwork structure. Secondly, the

performance results obtained can be easily used to measure other bus communication method by
either adding additional overheads, which may incur in TDM transmission and asynchronous bus
allocation, or deducting transmission latency saving due to pipelining effect of a pipelined optical
bus.

We discuss four types of communication operations: one-to-one communications, one-to-many
communications, many-to-one communications and many-to-many communications. For each type,
we present an algorithm for a representative communication operation. These communication

algorithms constitute a useful set of tools for designing parallel algorithms on the @)} hypernetwork.

4.1 One-to-One Communication

We consider shortest path routing between two processors. where (I, u) and (l’,u') to represent the
source processor and the destination processor, respectively. The idea of the shortest path routing
is as follows. If the two processors share one hyperlink, the message is transmitted through that
hyperlink. Otherwise, the transmission is done from hyperlink e, toward hyperlink e, such that
a € {l,u}, be {l',u'} , and d(a,b) is the minimal. The source processor sends the message to the
processor (a,c) through hyperlink e, such that d(c,b) = d(a,b) — 1. This process is recursive; that
is, the processor (a,c) will then relay the message toward the processor (l,,ul>. The following is

the shortest path routing algorithm.

procedure ROUTE((l,u), (I',u'))

begin
Let a € {I,u}, b€ {I',u'} such that d(a,b) = dis({l,u),({I',u')) — 1;
if a = b then

Processor (I, u) sends the message to (I',u') using e,
else begin
Select ¢ such that d(c,b) = d(a,b) — 1;
Processor ([, u) sends the message to (a,c) using eg;
ROUTE({(a,c), (I',u'))
end
end

Theorem 3 For any given pair of processors (I,u) and (I',u') in the Q hypernetwork, algorithm
ROUTE routes a message from (I,u) to (I',u') along a minimal path in dis((l,u), (I',u')) message

steps.

Proof. The theorem dirctly follows from Lemmas 1 and 2. O

4.2 One-to-Many Communication

We consider broadcasting a message from any processor (I, u) to all other processors in @)}, Given
(I,u), procedure TRANSFORM is used to transform (I, u) to (0, 1) and all the other (a,b) in @} to

(a', V') in constant time.

procedure TRANSFORM ({l,u))
begin
for all (a,b) in)} do in parallel
if a =0 and b =1 then (d/,0) := (I, u)
else if a = 0 then (d/,b') := (min{l, b}, max{l, b})
else if a = 1 then (d/,V') := (min{u, b}, max{u, b})
else if a = [then (a/,') := (0,b)
else if b = u then (d/,V') := (1,a)
endfor
end

By the symmetry of the @} hypernetwork, we know that the new identities (a', ') assigned to
processors of () satisfy the connectivities of Q). We only need to describe an algorithm which
broadcasts a message from (0, 1) to all processors in Q};.

We use 0F to represent k consecutive 0’s, e.g. 0% = 000. Let Q = 0" *~10«* and Q;s =
0"~k=11x¥ denote the k-dimensional subcube of Q,, induced by all vertices whose left n — k bits
are 0" ~%~10 and 0" %11, respectively. Here, an * in a bit position stands for “don’t care”, and **
represents k consecutive x’s. We use Qrr1 = Q + Q;f to denote the (k + 1)-dimensional subcube
of @), induced by vertices in Q) and Q;g. We explain the broadcasting algorithm in ();; using an
n-dimensional hypercube (@Q,,) by interchanging the role of vertices and edges. The idea behind our
broadcasting algorithm is as follows. Assuming that initially the edge connecting vertices 0”0
and 0”1 in @, is colored, and all other edges in @,, are not colored. We want to edge traversing
algorithm A which systematically traverses all edges in @),, in n steps. In the k-th step, algorithm
A selects a subset Ej of edges in @, that satisfies the following conditions: (1) all edges in Ej are
not previously traversed, (2) each edge in Ej has at least one end vertex that is an end vertex of
a previously colored edge, and (3) for each edge e in in Ej assign a direction it is traversed: let u
and v be the two end vertices of e, and suppose that u is an end vertex of a previously traversed
edge, then traverse e from u to v. In the following, we provide a selection procedure for Ej so that
all edges of), are guaranteed to be traversed in n parallel steps. Obviously, such an algorithm A
corresponds to a broadcasting algorithm A* for Q)5 .

