
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

MDP: Minimum delay hot-spot parking

Peng Liua, Biao Xua, Guojun Daia, Zhen Jiangb,c,⁎, Jie Wub

a Institute of Computer Application Technology, Hangzhou Dianzi University, China
b Department of Computer and Information Sciences, Temple University, United States
c Department of Computer Science, West Chester University, United States

A R T I C L E I N F O

Keywords:
Hungarian algorithm
Parking guidance information system (PGI)
Traffic performance optimization
Vehicular ad-hoc network (VANET)
Wireless communication

A B S T R A C T

Hot-spot parking is becoming the Achilles' heel of the tourism industry. The more tourists that are attracted to
the scenic site, the more often they will encounter a hassle of congestion to find a parking place; while those
existing facilities for daily traffic are not supposed to support the excessive volume outburst. In this paper, we
present a new parking guidance information system (PGI). By taking advantage of the technical advances of
today in wireless communication of vehicular ad-hoc network, each vehicle will request and obtain a relatively
fair opportunity to park. The competition and the corresponding allocation on the available slots emerging along
the time scale are considered, in order to ensure that no vehicle enters a state of starvation. This is the first
attempt to solve the spatiotemporal problem of resource assignment based on our extensive work on the
Hungarian algorithm. The contribution as one part of the sustainable development of big historic cities is to
minimize the idle driving and waiting, without increasing the parking supply, which could be costly and
unnecessary to build in those urban areas. Both analytical and experimental results demonstrate the success of
our effort, in terms of the average cruising/waiting time in each individual parking case and its upper bound.
The data is compared with the best results known to date and shows a new direction to improve the resource
assignment.

1. Introduction

West Lake was made the UNESCO World Heritage Site in 2011
(Espanol, 2011). It has been the best-known hot-spot over centuries to
attract many tourists. But during the travel season, such as the Golden
Week Holiday, a high parking volume usually exceeds the capability of
existing facilities, incurring the so-called hot-spot parking problem
(e.g., theexpiredmeter, 2010).

The delay in searching and occupying a parking slot might cause
congestion and environmental issues as indicated in Geng and
Cassandras (2013). The time includes the period a vehicle drives
towards the target place according to the reservation. It also includes
the idle driving around the scenic site when the vehicle waits for the
vacant slot to emerge. In our hot-spot parking, such a delay has a direct
impact on municipal reputation and revenue, while tourism has
become one of the world's fastest growing industries as well as the
major source of earning and employment for many developing
countries.

Unlike the problem of residential parking (No parking, 2012) that
can resort to new construction of parking facilities (Millikin, 2013), this
is a resource allocation problem, but in an extremely critical circum-
stance where those slots constituted for daily traffic are required to

allocate for the volume outburst (e.g., Yang, 2014). When the slots
currently available are not enough to support all parking demands, the
capacity of each place growing along the time scale must be considered
for the vehicle to capture the future parking opportunity. This
introduces the spatiotemporal resource allocation problem discussed
here.

Many existing parking guidance information systems (PGI), either
reservation based (e.g., Geng and Cassandras, 2013) or greedy (e.g.,
Ayala et al., 2012), provide parking guidance by allowing every vehicle
to reach the nearest available slot. However they overlook the
competition of limited slots in the resource-critical scenarios and
cannot provide a fair chance for those runner-ups to reenter the
parking competition. The corresponding slot allocation to the closest
vehicle ignores the fact that many vehicles behind it are runner-ups
from the early parking competitions, which have cruised for a long time
since they lost the parking opportunities. Due to the distance existing
for a runner-up to approach the next available slot, its priority of
parking reservation will be depleted by any vehicle ahead that newly
joins the competition. Such a depletion will force those runner-ups
back to the idle driving. As often seen in the reality, when an
overwhelming amount of vehicles frequently join the parking competi-
tion from everywhere, one loss usually leads to a sequence of
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consecutive losses and even a starvation.
Remark. Considering that the above starvation creates an endless

delay effect, the aforementioned spatiotemporal resource assignment
(dispatching all m vehicles to n places where m n> > ) becomes non-
trivial. Existing PGI strategies (e.g., Ayala et al., 2012; Benenson et al.,
2008; Geng and Cassandras, 2013; Jin et al., 2012) or similar assign-
ment-based schemes for vehicle dispatching (e.g., Alfonsetti et al.,
2015; Gao et al., 2016; Maciejewski et al., 2016; Miao et al., 2016) are
applied on a sufficient number of targets only. As we will demonstrate
later, the starvation cannot be avoided completely when the demand
exceeds the supply.

