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Abstract

A new class of interconnection networks� the hypernetworks� have been proposed recently�

Hypernetworks are characterized by hypergraphs� Compared with point	to	point networks� they

allow for increased resource	sharing and communication bandwidth utilization� and they are

especially suitable for optical interconnects� One way to derive a hypernetwork is by 
nding the

dual of a point	to	point network� Hypercube Qn� where n is the dimension� is a popular point	

to	point network ���� In this paper� we consider using the dual Q�

n
of hypercube of Qn as an

interconnection network� We investigate the properties of Q�

n
� and present a set of fundamental

data communication algorithms for Q�

n
� Our results indicate that the Q�

n
hypernetwork is a

useful and promising interconnection structure for high	performance parallel and distributed

computing systems�

Keywords� hypercubes� hypernetworks� interconnection networks� optical buses� optical intercon�

nections� parallel and distributed computing�

� Introduction

Designing high bandwidth� low latency and scalable interconnection networks is a great challenge in

the construction of high�performance parallel computer systems� Traditionally� interconnection net�

works are characterized by graphs� Network topologies under graph models have been extensively

investigated� Many network structures have been proposed� and some have been implemented�

Observed the improving electrical bus and switching technologies and maturing optical intercon�

nection technologies� Zheng pointed out the conventional graph structure is no longer adequate for

the design and analysis of the new generation interconnection structures and proposed a new class

of interconnection networks� the hypernetworks �����
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The class of hypernetworks is a generalization of point�to�point networks� and it contains point�

to�point networks as a subclass� In a hypernetwork� the physical communication medium �a hy�

perlink	 is accessible to multiple �usually� more than two	 processors� Optical 
bers and devices

are suitable for implementing hyperlinks� The relaxation on the number of processors that can

be connected by a link provides more design alternatives so that greater �exibilities in trade�o�s

of contradicting design goals are possible� The underlying graph theoretic tool for investigating

hypernetworks is hypergraph theory �
�� Hypergraphs are used to model hypernetworks� Hyper�

network designs have been formulated as an optimization problem of constructing constrainted

hypergraphs� Interested readers may refer to ���� ��� ��� for more justi
cations� design issues and

implementation aspects of hypernetworks�

Existing results in hypergraph theory and combinatorial block design theory� which is closely

related to hypergraph theory� can be used to design hypernetworks� For example� in ����� Zheng

introduced several low diameter hypernetworks based on the concept of Steiner Triple System� In

����� Zheng and Wu proposed a scheme for constructing a new hypernetwork from an existing one

using the concept of dual graph in hypergraph theory� They showed that the dual H� of any given

hypergraph H is a hypergraph that have some properties related to the properties of H so that one

can investigate the properties of H� based on the properties of H� Since the structure of H and

its dual H� can be drastically di�erent� 
nding hypergraph duals can be considered as a general

approach to the design of new hypernetworks� They investigated the structure of the dual K�
n of

an n�vertex complete point�to�point network Kn�

Hypercube is a popular point�to�point network which has many desirable features such as small

diameter� symmetry� and supporting a large class of e�cient parallel algorithms� In this paper� we

propose a class of hypernetworks� the Q�
n �read as Qn star	 hypernetworks� The Q

�
n hypernetwork is

the dual of the n�dimensional hypercube Qn� We discuss the topological and fault tolerance aspects

of Q�
n� and present a set of parallel data communication algorithms for Q

�
n� Our results indicate

that the Q�
n hypernetwork is a useful and promising interconnection network for high�performance

parallel and distributed computing systems�

This paper is organized as follows� In Section 
� we introduce several basic concepts of hy�

pergraphs and hypernetworks� In Section �� we discuss the relations between a hypergraph and

its dual� and show that hypergraph duals can be used to derive new hypernetworks� We then

introduce the Q�
n hypernetwork� and show that it possesses a set of desirable properties� In Section

� we present a set of fundamental data communication algorithms for the Q�
n hypernetwork� and

analyze their performances based on the bus implementation of hyperlinks� Finally� in Section ��

we discuss the generalizations and implications of this work�






� Preliminaries

Hypergraphs are used as underlying graph models of hypernetworks� A hypergraph �
� H � �V�E	

consists of a set V � fv�� v�� � � � � vng of vertices� and a set E � fe�� e�� � � � � emg of hyperedges such

that each ei is a non�empty subset of V and fvjv � ei� � � i � mg � V � An edge e contains a vertex

v if v � e� If ei � ej implies that i � j� then H is a simple hypergraph� In this article� we only

consider simple hypergraphs� When the cardinality of an edge e� denoted as jej� is �� it corresponds