Now, let us describe our algorithm A. Starting from) (which corresponds to the edge con-

necting vertices 0"~!0 and 0"~!1 in Q,, and the source vertex (0"~10,0""'1) in Q?), increase the

10

dimension of the cube by one in each step. In the first step, we consider Qo = Q1 + Qll, the two
edges connecting vertices in (); and Qll are colored. In the second step, the edge connecting 0”210
and 0”211 is traversed in the direction from 0”210 and 0”211 and the edges connecting Q2 and
Q’Q are traversed in the direction from Q9 and Q’Q. Assume that after k, 1 < k < n—2, steps, all the
edges in Q; = 0" *~10«* and the ones connecting Q; and Q;c = 0" %"11«* have been traversed,
but all the edges in Q;f have not been traversed. In step k + 1, we traverse all the edges in Q'k and
the edges connecting Q41 and Q;H_l, where Q41 = 0" *720+%*+! and Q’,H_1 = 0""k=214k*+1 in the
direction from Qg4 to Q;c 41- To traverse all the edges in Q;c, we randomly pick two connected
vertices v and wu, if v < u then the link (v,u) is traversed from v to u. In step n, we only need to
traverse all the edges in Q;Fl in the direction from Q;%LO to anfl,l'

Let b,,_1b,,_9 - - - by be the binary representation of b. We use b to represent the binary number
(and its corresponding decimal value) obtained by complementing the ith bit, b;, of the binary
representation of b. Translating the above hypercube edge traverse algorithm into an algorithm for

traversing vertices in), we obtain the following algorithm.

procedure BROADCAST({0,1))
begin
fork=1ton—-1do
for all (a,b) where a € 0" %0+~ and b € 0" *1+*~! do in parallel
Processor (a,b) sends the message to (a,a* 1)) using eq;
Processor (a,b) sends the message to (b, b*t1)) using ey;
Processor (a,b) sends the message to (b, b(")) using ey,
if b < b® for i € {0,1,....k — 1}
endfor
endfor
for all (a,b) do in parallel
if b < b for i € {0,1,...,n — 1}
then Processor (a,b) sends the message to (b, b)) using e,
endfor

end

In Figure 4, we show the broadcasting tree for)}, whose bus implementation is shown in Figure
3. In Figure 4, a circle labeled by a pair of integers a and b represents a processor (a,b). A directed
edge labeled by an integer ¢ from (a,b) to (a’,b’) indicates that the message is transmitted from

(a,b) to (a',b') using hyperlink e..

Theorem 4 Assuming bus hyperlinks of Qy,, algorithm BROADCAST broadcasts a message from

any processor to all other processors in n parallel message steps.

11

Figure 4: Data communication pattern for broadcasting from (0, 1) in Qj.

Proof. The theorem follows directly from a simple induction based on the discussion predeeding
BROADCAST. O

4.3 Many-to-One Communication

A reduction (or census, or fan-in) function is defined as a commutative and associative operation
on a set of values, such as finding maximum, addition, logic or, etc. It can be carried out using
a many-to-one communication operation. We only consider the case that the specified reduction
operation is addition. The same algorithm can be slightly modified to perform other reduction
operations.

We present an algorithm that can be used to perform a summation on a set of N, values stores
in the A registers of processors, one per processor, and putting the final result in processor (I, u).
That is, the algorithm computes >, jyc- A(q,py, and putting the final result in A, of processor
(I,u). We assume that each processor (a,b) has a working register B, ;. Given any processor
(I,u), procedure TRANSFORM discussed in the previous section can be used to transform (I, u) to
(0"=10,0"=1) (or (0,1)) and all other (a,b) in Q} to (a’,d’). Then, we only need to consider the
summation algorithm which stores the final result in processor (0, 1).

27~1 partial sums are obtained

Summation is done in two phases. In the first phase, a set of
and stored in processors (z,2" ! 4+ 2), 0 < z < 2" ! — 1. The second phase computes the sum of

these partial sums and stored the final result in (0, 1).