In this paper, we present a solution for the PGI system under its
common structure (e.g., Geng and Cassandras, 2013; Wan et al., 2014).
The proposed assignment of parking slots is derived from the
Hungarian Algorithm (Bondy and Murty, 1976). We first consider
the extension from the solution for the traditional quadratic assign-
ment problem (QAP) (Wikipedia,). Such a weighted bipartite matching
takes both weights on edges and vertices but does not increase any time
complexity as we will prove it later. Then we present our assignment by
utilizing the capacity growth along the time scale. The corresponding
complexity is bounded within a linear-time incremental structure, in
order to achieve a practical system implementation. As the result, the
total time needed for all parking processes (i.e., the average of an
individual case) can be minimized in both the above assignment
solutions. Meanwhile, the worst case can be bounded within a certain
period. Such minimum parking scheme is denoted by MDP. Its key is to
capture the potential competition along each vehicle's trajectory, the
corresponding cruising cost to the next available slot, and then those
future competitions along each possible path in a heuristic manner.

2. Methodology and contribution

We studied the unique feature of the hot-spot parking in big historic
cities where any new construction of parking facilities is usually
expensive (e.g., Millikin, 2013) or unnecessary for the off-peak traffic
(e.g., Blog,). The focus was on the scenarios under critical resource
constraint where the endless delay effect of the starvation problem
cannot be avoided completely in the existing PGI systems or with
similar vehicle dispatching schemes (as explained later in Section 3).
Our goal was to control the cruising/waiting of each parking process
within a certain bound, while the total time for the scheduled vehicles
to stay in traffic can be optimized.

This leaded to the optimization in a spatiotemporal assignment
MDP (as described in Section 5). The well-known Hungarian Algorithm
for the QAP with the maximum-weight assignment is the preliminary
(as shown in Section 4). Our solution was derived from the extension of
the Hungarian Algorithm in additional scales, under a linear-time
incremental structure: the first is for allocation with enough vacant
slots and second is based on the prediction of the growth of parking
capacity in the time scale, which can be better suitable for those
extreme cases of slot competitions in our hot-spot parking. The
technical details can be seen in Section 6.

We developed the simulation with the real traffic data from the road
tests. The experimental results (as presented in Section 7) verified the
substantial improvement of our approach MDP in terms of the elapsed
time on both the worst case and the average case, compared with the
results from the existing PGI services (Ayala et al., 2012; Geng and
Cassandras, 2013). Thus, the extra cruising time and volume of traffic
caused by the delay in finding a place to park can be minimized. The
corresponding congestion and environment issues can be mitigated as
one part of sustainable development in the city Hangzhou. At the end of
this paper, Section 8 provides the conclusion and ideas for future
research.

3. Related work and our research incentives

First, our work targets a resource allocation problem. Compared
with existing reservation systems for parking, our MDP faces the
challenge of extreme lack of resources when the existing facilities
limited for the off-peak volume are used to support the high volume
during the peak time. It is costly (e.g. Millikin, 2013) and unnecessary
(e.g., Blog) to directly build new parking facilities at the level to
accommodate the volume outburst. Such a development can possibly
induce more traffic and worsen the problem (Blog,). The recent
improvement achieved on assisting the parking, such as occupancy
increment (e.g., Abdullah et al., 2012; Baroffio et al., 2015; Salpietro
et al., 2015) and ease of parking operation (e.g., Young, 1991; Yan
et al., 2011), cannot reduce any conflict and further mitigate the delay
impact. The hot-spot usually attracts many people so that any effort
based on congestion control (e.g., Ayala et al., 2012; Pierce and Shop,
2013) will go in vain.

Secondly, the assignment of parking slots is expected to reduce the
total cruising/waiting time of vehicles, in order to minimize their
unnecessary dwellings in the traffic. This will mitigate the congestion
and environmental issues that are associated with our hot-spot parking
delay problem. As we expect, when a slot becomes available in front of
any two vehicles, the one with less elapsed time in its successive
cruising after the back-off will sacrifice and defer the parking request.
Therefore, our reservation requires the complete information of all
vehicles' trajectories, the corresponding cruising cost to their next
vacant slots, and then those potential competitions along each of the
cruising paths.