to a sel�oop edge� If all the edges have cardinality 
� then H is a graph that corresponds to a

point�to�point network� A hypergraph of n vertices and m hyperedges can also be de
ned by its

n�m incidence matrix A with columns representing edges and rows representing vertices such that

ai�j � � if vi �� ej � ai�j � � if vi � ej �

For a subset E
�

of E� we call the hypergraph H ��V �� E�	 such that V � � fvjv � e� e � E
�

g

the partial hypergraph of H generated by the set E
�

� For a subset U of V � we call the hypergraph

H ���V ��� E��	 such that E�� � fei � U jei � U �� �� � � i � mg and V �� � fvjv � e� e � E��g the

sub�hypergraph induced by the set U� Note that such an induced sub�hypergraph may or may not

be a simple hypergraph�

The degree dH�vi	 of vi in H is the number of edges in V that contain vi� A hypergraph

in which all the vertices have the same degree is said to be regular� The degree of hypergraph

H� denoted by ��H	� is de
ned as ��H	 � maxvi�V dH�vi	� A regular hypergraph of degree k

is called k�regular hypergraph� The rank r�H	 and antirank s�H	 of a hypergraph H is de
ned

as r�H	 � max��j�m jej j and s�H	 � min��j�m jej j� respectively� We say that H is a uniform

hypergraph if r�H	 � s�H	� A uniform hypergraph of rank k is called k�uniform hypergraph� A

hypergraph is vertex �resp� hyperedge	 symmetric if for any two vertices �resp� hyperedges	 vi and

vj �resp� ei and ej	 there is an automorphism of the hypergraph that maps vi to vj �resp� ei to ej	�

In a hypergraph H� a path of length q is de
ned as a sequence �vi� � ej� � vi� � ej� � � � � � ejq � viq��	

such that ��	 vi� � vi� � � � � � viq�� are all distinct vertices of H� �
	 ej� � ej� � � � � � ejq are all distinct edges

of H� and ��	 vik � vik�� � ejk for k � �� 
� � � � � q� A path from vi to vj � i �� j� is a path in H with

its end vertices being vi and vj � A hypergraph is connected if there is a path connecting any two

vertices� We only consider connected hypergraphs� A hypergraph is linear if jei � ej j � � for i �� j�

i�e�� two distinct buses share at most one common vertex� For any two distinct vertices vi and vj

in a hypergraph H� the distance between them� denoted by dis�vi� vj	� is the length of the shortest

path connecting them in H� Note that dis�vi� vi	 � �� The diameter of a hypergraph H � �V�E	�

denoted by ��H	� is de
ned by ��H	 � maxvi�vj�V dis�vi� vj	� More concepts in hypergraph theory

can be found in �
��

A hypernetwork M is a network whose underlying structure is a hypergraph H� in which each

vertex vi corresponds to a unique processor Pi of M � and each hyperedge ej corresponds to a

connector that connects the processors represented by the vertices in ej � A connector is loosely

de
ned as an electronic or a photonic component through which messages are transmitted between
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connected processors� not necessarily simultaneously� We call a connector a hyperlink�

Unlike a point�to�point network� in which a link is dedicated to a pair of processors� a hyperlink

in a hypernetwork is shared by a set of processors� A hyperlink can be implemented by a bus or

a crossbar switch� Current optical technologies allow a hyperlink to be implemented by optical

waveguides in a folded�bus using time�division multiplexing �TDM	� Free�space optical or optoelec�

tronic switching devices such as bulk lens� microlens array� and spatial light modulator �SLM	 can

also be used to implement hyperlinks� A star coupler� which uses wavelength�division multiplexing

�WDM	� can be considered either as a generalized bus structure or as a photonic switch� is another

implementation of a hyperlink� Similarly� an ATM switch� which uses a variant TDM� is a hyper�

link� In the rest of this paper� the following pairs of terms are used interchangeably� �hyper	edges

and �hyper	links� vertices and processors� point�to�point networks and graphs� and hypernetworks

and hypergraphs�

The problem of designing e�cient interconnection networks can be considered as a constrainted

optimization problem� For example� the goal of designing point�to�point networks is to 
nd well�

structured graphs �whose ranks are 
xed� as a constant 
	 with small degrees and diameters�

In hypernetwork design� the relaxation on the number of processors that can be connected by

a hyperlink �i�e� the rank of the hyperlink	 provides more design alternatives so that greater

�exibilities in trade�o�s of contradicting design goals are possible� The detailed discussion is beyond

the scope of this paper�

� Dual Hypernetworks and Q�
n Hypernetworks

The dual of a hypergraph H � �V�E	 with vertex set V � fv�� v�� � � � � vng and hyperedge set