12

procedure REDUCTION((0, 1))
begin
/* phase 1 */
fori =1ton—1do
for all (a,b) do in parallel
if a;a; 1 = 00 and bibi,1 =01 then
Processor (a,b) sends A, from (a,b) to (a, (b)) using eq;
if a;a;_1 = 10 and b;b;_1 = 11 then
Processor (a,b) sends A, from (a,b) to (@)1 b) using ep;
if (a,b) received a value then
store this value in B, and perform A, 4 := A(qpy + Bap)
endfor
endfor
/* phase 2 */
for i =n —1 down to 1 do
for all (a,b) do in parallel
if a = 0"~"=100+"~! and b = 0"""~'10+"! then
Processor (a,b) sends A, from (a,b) to (a, (6 =1 using eg;
ifa =0""""101+"! and b = 0"*"111%*~! then
Processor (a,b) sends A,y from (a,b) to ((@)=1) g) using eq;
if (a,b) received two values then
store one value in A, and the other in B,), and perform
Aapy = Ap) + Blap)
endfor
endfor

end

Theorem 5 Assuming bus hyperlinks of Qy,, algorithm REDUCTION carries out a reduction op-

eration in 2(n — 1) parallel message transmission steps.

Proof. First, we claim that at the end of the first phase the sum of the partial sums stored in

processors (2,2 1 +2), 0 < z < 2" ! — 1, is the final sum. It is easy to verify that the claim

is true for n = 2 and n = 3. Suppose that the claim is true for n = k, and consider the case

n =k + 1. By the algorithm, any processor (a,b) such that agar_; = 00 and biybr_; = 01 has not

sent and receive any value before the k-th step (iteration). Furthermore, by the hypothesis, the

sum of the partial sums stored in processors (z,2F 71 + 2), 0 < z < 2671 — 1, is the sum of the

values originally stored in sub-hypernetwork ()} induced by all vertices (a,b) in @}, such that

13

Phase 2

)
N
(=)
NIV
(o)
NS
(=)
N
(2

11
)}

o 3 {14 (|7 |8

Figure 5: Data communication pattern for reduction in Qj.

a < 2F and b < 2¥. Consider one more step (i.e. the k-th iteration) of the first phase. In this
step the partial sum stored in (z,2¥71 4+ 2), 0 < z < 2¥=1 — 1, is sent to processor (z,2F + 2),
0 < z < 2F=1 — 1, using hyperlink e,. By the symmetry, the sum of the partial sums stored in
processors (2F + z,2F 4 281 1 2) 0 < 2 < 2¥=1 — 1, is the sum of the values originally stored in
sub-hypernetwork () induced by all vertices (a,b) in Q. such that a > 2k and b > 2% and after
the k-th step, the partial sum stored in (2F + 2, 2F +28=1 4+ 2), 0 < 2 < 2F~1 —1, is sent to processor
(2K=1 4z 2k 4 2k=1 4 2) 0 < 2 < 281 — 1, using hyperlink egkor-1 ,. Therefore, after performing
parallel additions in processors (2,2 + z), 0 < z < 2F — 1, we obtain the claimed 2* partial sums
for Q. This completes the induction.

Now, we claim that the second phase computes the sum of the partial sums stored in processors
(2,271 +2),0 < 2z < 277! — 1, and store the final result in (0, 1) of Q}. This claim is true for n = 2
and n = 3. Suppose that the claim is true for n = k, and consider the case n = k + 1. In the first
iteration (i = k), each processor (z,2¥ "1 +2), 0 < z < 2F71 — 1, receives two partial sums, one from
(z,2F + z) via e,, and the other from (2871 + 2,2F 4+ 2F71 4 2) via ey 1,,. After additions, 2~!
partial sums are obtained and stored in processors (z,28~! + 2), where 0 < z < 2¥=! — 1. Then,
the induction hypothesis guarantees that after £ — 1 more steps the final result will be stored in
processor (0,1). This completes the proof of the claim for phase 2, and the proof of the theorem.
O

In Figure 5, we show the communication pattern used by REDUCTION on ()}, whose bus

14

implementation is shown in Figure 3. As Figure 4, in this figure, a circle labeled by a pair of
integers a and b represents a processor (a,b). A directed edge labeled by an integer ¢ from (a,b) to

(a', V') indicates that the message is transmitted from (a, b) to (a’, ') using hyperlink e..

4.4 Many-to-Many Communication

We consider a general case, the all-to-all communication. In an all-to-all communication, each
processor sends a message to all the other processors. It is also called the total exchange operation.