Thirdly, we need the bound of each vehicle's cruising or waiting.
Without our comprehensive view of the slot competition loss and the
corresponding cruising cost, a vehicle may be sacrificed and pushed
away back to the idle driving, not being able to seize the target slot as it
is supposed to be. As a consequence of high demand against insufficient
parking supply, it may take a long time for the next vacant slot to
appear along the trajectory of such a vehicle. In the usual case, this
newly-emerged available slot will soon be depleted again by other
vehicles nearby when this delayed vehicle is still far away in its cruising.
In the worst situation, that vehicle can encounter a starvation and falls
into an endless loop of missed, cruising, missed again.

Unique circumstance in the cruising of the hot-spot parking. We
observed that cyclic route is commonly used in the cruising. Many
users of our MDP system are tourists. Their search for parking places is
limited due to the lack of sufficient local information. Unlike a spiral-
like search for the parking places, which forces to gradually leave from
the travel destination, the cyclic route helps to seize the parking
opportunity around the scenic site. Fig. 1 (a) shows the sample routine
that is recommended by the travel agent and GPS for the tourists to go
to the most popular sites, Sudi and Feilai Peak around the West Lake in
the one-day trip during the Golden Week. In the real traffic, this
routine and the driving directions are predetermined by the local
government to mitigate the volume traffic or jams (in Fig. 1 (b)). This
traffic model also helps to simplify our discussion in the paper. It is
noted that our solution is also applicable for bidirectional traffic
because the vehicle trajectory is represented by the arrival time at
each parking place in our algorithms, supporting vehicle driving in
every direction or even changing the direction at any time. The sample
is applied for vehicles intending to park at those top 5 facilities only.
Those five places are denoted by a, b, c, d, and e, respectively. Note that
we focus on a technical solution here. An accreditation system will be
associated with the real system implementation in order for every user
to follow the guidance, and not to create the interfering noise by
changing the routine or falsifying the data in the parking request.
However, that part is omitted here due to the scope of this paper.

Unlike residential parking, in which one may need the permission
for overnight parking, a 3-h limit is commonly adopted in many urban
areas for the hot-spot parking. Therefore, the capability growth along
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the time scale can be predicted with recent surveillance technologies
(e.g., Zheng et al., 2015), helping us to control the cruising within a
desired bound.

Starvation as the parking delay problem. In the following, we use
a real scenario to explain the incentive of our research. In the first
example, we demonstrate our target optimization on the total cruising
time and its need for the information of all competitions along the
vehicle trajectories. In the second example, we illustrate the use of such
heuristic path information to solve the starvation problem. First, we
show the shortage of using the shortest path as the metric in choosing
the slot assignment in existing PGI schemes (e.g., Ayala et al., 2012;
Benenson et al., 2008; Geng and Cassandras, 2013). Then, we show the
limit in similar vehicle dispatching (e.g., Alfonsetti et al., 2015; Gao
et al., 2016; Maciejewski et al., 2016; Miao et al., 2016) that adopt the
assignment on slots currently available only. The starvation problem
cannot completely solved and its endless delay effect cannot be over-
looked; even the centralized resource such as cloud (e.g., Arif et al.,
2012; Geng and Cassandras, 2013; Salpietro et al., 2015; Wan et al.,
2014) is adopted. This induces the need for a new and complete
solution.

In the first example, each parking place has one vacant slot, and five
vehicles are on schedule. Two local drivers, denoted by 1 and 2, adopt
route b c d→ → to enter the area (see the cyan path in Fig. 1 (c)).
Vehicle 3 comes from the suburban area and the driver is familiar with
the traffic situation. Only the tour around the lake a b d e→ → → (see
the magenta path in Fig. 1 (c)) is needed. The other two drivers,
denoted by 4 and 5, come from a nearby city and do not have parking
site preferences. The route a b c d e→ → → → (see the brown path in
Fig. 1 (c)) is predetermined in order to obtain any place around the
lake.

In the traditional PGI (e.g., Ayala et al., 2012; Benenson et al.,
2008; Geng and Cassandras, 2013; Jin et al., 2012) based on the
shortest path, vehicle 3 will take the slot at site a, while vehicles 1 and 2
will take the slots at sites b and c, respectively. Such occupancy (see
Fig. 1 (d)) will force vehicle 4 to go to site d. If we switch the allocation
between vehicles 3 and 4, vehicle 3 can take the shortcut b d→ (see the
critical site in Fig. 1 (e)), saving the time of vehicle 4 along b c d→ → .
The target optimization on the total cruising time (explained later in
Section 6.1 in our MDP solution) requires to consider the entire path of
vehicle 4 when it competes against vehicle 3 at site a (see the red site in
Fig. 1 (d)).