E � fe�� e�� � � � � emg is a hypergraph H� � �V �� E�	 with vertex set V � � fv�� � v
�
� � � � � � v

�
mg and

hyperedge set E� � fe��� e
�
�� � � � � e

�
ng such that v

�
j corresponds to ej with hyperedges e

�
i � fv�j jvi � ej

and ej � Eg� In other words� H� is obtained from H by interchanging of vertices and hyperedges

in H� The incidence matrix of H� is the transpose of the incidence matrix of H� Thus� �H�	� � H�

The following relations between a hypergraph and its dual are apparent �����

Proposition � H is r�uniform if and only if H� is r�regular�

Proposition � The dual of a linear hypergraph is also linear�

Proposition � A hypergraph H is vertex symmetric if and only if H� is hyperedge symmetric �

Proposition � The dual of a sub�hypergraph of H is a partial hypergraph of the dual hypergraph

H��

Since �H�	� � H� all the above propositions still hold after interchanging H with H��
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Proposition � ��H	 � � � ��H�	 � ��H	 � ��

Propositions � � � show that some properties of the dual hypergraph H� of a given hypergraph

H can be derived from properties of H� For example� if H is a ring� then H� is isomorphic to

H� However� in general� the structures of H and its dual H� can be drastically di�erent� Finding

hypergraph duals can be considered as a general approach to the design of new hypernetworks�

We consider using the dual Q�
n of the hypercube Qn as a hypernetwork� An n�dimensional

hypercube Qn consists of 

n vertices� each being labeled by a unique n�bit binary number� Two

vertices are connected by an edge if and only if their binary labels are distinct in one bit position�

Properly labeling the vertices and hyperedges in Q�
n can greatly simplify its use as a communication

network� Vertex labels are used as processor addresses� Similarly� hyperedge labels are used as the

unique names of hyperlinks�

Let In be the set of non�negative integers that can be represented by n�bit binary numbers� For

l� u � In� we use d�l� u	 to denote the number of di�erent bits in the binary representations of l and

u� i�e� d�l� u	 is the Hamming distance between the binary representations of l and u� We use a

pair of integers to label a vertex in the Q�
n hypernetwork�

De�nition � Let Nn � n
n�� for n 	 
� The Q�
n hypernetwork is a hypergraph with vertex set

fhl� uijl� u � In� l � u� and d�l� u	 � �g of Nn vertices and 

n hyperlinks� e�� e�� � � � � e�n��� Each

vertex hl� ui is connected to exactly two hyperedges el and eu�

Example � The incidence matrix A of Q�
� is

A �

h�� �i

h�� 
i

h�� �i

h
� �i

h�� �i

h�� �i

h
� �i

h�� �i

h�� �i

h�� �i

h�� �i

h�� �i

e� e� e� e� e� e� e� e��
BBBBBBBBBBBBBBBBBBBBBBBBBB�

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�
CCCCCCCCCCCCCCCCCCCCCCCCCCA

�

The transpose of A is
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AT �

v�

v�

v�

v�

v�

v�

v�

v�

e��� e��� e��� e��� e��� e��� e��� e��� e��� e��� e��� e����
BBBBBBBBBBBBBBB�

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

�
CCCCCCCCCCCCCCCA

Clearly� AT is the incidence matrix of the hypercubeQ�� Figure � shows the bus implementation

of the Q�
� hypernetwork� whose incidence matrix A is given above� Its corresponding hypercube�

whose incidence matrix is AT � is shown in Figure 
� where each edge is labeled by its two end

vertices�
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Figure �� Bus implementation of Q�
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The Q�
n �n 	 �	 hypernetwork can also be de
ned in a recursive way� One can easily observe

that Q�
n can be constructed using two copies of Q

�
n�� and 


n�� additional vertices placed in between

�see Figures � and �	� For brevity� we omit the recursive de
nition of Q�
n�
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Figure �� Bus implementation of Q�
��

Based on the properties of hypercube Qn and Propositions � to �� we have the following fact�

Fact �� Q�
n is 
�regular� n�uniform� linear� and vertex and hyperedge symmetric�

Since the diameter of Qn is n� Property � indicates that the diameter of Q
�
n is at most n��� We

show that the diameter of Q�
n is also n� Let dis�hl� ui� hl

�

� u
�

i	 denote the distance between vertices

hl� ui and hl
�

� u
�

i in Q�
n�

Lemma � For any two vertices hl� ui and hl
�

� u
�

i in Q�
n� dis�hl� ui� hl

�

� u
�

i	 � minfd�l� l
�

	� d�l� u
�

	�

d�u� l
�

	� d�u� u
�

	g� ��

Proof� We view hl� ui and hl
�

� u
�

i as two edges in Qn� The minimal path connecting these two

edges is one from one end node of hl� ui to one end node of hl
�

� u
�

i� Therefore� the distance is the

length of a minimal path between two end nodes plus one� �

Lemma � For any two vertices hl� ui and hl
�

� u
�

i in Q�
n� dis�hl� ui� hl

�

� u
�

i	 � n�

Proof� For two hyperedges hl� ui and hl
�

� u
�

i in Q�
n� if d�l� l

�

	 � n then d�l� u
�

	 � n� By Lemma ��

d�hl� ui� hl
�

� u
�

i	 � minfd�l� l
�

	� d�l� u
�

	� d�u� l
�

	� d�u� u
�

	g�� � minfd�l� l
�

	� d�l� u
�

	g�� � �n��	�� �

n� �

Theorem � The diameter of Q�
n is n�
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Proof� From lemma 
� we know that the diameter is less than or equal to n� All we need to do is

to prove that there are two vertices hl� ui and hl
�

� u
�

i such that d�hl� ui� hl
�

� u
�

i	 � n� �� Actually�

it is easy to see that vertices h�������� �������i and h�������� �������i meet the above condition� �

In Q�
n� the number of processors is n�
 times the number of the hyperlinks� Each processor is

attached to exactly two hyperlinks� and this simpli
es the processor interface circuit design� Each

hyperlink connects n processors� Suppose that a ��� �� crossbar switch is implementable and cost

e�ective� then Q�
�� of ���
� processors can be implemented using ���
� such switches as hyperlinks�

Consider the fault tolerance aspect of the Q�
n hypernetwork� We say that a hypernetwork H

is x�processor fault�tolerant �resp� y�hyperlink fault�tolerant	 if it remains connected when no more

than any x processors �resp� y�hyperlinks	 are removed� We have the following claim�

Theorem � Q�
n is �
n� �	�processor fault�tolerant and ��hyperlink fault�tolerant�

Proof� Consider the hypercube Qn� Take an edge e and delete all edges that share a vertex

with e� then the graph becomes disconnected� This implies that it is possible to disconnect the

Q�
n hypernetwork by removing 
�n � �	 processors� However� removing any less than 
�n � �	

processors from Qn will not make the remaining part of Qn disconnected� Hence� Q
�
n is �
n � �	�

processor fault�tolerant� Since Q�
n is 
�regular� removing any two hyperlinks that share a vertex v

will disconnect processor v� �

� Data Communication Algorithms for Q�
n

In this section� we use the vertex and hyperedge labels to design data communication algorithms

for the Q�
n hypernetwork� For simplicity� we assume bus implementation of hyperlinks� In the

electronic domain� the bus load� i�e� the number of processors that can be connected by a bus�

is limited� Using optical 
bers to implement a bus� the bus load can be increased signi
cantly�

Recently� optical bus architectures have received considerable attention �e�g� ��� �� �� ��� �
� ���

	� Since a bus is shared by all its connected processors� the performance of a bus depends on the

way it is accessed by processors� For example� one way for processors to share a bus is to use

time�division multiplexing �TDM	� which allocates time slots to processors so that they can only

access the bus during their slots� Another way is to let processors compete for bus tenure� and use

an arbiter to grant the bus tenure in an on�line fashion�

We assume a synchronous mode communication� Bus allocations� although operated dynami�

cally� are predetermined by an o��line scheduling algorithm� This bus operational mode has been

used in ��� for analyzing a multiple�bus interprocessor connection structure� Assume that all mes�

sages are of the same length� The communication performance is measured in terms of parallel

message steps� We adopt these assumptions for two reasons� First� under these assumptions� it is

easier to assess the capability and limitation of the proposed hypernetwork structure� Secondly� the

�



performance results obtained can be easily used to measure other bus communication method by

either adding additional overheads� which may incur in TDM transmission and asynchronous bus

allocation� or deducting transmission latency saving due to pipelining e�ect of a pipelined optical

bus�

We discuss four types of communication operations� one�to�one communications� one�to�many

communications� many�to�one communications and many�to�many communications� For each type�

we present an algorithm for a representative communication operation� These communication

algorithms constitute a useful set of tools for designing parallel algorithms on the Q�
n hypernetwork�

��� One�to�One Communication

We consider shortest path routing between two processors� where hl� ui and hl
�

� u
�

i to represent the

source processor and the destination processor� respectively� The idea of the shortest path routing

is as follows� If the two processors share one hyperlink� the message is transmitted through that

hyperlink� Otherwise� the transmission is done from hyperlink ea toward hyperlink eb such that

a � fl� ug� b � fl
�

� u
�

g � and d�a� b	 is the minimal� The source processor sends the message to the

processor ha� ci through hyperlink ea such that d�c� b	 � d�a� b	� �� This process is recursive� that

is� the processor ha� ci will then relay the message toward the processor hl
�

� u
�

i� The following is

the shortest path routing algorithm�

procedure ROUTE�hl� ui� hl
�

� u
�

i	

begin

Let a � fl� ug� b � fl
�

� u
�

g such that d�a� b	 � dis�hl� ui� hl
�

� u
�

i	� ��

if a � b then

Processor hl� ui sends the message to hl
�

� u
�

i using ea

else begin

Select c such that d�c� b	 � d�a� b	 � ��

Processor hl� ui sends the message to ha� ci using ea�

ROUTE�ha� ci� hl
�

� u
�

i	

end

end

Theorem � For any given pair of processors hl� ui and hl
�

� u
�

i in the Q�
n hypernetwork� algorithm

ROUTE routes a message from hl� ui to hl
�

� u
�

i along a minimal path in dis�hl� ui� hl�� u�i	 message

steps�

Proof� The theorem dirctly follows from Lemmas � and 
� �

�



��� One�to�Many Communication

We consider broadcasting a message from any processor hl� ui to all other processors in Q�
n� Given

hl� ui� procedure TRANSFORM is used to transform hl� ui to h�� �i and all the other ha� bi in Q�
n to

ha�� b�i in constant time�

procedure TRANSFORM �hl� ui	

begin

for all ha� bi in Q�
n do in parallel

if a � � and b � � then ha�� b�i �� hl� ui

else if a � � then ha�� b�i �� hminfl� bg�maxfl� bgi

else if a � � then ha�� b�i �� hminfu� bg�maxfu� bgi

else if a � l then ha�� b�i �� h�� bi

else if b � u then ha�� b�i �� h�� ai

endfor

end

By the symmetry of the Q�
n hypernetwork� we know that the new identities ha

�� b�i assigned to

processors of Q�
n satisfy the connectivities of Q

�
n� We only need to describe an algorithm which

broadcasts a message from h�� �i to all processors in Q�
n�

We use �k to represent k consecutive ��s� e�g� �� � ���� Let Qk � �n�k���
k and Q
�

k �

�n�k���
k denote the k�dimensional subcube of Qn induced by all vertices whose left n � k bits

are �n�k��� and �n�k���� respectively� Here� an 
 in a bit position stands for �don�t care�� and 
k

represents k consecutive 
�s� We use Qk	� � Qk � Q
�

k to denote the �k � �	�dimensional subcube

of Qn induced by vertices in Qk and Q
�

k� We explain the broadcasting algorithm in Q�
n using an

n�dimensional hypercube �Qn	 by interchanging the role of vertices and edges� The idea behind our

broadcasting algorithm is as follows� Assuming that initially the edge connecting vertices �n���

and �n��� in Qn is colored� and all other edges in Qn are not colored� We want to edge traversing

algorithm A which systematically traverses all edges in Qn in n steps� In the k�th step� algorithm

A selects a subset Ek of edges in Qn that satis
es the following conditions� ��	 all edges in Ek are

not previously traversed� �
	 each edge in Ek has at least one end vertex that is an end vertex of

a previously colored edge� and ��	 for each edge e in in Ek assign a direction it is traversed� let u

and v be the two end vertices of e� and suppose that u is an end vertex of a previously traversed

edge� then traverse e from u to v� In the following� we provide a selection procedure for Ek so that

all edges of Qn are guaranteed to be traversed in n parallel steps� Obviously� such an algorithm A

corresponds to a broadcasting algorithm A� for Q�
n�

Now� let us describe our algorithm A� Starting from Q� �which corresponds to the edge con�

necting vertices �n��� and �n��� in Qn� and the source vertex h�n���� �n���i in Q�
n	� increase the

��



dimension of the cube by one in each step� In the 
rst step� we consider Q� � Q� � Q
�

�� the two

edges connecting vertices in Q� and Q
�

� are colored� In the second step� the edge connecting �
n����

and �n���� is traversed in the direction from �n���� and �n���� and the edges connecting Q� and