We can obtain a total exchange communication algorithm by modifying algorithm REDUC-
TION. The operator used is set union instead of addition. After applying REDUCTION, all
messages are collected at processor (0,1). Then, aby applying BROADCAST, processor (0,1)
broadcasts the N,, messages to all remaining processors of ();. By Theorem 5, the second phase
alone takes nV,, parallel message steps. Note that the lower bound for the time of a total exchange
operation on @} is 2(NN,,), and clearly, this algorithm is not efficient.

If what follows, we present an algorithm TOTAL_EXCHANGE which takes O(N,) message
steps to perform the total exchange operation on ;. Algorithm TOTAL_EXCHANGE is an all-
port algorithm, i.e. the two I/O ports of each processor may participate in a message transmission
step. However, each port performs either a send operation or receive operation, but not both.
This algorithm can be easily converted to a single-port algorithm with the same communication
complexity.

For convenience, we define that a processor (i,) is of dimension k, 0 < k <n —1, if j —i = 2F.
It is easy to verify the following facts: (i) There are exactly 2"~! processors of dimension %,
0<k<n-—1,in Q}; (ii) There is exactly one processor of dimension k, 0 < k < n — 1, attached
to each hyperlink in @}; and (iii) Any two processors of the same dimension are not attached to

the same hyperlink in @)} .

procedure TOTAL EXCHANGE
begin
for all hyperlinks e, do in parallel
All processors attached to e sends its message to the processor of dimension 0 that
is attach to ep using ep;
endfor
Let the set of messages received by each processor (7, j) be denoted by M; jy;
for k=0ton—1do
for all processors (i, j) of dimension k& do in parallel
Broadcast M; jy to all processors attached to hyperlink e; and e;
endfor

Let the set of messages received by each processor (i, j) be denoted by M; jy;

15

endfor
end

The correctness of this algorithm can be verified by the following induction. It is easy to see that
the algorithm is correct for Q}. Suppose that the algorithm is correct for n = m, and consider the
case of n = m + 1. After m iterations of the for loop, the total exchange operations are performed
with respect to the subhypergraph of @}, induced by vertices (7, j) such that ¢ < 2™ and j < 2™,
and the subhypergraph of @, induced by vertices (i’,j') such that ' > 2™ and j' > 2™. In
addition, dimension m processors have received all messages in @y, ;. In one additional iteration,
each processor (a,b) of dimension m broadcasts all its received messages to processors attached to
hyperlinks e, and e,. Then, by (i), (ii) and (iii), the total exchange operation is performed with
respect to Q1.

Now, let use analyze the performance of TOTAL_ EXCHANGE. In our algorithm, we assume
that we a processor broadcasts a set of messages, it broadcasts all messages it received in the
previous step. As a consequence, duplicated messages are broadcast. We show that even with
duplicated messages, the performance of TOTAL EXCHANGE is within a constant factor of the
optimal. In the first for statement, 2(n — 1) messages are collected by each dimension 0 processor
(a,b) using two hyperlinks e, and ey, and this takes (n — 1) message steps. Consider the for loop. It
has n iterations. In the first iteration, 2n messages are broadcast from each dimension 0 processor
(a,b) to all processors attached to e, and ey. In the second iteration, 4n messages are broadcast
are broadcast from each dimension 1 processor (a,b) to all processors attached to e, and e;. In
general, in the iteration with & = m, 2!n messages need to be broadcast by each dimension m
processor {a,b) to all processors attached to e, and e,. By (ii) and (iii) above, the iteration with
k = m takes no more than 2™'n message steps. Therefore, TOTAL_EXCHANGE requires no
more than (n—1)+ (2+4+8+---+2")n = (2! — 1)n — 1 parallel message steps. We summarize

this analysis by the following claim.

Theorem 6 Assuming bus hyperlinks of Q;,, algorithm TOTAL_EXCHANGE carries out a total

exchange operation in 4N, —n — 1 parallel message steps.

5 Discussions

We proposed a new class of hypernetworks base on the duals of hypercubes. The structures of @)},
and @), are quite different, but as we showed, many properties of)}, can be directly derived from
the properties of ,,. The Q;, hypernetwork is suitable for exploiting the high bandwidths provided
by new interconnection technologies such as optical fiber or devices. We presented a set of basic

data communication algorithms for @); based on bus implementation of hyperlinks. Algorithms

16

ROUTE ard BROADCAST are optimal, and algorithms REDUCTION and TOTAL_ EXCHANGE
are optimal within a constant factor.