In the second example, we show that such a problem can go worse
where the victims are entrapped into a starvation situation, even when
a complete slot allocation is still feasible in the global view. With the
same setting of routes as the above example, we consider vehicles 1 and

3 only in Fig. 1 (f)). We assume that only sites b and c each has one
vacant slot. In the aforementioned shortest-path-based scheme, vehicle
1 can be selected for site b, leaving vehicle 3 in the starvation (see all
unfilled circles as the block signs along the trajectory in Fig. 1 (f)). Had
we known at the global view level that site b is the only option for
vehicle 3 along the entire cruising path, vehicle 1 can back-off at site b
(see the red site in Fig. 1 (f)). Thus, the parking problem can be solved
(see the explanation in Section 6.2 for Fig. 1 (g)). But this requires the
heuristic path information of each vehicle.

In an m×n assignment-based scheme (e.g., Alfonsetti et al., 2015),
m vehicles can be dispatched to n customers when n m≥ . But when
m n> , the same scheme repeated for the rest (m n− ) vehicles cannot
avoid the starvation problem. For instance, we consider vehicles 1 and
3 in Fig. 1 (g). But this time, only site b has one vacant slot. The
vacancy at site c will occur later by the time vehicle 1 approaches it.
That is, the above optimization in Fig. 1 (g) is still feasible (see the
discussion on our MDP solution in Section 6.2). Considering two
vehicles' competition at site b, any existing 2×1 assignment (e.g., Gao
et al., 2016; Maciejewski et al., 2016) will dispatch vehicle 1 first. Then,
by the time the vacancy at site c occurs, it is now unreachable for
vehicle 3. That is a starvation because the location and capability
growth of site c is unknown to the previous assignment at the
beginning. The distance weight to each of m vehicles is not determined.
This induces the need for our spatiotemporal assignment, which will be
discussed in the rest of this paper.

4. Preliminary

The quadratic assignment problem (QAP) (Wikipedia,) is one of the
fundamental problems in the branch of optimization. It models the
following real-life problem: There are n agents ( X∈ ) and n tasks ( Y∈ ).
Any agent can be assigned to perform any task, incurring some cost
that may vary depending on the agent-task assignment. It is required to
perform all tasks by assigning exactly one agent to each task and
exactly each task to each agent so that the total cost of the assignment
is minimized.

Algorithm 1. Hungarian algorithm (Bondy and Murty, 1976) for
assigning n agents ( X∈ ) to n tasks ( Y∈ ) in a QAP.

1) Initialization. For each agent i ( X∈ ) and a possible task j ( Y∈ ),
initiate R i j c i j( , ) = − ( , )ost where c i j( , )ost is the corresponding
cost (for agent i to accomplish task j). After that, set L(v) with
Eq. (1).

2) Completion check. If every agent has the reservation, stop
the algorithm; otherwise, for any unassigned agent x, initiate

Fig. 1. (a) Map of the West Lake scenic area with the top 5 parking facilities (List of parking, 2006). (b) Volume traffic in holiday season caused by insufficient parking management of
private vehicles. (c) 5 vehicles in parking requests and their trajectories. (d) Cruising and slot occupancy with the existing shortest-path-based reservation where the critical slot
reservation has been highlighted in red. (e) Target optimization on total cruising time after a switch of slot assignment at site-a (explained later in Section 6.1). (f) A possible starvation
with an incorrect slot resrvation/assignment at the site b in red. (g) MDP solution for the starvation problem (explained later in Section 6.2).
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S x= { }, T = {}, and the E-tree E x* = { }x (also called the
alternating tree in Bondy and Murty (1976)). Then, go to the
next phase.

3) Label update for any possible assignment.
• If N S T( ) ≠ , go to phase 4. N(S) is the set of tasks that have

been assigned or to be able to match with any agent in S; that is,

j i j E i S{ |( , ) ∈ * ∧ ∈ }x .
• Otherwise, calculate α with Eq. (2) and then update L with

Eq. (3). After that, keep the edges of those assignments in tree

E*x and add the new edge (i,j) when L i L j R i j( ) + ( ) = ( , )
(according to the new L labels). Then, go to the next phase.