Q
�

� are traversed in the direction from Q� and Q
�

�� Assume that after k� � � k � n�
� steps� all the

edges in Qk � �n�k���
k and the ones connecting Qk and Q
�

k � �n�k���
k have been traversed�

but all the edges in Q
�

k have not been traversed� In step k� �� we traverse all the edges in Q
�

k and

the edges connecting Qk	� and Q
�

k	�� where Qk	� � �
n�k���
k	� and Q

�

k	� � �
n�k���
k	�� in the

direction from Qk	� to Q
�

k	�� To traverse all the edges in Q
�

k� we randomly pick two connected

vertices v and u� if v � u then the link �v� u	 is traversed from v to u� In step n� we only need to

traverse all the edges in Q
�

n�� in the direction from Q
�

n���� to Q
�

n�����

Let bn��bn�� � � � b� be the binary representation of b� We use b

i� to represent the binary number

�and its corresponding decimal value	 obtained by complementing the ith bit� bi� of the binary

representation of b� Translating the above hypercube edge traverse algorithm into an algorithm for

traversing vertices in Q�
n� we obtain the following algorithm�

procedure BROADCAST�h�� �i	

begin

for k � � to n� � do

for all ha� bi where a � �n�k�
k�� and b � �n�k�
k�� do in parallel

Processor ha� bi sends the message to ha� a
k	��i using ea�

Processor ha� bi sends the message to hb� b
k	��i using eb�

Processor ha� bi sends the message to hb� b
i�i using eb�

if b � b
i� for i � f�� �� ���� k � �g

endfor

endfor

for all ha� bi do in parallel

if b � b
i� for i � f�� �� ���� n � �g

then Processor ha� bi sends the message to hb� b
i�i using eb

endfor

end

In Figure �� we show the broadcasting tree for Q�
�� whose bus implementation is shown in Figure

�� In Figure �� a circle labeled by a pair of integers a and b represents a processor ha� bi� A directed

edge labeled by an integer c from ha� bi to ha�� b�i indicates that the message is transmitted from

ha� bi to ha�� b�i using hyperlink ec�

Theorem � Assuming bus hyperlinks of Q�
n� algorithm BROADCAST broadcasts a message from

any processor to all other processors in n parallel message steps�

��
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Figure �� Data communication pattern for broadcasting from h�� �i in Q�
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Proof� The theorem follows directly from a simple induction based on the discussion predeeding

BROADCAST� �

��� Many�to�One Communication

A reduction �or census� or fan�in	 function is de
ned as a commutative and associative operation

on a set of values� such as 
nding maximum� addition� logic or� etc� It can be carried out using

a many�to�one communication operation� We only consider the case that the speci
ed reduction

operation is addition� The same algorithm can be slightly modi
ed to perform other reduction

operations�

We present an algorithm that can be used to perform a summation on a set of Nn values stores

in the A registers of processors� one per processor� and putting the 
nal result in processor hl� ui�

That is� the algorithm computes
P

ha�bi�Q�

n
Aha�bi� and putting the 
nal result in Ahl�ui of processor

hl� ui� We assume that each processor ha� bi has a working register Bha�bi� Given any processor

hl� ui� procedure TRANSFORM discussed in the previous section can be used to transform hl� ui to

h�n���� �n���i �or h�� �i	 and all other ha� bi in Q�
n to ha

�� b�i� Then� we only need to consider the

summation algorithm which stores the 
nal result in processor h�� �i�

Summation is done in two phases� In the 
rst phase� a set of 
n�� partial sums are obtained

and stored in processors hz� 
n�� � zi� � � z � 
n�� � �� The second phase computes the sum of

these partial sums and stored the 
nal result in h�� �i�

�




procedure REDUCTION�h�� �i	

begin

�� phase � ��

for i � � to n� � do

for all ha� bi do in parallel

if aiai�� � �� and bibi�� � �� then

Processor ha� bi sends Aha�bi from ha� bi to ha� �b
i�	
i���i using ea�

if aiai�� � �� and bibi�� � �� then

Processor ha� bi sends Aha�bi from ha� bi to h�a
i�	
i���� bi using eb�

if ha� bi received a value then

store this value in Bha�bi and perform Aha�bi �� Aha�bi �Bha�bi

endfor

endfor

�� phase 
 ��

for i � n� � down to � do

for all ha� bi do in parallel

if a � �n�i����
i�� and b � �n�i����
i�� then

Processor ha� bi sends Aha�bi from ha� bi to ha� �b
i�	
i���i using ea�

if a � �n�i����
i�� and b � �n�i����
i�� then

Processor ha� bi sends Aha�bi from ha� bi to h�b
i�	
i���� ai using ea�

if ha� bi received two values then

store one value in Aha�bi and the other in Bha�bi� and perform

Aha�bi �� Aha�bi �Bha�bi

endfor

endfor

end

Theorem � Assuming bus hyperlinks of Q�
n� algorithm REDUCTION carries out a reduction op�

eration in 
�n� �	 parallel message transmission steps�

Proof� First� we claim that at the end of the 
rst phase the sum of the partial sums stored in

processors hz� 
n�� � zi� � � z � 
n�� � �� is the 
nal sum� It is easy to verify that the claim

is true for n � 
 and n � �� Suppose that the claim is true for n � k� and consider the case

n � k � �� By the algorithm� any processor ha� bi such that akak�� � �� and bkbk�� � �� has not

sent and receive any value before the k�th step �iteration	� Furthermore� by the hypothesis� the

sum of the partial sums stored in processors hz� 
k�� � zi� � � z � 
k�� � �� is the sum of the

values originally stored in sub�hypernetwork Q�
k induced by all vertices ha� bi in Q�

k	� such that

��
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Figure �� Data communication pattern for reduction in Q�
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a � 
k and b � 
k� Consider one more step �i�e� the k�th iteration	 of the 
rst phase� In this

step the partial sum stored in hz� 
k�� � zi� � � z � 
k�� � �� is sent to processor hz� 
k � zi�

� � z � 
k�� � �� using hyperlink ez� By the symmetry� the sum of the partial sums stored in

processors h
k � z� 
k � 
k�� � zi� � � z � 
k�� � �� is the sum of the values originally stored in

sub�hypernetwork Q�
k induced by all vertices ha� bi in Q

�
k	� such that a 	 
k and b 	 
k and after

the k�th step� the partial sum stored in h
k�z� 
k�
k���zi� � � z � 
k����� is sent to processor

h
k�� � z� 
k � 
k�� � zi� � � z � 
k�� � �� using hyperlink e�k�k��	z� Therefore� after performing

parallel additions in processors hz� 
k � zi� � � z � 
k � �� we obtain the claimed 
k partial sums

for Q�
k	�� This completes the induction�

Now� we claim that the second phase computes the sum of the partial sums stored in processors

hz� 
n���zi� � � z � 
n����� and store the 
nal result in h�� �i of Q�
n� This claim is true for n � 


and n � �� Suppose that the claim is true for n � k� and consider the case n � k � �� In the 
rst

iteration �i � k	� each processor hz� 
k���zi� � � z � 
k����� receives two partial sums� one from

hz� 
k � zi via ez � and the other from h
k�� � z� 
k � 
k�� � zi via e�k��	z� After additions� 

k��

partial sums are obtained and stored in processors hz� 
k�� � zi� where � � z � 
k�� � �� Then�

the induction hypothesis guarantees that after k � � more steps the 
nal result will be stored in

processor h�� �i� This completes the proof of the claim for phase 
� and the proof of the theorem�

�

In Figure �� we show the communication pattern used by REDUCTION on Q�
�� whose bus

��



implementation is shown in Figure �� As Figure �� in this 
gure� a circle labeled by a pair of

integers a and b represents a processor ha� bi� A directed edge labeled by an integer c from ha� bi to

ha�� b�i indicates that the message is transmitted from ha� bi to ha�� b�i using hyperlink ec�

��� Many�to�Many Communication

We consider a general case� the all�to�all communication� In an all�to�all communication� each

processor sends a message to all the other processors� It is also called the total exchange operation�

We can obtain a total exchange communication algorithm by modifying algorithm REDUC�

TION� The operator used is set union instead of addition� After applying REDUCTION� all

messages are collected at processor h�� �i� Then� aby applying BROADCAST� processor h�� �i

broadcasts the Nn messages to all remaining processors of Q
�
n� By Theorem �� the second phase

alone takes nNn parallel message steps� Note that the lower bound for the time of a total exchange

operation on Q�
n is  �Nn	� and clearly� this algorithm is not e�cient�

If what follows� we present an algorithm TOTAL EXCHANGE which takes O�Nn	 message

steps to perform the total exchange operation on Q�
n� Algorithm TOTAL EXCHANGE is an all�

port algorithm� i�e� the two I�O ports of each processor may participate in a message transmission

step� However� each port performs either a send operation or receive operation� but not both�

This algorithm can be easily converted to a single�port algorithm with the same communication

complexity�

For convenience� we de
ne that a processor hi� ji is of dimension k� � � k � n� �� if j � i � 
k�

It is easy to verify the following facts� �i	 There are exactly 
n�� processors of dimension k�

� � k � n� �� in Q�
n� �ii	 There is exactly one processor of dimension k� � � k � n� �� attached

to each hyperlink in Q�
n� and �iii	 Any two processors of the same dimension are not attached to

the same hyperlink in Q�
n�

procedure TOTAL EXCHANGE

begin

for all hyperlinks eh do in parallel

All processors attached to eh sends its message to the processor of dimension � that

is attach to eh using eh�

endfor

Let the set of messages received by each processor hi� ji be denoted by Mhi�ji�

for k � � to n� � do

for all processors hi� ji of dimension k do in parallel

Broadcast Mhi�ji to all processors attached to hyperlink ei and ej

endfor

Let the set of messages received by each processor hi� ji be denoted by Mhi�ji�

��



endfor

end

The correctness of this algorithm can be veri
ed by the following induction� It is easy to see that

the algorithm is correct for Q�
�� Suppose that the algorithm is correct for n � m� and consider the

case of n � m��� After m iterations of the for loop� the total exchange operations are performed

with respect to the subhypergraph of Q�
m	� induced by vertices hi� ji such that i � 
m and j � 
m�

and the subhypergraph of Q�
m	� induced by vertices hi

�� j�i such that i� 	 
m and j� 	 
m� In

addition� dimension m processors have received all messages in Q�
m	�� In one additional iteration�

each processor ha� bi of dimension m broadcasts all its received messages to processors attached to

hyperlinks ea and eb� Then� by �i	� �ii	 and �iii	� the total exchange operation is performed with

respect to Q�
m	��

Now� let use analyze the performance of TOTAL EXCHANGE� In our algorithm� we assume

that we a processor broadcasts a set of messages� it broadcasts all messages it received in the

previous step� As a consequence� duplicated messages are broadcast� We show that even with

duplicated messages� the performance of TOTAL EXCHANGE is within a constant factor of the

optimal� In the 
rst for statement� 
�n� �	 messages are collected by each dimension � processor

ha� bi using two hyperlinks ea and eb� and this takes �n��	 message steps� Consider the for loop� It

has n iterations� In the 
rst iteration� 
n messages are broadcast from each dimension � processor

ha� bi to all processors attached to ea and eb� In the second iteration� �n messages are broadcast

are broadcast from each dimension � processor ha� bi to all processors attached to ea and eb� In

general� in the iteration with k � m� 
m	�n messages need to be broadcast by each dimension m

processor ha� bi to all processors attached to ea and eb� By �ii	 and �iii	 above� the iteration with

k � m takes no more than 
m	�n message steps� Therefore� TOTAL EXCHANGE requires no

more than �n� �	� �
����� � � ��
n	n � �
n	�� �	n� � parallel message steps� We summarize

this analysis by the following claim�

Theorem 	 Assuming bus hyperlinks of Q�
n� algorithm TOTAL EXCHANGE carries out a total

exchange operation in �Nn � n� � parallel message steps�

�

� Discussions

We proposed a new class of hypernetworks base on the duals of hypercubes� The structures of Q�
n

and Qn are quite di�erent� but as we showed� many properties of Q
�
n can be directly derived from

the properties of Qn� The Q
�
n hypernetwork is suitable for exploiting the high bandwidths provided

by new interconnection technologies such as optical 
ber or devices� We presented a set of basic

data communication algorithms for Q�
n based on bus implementation of hyperlinks� Algorithms

��



ROUTE ard BROADCAST are optimal� and algorithms REDUCTION and TOTAL EXCHANGE

are optimal within a constant factor�

Our algorithms are closely related to the ideas behind their corresponding algorithms on the

hypercube network� This leads us to a pose an open problem� is there a simulation scheme that

can be used to simulates Qn by Q
�
n e�ciently! If such a scheme can be found� then all previously

know hypercube algorithms can be automatically translated to algorithms for a machine using Q�
n

as the interconnection network�

Using the hypergraph dual concept� one can obtain another class of hypernetworks that contains

the duals of the star graphs� The n�star graph Sn �refer to ��� for its de
nition	 is a point�to�point

network that has n" vertices� n�n � �	"�
 edges� and its degree and the diameter are n � � and

b��n� �	�
c� respectively� Sn is vertex and edge symmetric� Therefore� S
�
n has n"�n� �	�
 vertices

and n" hyperedges� S�
n is 
�regular� �n � �	�uniform� linear� and vertex and hyperedge symmetric�

and the diameter of S�
n is no greater than b��n� �	�
c� respectively� Both of diameter and degree

of S�
n are sub�logarithmic functions of the number of processors and the number of hyperlinks in

S�
n� Compared with Q�

n� S
�
n has some advantages� The topological and communication aspects of

the S�
n hypernetworks deserve further investigations�
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