Our algorithms are closely related to the ideas behind their corresponding algorithms on the
hypercube network. This leads us to a pose an open problem: is there a simulation scheme that
can be used to simulates @), by @} efficiently? If such a scheme can be found, then all previously
know hypercube algorithms can be automatically translated to algorithms for a machine using @)},
as the interconnection network.

Using the hypergraph dual concept, one can obtain another class of hypernetworks that contains
the duals of the star graphs. The n-star graph S, (refer to [1] for its definition) is a point-to-point
network that has n! vertices, n(n — 1)!/2 edges, and its degree and the diameter are n — 1 and
|3(n—1)/2], respectively. S, is vertex and edge symmetric. Therefore, S has n!(n —1)/2 vertices
and n! hyperedges; S} is 2-regular, (n — 1)-uniform, linear, and vertex and hyperedge symmetric;
and the diameter of S} is no greater than [(3n — 1)/2], respectively. Both of diameter and degree
of S; are sub-logarithmic functions of the number of processors and the number of hyperlinks in
Sy. Compared with Q;,, S; has some advantages. The topological and communication aspects of

the S} hypernetworks deserve further investigations.

References

[1] S. Akers, D. Harel, and B. Krishnamurthy, The Star Graph: an Attractive Alternative to
the n-Cube, Proceedings of 1987 International Conference on Parallel Processing, pp. 393-400,
1987.

[2] C. Berge Hypergraphs, North-Holland, 1989.

[3] O.M. Dighe, R. Vaidyanathan, and S.Q. Zheng, The Bus-Connected Ringed Tree: A Versatile

Interconnection Network, to appear in Journal of Parallel and Distributed Computing.
[4] P. E. Green, Jr., Fiber Optical Networks, Prentice Hall, 1993.

[5] Z. Guo , R. Melhem, R. Hall, D.Chiarulli and S. Levitan, Array Processors with Pipelined
Optical busses, Journal of Parallel and Distributed Computing, 12(3), pp. 269-282, 1991.

[6] J. Jahns and S.H. Lee (editors), Optical Computing Hardware, Academic Press, Inc., 1994.

[7] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hyper-
cube , Morgan Kaufmann Publishers, Inc., 1992, pp. 78-82, 239-244.

[8] Y. Li, Y. Pan and S.Q. Zheng, A Pipelined TDM Optical Bus with Conditional Delays”, to

appear in Optical Engineering.

17

[9]

[10]

[16]

[17]

R. Melhem, D. Chiarulli, and S. Levitan, Space Multiplexing of Waveguides in Optically
Interconnected Multiprocessor Systems, Computer Journal, 32(4), pp.362-369, 1989.

Y. Pan and K. Li, Linear Array with a Reconfigurable Pipelined Bus System — Concepts
and Applications, Proceedings of 1996 International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 1431-1442, 1996.

C. Qiao and R. Melhem, Time-division Optical Communications in Multiprocessor Arrays,
IEEE Trans. on Computers, 42(5), pp. 577-590, 1993.

C. Qiao, R. Melhem, D. Chiarulli and S. Levitan, Optical Multicasting in Linear Arrays,
International Journal of Optical Computing, 2(1), pp. 31-48, 1991.

C. Partridge, Gigabit Networking, Addison-Wesley, 1994.

S.Q. Zheng, Hypernetworks - A Class of Interconnection Networks with Increased Wire Shar-
ing: Part I - Part IV, Technical Reports, Department of Compute Science, Louisiana State
University, Baton Rouge, LA 70803, Dec., 1994.

S.Q. Zheng, Sparse Hypernetworks Based on Steiner Triple Systems, Proc of 1995 International
Conf. on Parallel Processing, pp. 1.92 - 1.95, 1995.

S.Q. Zheng and Y. Li, A Pipelined Asynchronous TDM Optical Bus, Technical Report #97-
006, Dept. of Computer Science, Louisiana State Univ., April, 1997.

S.Q. Zheng and J. Wu, Dual of a Complete Graph as an Interconnection Network, The Pro-
ceedings of 8th IEEE Symposium on Parallel and Distributed Processing, pp. 433-442, 1996.

18