4) Construction from any y N S T∈ ( ) − .
• If y has not been assigned, alternate the assignments from i

(found in the above phase 3) to the root x, along the so-called

augmenting path in E*x (denoted as the E-path Ex
i in this

paper). After that, add the edge (i,y) in E*x as the new
assignment and go to phase 2.

• Otherwise, y has been assigned with an agent, say z in E*x .
Add the edge z y( , ) to E*x as a record, and set
S S z T T y= ∪ { }, = ∪ { }. After that, go to phase 3.

Such an assignment problem can be solved with the Hungarian
algorithm (Bondy and Murty, 1976) in four phases. The details are
shown in Algorithm 1. Basically, each bipartite matching between
agents and tasks is conducted from the lowest cost (see the first part of
phase 4). The conflict is solved within a time bound. Such a bound is
denoted by ▵ and can be calculated as L v v Smax{ − ( )| ∈ }, where L is
the labeling function in Bondy and Murty (1976) and S denotes the
considered agents in the record. For any possible assignment i j( , )
under the consideration S, those relevant assignments in the existing
bipartite matching will be shuffled, in order to add the task j and
complete the current bipartite matching that was initiated from agent
x. To find such an augmenting path in an easy way, the implementation
in x ray () is adopted and we can deal with it as a maximum-weight
matching problem by using a non-positive value to express each cost
(see phase 1 of Algorithm 1). Thus, the total cost in the assignment
within the consideration under the time bound ▵ can be optimized. As
this bound ▵ increases greedily (in phase 3), more agents will join the
matching (see the end at phase 2). The above process will be repeated,
until all agents can be assigned. At the end, the desired optimization
(on total cost in assignment) can be obtained.

⎧⎨⎩L v
R v y v X

v Y
( ) =

max ( , ), ∈
0, ∈

y Y∈

(1)

α L x L y R x y= min { ( ) + ( ) − ( , )}x S y Y T∈ , ∈ − (2)

⎧
⎨⎪
⎩⎪

L v
L v α v S
L v α v T( ) =

′( ) − , if ∈
′( ) + , if ∈

no change, otherwise (3)

In Algorithm 1, the agents and the tasks that have been considered
previously can be found in the records of S and T respectively. N S T( ) ≠
implies the existence of a new assignment that has not been consid-
ered. If such a task y has been assigned at a lower price to another
agent z, we can merge the result z y( , ) with those under the current
search in E*x (in the second part of phase 4). Otherwise, we have i X∈
and y N i y T∈ ({ }) ∧ ∉ . i y( , ) will be assigned immediately (in the first
part of phase 4) because i has the lowest price of y among all agents.
The previous assignment on i, if any, will be shuffled. This switch
process will continue in E*x until it stabilizes at the root x, along the
path from x to i that is denoted as the E-path Ex

i. As a result, all agents
in S will be in a perfect bipartite matching. The above merging and
shuffle processes in phase 4 will be repeated until N S T( ) = . After that,
the current bound ▵ will be recalculated in phase 3 in order to consider

a higher price to solve the conflict in the matching. The entire
procedure can converge when every agent has its own assignment.
The detailed sample of this shuffle and merging can be seen in x ray (),
and they are also demonstrated in the later discussion on our
Hungarian-algorithm-based MDP solution.

Theorem 1 (x ray () the optimization achieved by Alg. 1 and its time
complexity). Algorithm 1 will end with a bipartite matching so that
the total cruising time can be minimized. Its overall complexity T n( )1 is
O n( )4 , where n Y= | |.

Proof. This well-known claim of the Hungarian and its proven can be
found in a lot of existing work (e.g., Bondy and Murty, 1976 and x ray,).
□.

The above QAP includes every agent and task as the vertices in the
bipartite matching, but each appears only once. When we consider the
vehicle as agent and the parking place as the task in the slot allocation
problem, a parking place needs to match with multiple vehicles as its
capacity allows. The capacity of a parking place will be taken as the
weight of the vertices. The corresponding merging and shuffle pro-
cesses will be considered as a special weighted bipartite matching (e.g.,
Gao et al., 2016), where the weights on both edges and vertices are
taken. From the next section, based on Algorithm 1, we will present our
MDP solution and its extension along the time scale.

5. System setting and problem formation

Our proposed system, MDP, takes the basic structure of PGI as
Geng and Cassandras (2013). The allocation center will provide a
schedule to serve all parking places Y in the entire area around the
travel hot-spot. The driver will select the attraction site as the travel
destination and those nearby parking places. After that, such informa-
tion will be sent to the center via the wireless communication, with the
parking reservation request. Note that each request is sent indepen-
dently. Then, the system will respond with a reserved parking place. By
approaching this target (parking place) along its predetermined
trajectory, each vehicle, denoted by x X∈ , can ensure the speed (Asif
et al., 2014) and driving time (Ganti et al., 2014) within an acceptable
range. Meanwhile, the total elapsed time of all vehicles in scheduling
can be optimized to the minimum, in each vehicle's driving in the
distributed manner. Table 1 summarizes all of the notations used in
this paper, which will be explained in the following.

At each parking place y Y∈ , the vacancy can be detected (e.g.,
Choeychuen, 2013) and is denoted by Cy. The access of parking is
verified in a vehicle-to-roadside (V2R) communication. It can be
granted at the gate only to the driver who has received the e-ticket in
our reservation response, but the gate is not necessary to know which
specified slot. Thus, the capacity increases as vehicles leave. For the
scheduling conducted at t=0, such a change at time t > 0, denoted as
Cty, can be ensured with our parking policy, or can be predicted with
those history records on vehicle behaviors in a conservative manner
(Zheng et al., 2015). Thus, we have C C=y y

0 and C C≤y
t

y
t δ+ for any

period t t δ[ , + ].
Researchers have developed methods to predict driving speed (Asif

et al., 2014) and travel time (Ganti et al., 2014), in order to solve the
traffic issues during the vehicles cruising along their trajectories. By
adopting the GPS or other global maps, the trajectory of each vehicle x,
can be interpreted by its arrival time at every place y Y∈ (Sana et al.,
2014), which is denoted by R x y( , ). As we addressed earlier, we deal
with a maximum-weight matching problem and will have a non-
positive value in each R x y( , ). Our system will select an arrival of
vehicle x in R x y( , ) when y has at least one vacant slot (C > 0y ). Such an
available selection is calculated and stored in table m to avoid
overbooking. Respectively, the trajectory taken after time t is denoted
by R x y( , )t and the selection on Rt is mapped into mt, under the
capacity constraint C > 0y

t .
Our goal is to assign each vehicle X∈ to a parking place Y∈ with a
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limited cruising or waiting time, while the total cruising time (on the
way to each target along their predetermined trajectories) can be
minimized. The assignment at t=0 for the cruising trajectories after-
ward can be formalized as a maximum-weighted matching. With our
extensive consideration on the capacity at each location and the growth
of such capacity along the time scale, the problem is formalized in the
following:

R x y m x y

s t m x y i
m x y x X ii

m x y C y Y iii

C C δ iv

R x y t C v

R x y R x y δ vi

argmax ∑ ∑ ∑ ( , ) ( , )

. . every ( , ) = 0, 1, or “−” )
∑ ∑ ( , ) = 1 for every ∈ )

∑ ∑ ( , ) ≤ for every ∈ )

≤ for any > 0 )

− ( , ) ≥ ≥ 0 upon the occurrence of )

( , ) ≤ ( , ) for every > 0 )

m
x X y Y t

t t

t

y Y
t

t

x X
j t

j
y
t

y
t

y
t δ

t
y
t

t δ t

∈ ∈ 0≤ <∞

∈
0≤ <∞

∈
0≤ ≤

+

+

t

“-” indicates an initial or unreachable status and is calculated as “0”.
Constraint i) ensures the slot assignment as a bipartite matching.
Constraint ii) guarantees such an assignment without double-booking.
Constraint iii) asserts the use of slots under the capacity constraint,
while constraint iv) indicates our assumption on the capacity incre-
ment. When Cty is replaced by a fixed value Cy, the above will represent
our solution on the snapshot where there is enough vacancy for all
vehicles on schedule. Constraint v) confirms the driving cost in the road
and ensures the availability of the vacant slot until the vehicle with the
reservation arrives. Constraint vi) secures the same time scale t for
considering both the capacity growth Ct and the elapsed time of
cruising Rt. Both constraints iv) and v) can be relaxed when our
approach is applied to an open system with real time slot surveillance
and prediction (e.g., Zheng et al., 2015).

Note that this, as we addressed in early Section 3, is a totally new
problem with our consideration of R and C. The consideration of their
changes along with the time t passing is also important and distin-
guishes our contribution from any existing methods. Such a time t
cannot be limited in the interval λ[0, ] when the vacant slots are enough
for all vehicles under the schedule, i.e., λ t C X= min{ | ∑ ≥ | |}y Y y

t
∈ . When

the last vacant slot appears too far away from the vehicle to reach, some

capacity change soon emerging in neighborhood could be a better
choice. The above proves the research incentive of our 2-stage
development in this paper. The first is for the case when C is enough
and the second is for the case when C can grow.

When demand exceeds supply, some vehicles cannot seize the
reservation for obtaining an available slot. In order for them to obtain
the second chance and to park close to their destination, in our
approach, each of them will continue its cruising along a cyclic route
until a reserved place can be reached. The justification of this cyclic
cruising can be found in early Section 3 as one of our observations on
the hot-spot parking. Thus, we have:

⎪
⎪⎧⎨
⎩

R x y m x y r R x y

R x y R x y δ r vii

( , )(1 − ∑ ( , )) ≤ + ( , )

for every ( , ) < ( , ) or any > )

t δ
j t

j
x

t

t δ t
x

+
0≤ ≤

+

From constraints vii), if the arrival R x y( , )t (of vehicle x at place y since
time t) is not considered in assignmentmt (i.e., =0), the route in a cycle
rx can guarantee the second entry at the same place to appear within a
bounded time after time-(t δ+ ). Note that this constraint can be
relaxed when the cyclic route becomes not necessary. However, the
impact is limited on the upper bounds of cruising time and information
collection (see Theorem 5 in later discussion). It is because of the need
for considering any possible place along the trajectory as long as the
vehicle drives.

Our simulation work also studies the scenarios in which the vehicles
are allowed to change the routine and to slowly cruise around the
reserved place. In such an extension (denoted by MDP+), the delay in
waiting for a vacant slot to occur, will be compared with the time spent
in driving to the next place along the preselected trajectory. The
schedule will be made to reduce the total end-to-end delay, while each
individual parking process can still have a bounded performance.

6. The proposed solution MDP

This section provides our 2-stage development on the above
maximum weight target, as our MDP solutions to reduce the total
cruising/waiting in the hot-spot parking. The first is for the slot
allocation at time t=0 with sufficient parking vacancy C, and then the
second is for the allocation along the time scale. For each solution, we
also provide the upper bound for each vehicle in its cruising or waiting.

Table 1
Notations.

X vehicle set X = {1, 2, 3, ⋯}
X| | total number of vehicles ( X∈ ) in schedule
Y set of parking places Y a b c= { , , , ⋯}
Y| | number of parking places
Cy available space (also called parking capacity) of y Y∈
Cty capacity of y Y∈ at time t, where any period t t[ 1, 2] has non-descending records C C≤y

t
y
t1 2

R x y( , ) cost Sana et al. (2014) for x X∈ to reach y Y∈ in terms of elapsed time where “-” indicates an initial/unreachable status
rx the cycle of vehicle x along its trajectory

R x y( , )t the R x y( , ) describing the cost for x X∈ to reach y Y∈ after time t along its cyclic route

m x y( , ) bipartite matching between x X∈ and y Y∈ where 1 denotes a saturated assignment, 0 denotes a possible assignment, and “-” is the initial status

m x y( , )t the above bipartite matching between x X∈ and y Y∈ for each capacity change Cty

L(v) labeling function of Hungarian algorithm Bondy and Murty (1976), v X Y∈ ∪
L v′( ) previous record of L for any given v X Y∈ ∪
α the difference between L(v) and L v′( ) each time
▵ the upper bound of interval where the assignments have been considered, changeable as the process progresses, i.e., L x x Xmax{ − ( )| ∈ }
∇ the upper bound of the entire interval in consideration, changeable, in which each vehicle can cruise along its cyclic route to reach every possible place after time ▵
S vehicle set in the current consideration of allocation, X⊆
N(S) places ( Y⊆ ) that are assigned to or arrived by vehicles S∈ , i.e., j m i j{ | ∃ ( , ) = 0for arrival, or1for assigned }, or j m i j{ | ∃ ( , ) = 0or1}t t

T set of assignments reserved, i.e., j m i j{ | ∃ ( , ) = 1} or j m i j{ | ∃ ( , ) = 1}t t

@ status of a place (y Y∈ ), saturated (=0) or unsaturated (>0) for another vehicle under its capacity, i.e., @ y C= y m x y− ∑ ( , )x X∈ or C m x y− ∑ ( , )y x X t
t▵

∈ ,0≤ ≤▵
E*u an alternating tree Bondy and Murty (1976) derived from m, with the root u, simply called E-tree
Evu an augmenting path Bondy and Murty (1976) in E*u , with u and v as end points, simply called E-path
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The issues in the service implementation are also discussed.

6.1. Solution with enough vacant slots

We first focus on the MDP solution on a snapshot with sufficient
slot vacancy in the global view. The problem can be simplified with t=0,
C C=y y

0, R R= 0, and m m= 0. Given the trajectory of each vehicle and
the corresponding reachability in R, we extend Algorithm 1 (i.e., the
Hungarian Algorithm for the QAP) in order to consider the capacity
volume of Y in the bipartite matching to X. Basically, the parking place
y with a vacant slot can be allocated to any waiting vehicle i and makes
a record m i y( , ) = 1 in our system. Under our capacity constraint, the
status of a vehicle x X∈ or a place y Y∈ in our assignment can be
determined in Definition 1, as follows.

Definition 1. Any x X∈ that has not seized the reservation is called
unsaturated and it has m x y( , ) ≠ 1 for every y Y∈ . Any y Y∈ still
available for allocation is called unsaturated and it has
C m x y− ∑ ( , ) > 0Y x X∈ , simply @ y > 0.

When the capacity allows, a place may appear in multiple pairs of
matching. This relation map is maintained in our m-table, where we
also implement the shuffle and merging processes (i.e., phase 4) of
Algorithm 1. The m-table and the corresponding path for the assign-
ment shuffle are defined in Definitions 2 and 3, as follows.

Definition 2. The tree with a root u X∈ is called alternating tree (or
simply called E-tree) and is denoted by E*u when each edge x y{ , } (or
y x{ , }) has m x y( , ) ≥ 0.

Definition 3. The path existing in E*u is called augmenting path (or
simply called E-path) and is denoted by Evu when such a path starts
from u and ends with v. Along such a path, the corresponding m-value
of its edge changes alternatively between 1 and 0.

Algorithm 2. Slot allocation based on Algorithm 1.

REQUIRE: X, Y, R, and C > 0y for each y Y∈
ENSURE: bipartite matching m x y( , ) = 1 for each x X∈ to Y
1) Initialization. m i j( , )=“-” and R i j t( , ) = − for each vehicle i

approaches a place j at time t; otherwise, R i j( , )=“-” as an
unreachable status. Calculate L(v) with Eq. (1).

2) Completion check. Apply phase 2 in Algorithm 1 to stop the
algorithm. Otherwise, for any unsaturated (Definition 1) x X∈
to set initial records S x= { }, T = {}, and E x* = { }x (Definition 2).

3) Label update for any possible assignment at ▵.
• If N S T( ) ≠ , there exists a new m i j( , ) = 0 according to the

definition of N(S) and T in Table 1. That indicates an arrival of
vehicle i S∈ at place j N S∈ ( ) at time ▵. Go to phase 4 (the
same as step 1 in phase 3 of Algorithm 1).

• Otherwise, apply step 2 in phase 3 of Algorithm 1 (upon the
update of α with Eq. (2) and L with Eq. (3)). Thus, ▵can be
updated and m will be reset with Eq. (4), for places not reserved
only (i.e., m ≠ 1), in order to consider more vehicle arrivals (i.e.,
m=0).

4) Table construction for any y N S T∈ ( ) − and its m=0
edge (i,y) connecting with S.

• If @ y > 0 (with Definition 1), alt er m=1 and 0 along the E-
path Ex

i based on Definition 3. Set m i y( , ) = 1 to add this

assignment in E*x and Eyx, and then go to phase 2.

• Otherwise, y was reserved ( m z y∃ ( , ) = 1). Set S S z= ∪ { }
and T T y= ∪ { }. Then, go to phase 3.

The details of our extension can be seen in Algorithm 2. Unlike
aiming to the traditional n×n QAP, this new assignment scheme can
find the best locations Y⊆ for scheduling all vehicles X to minimize the
total cruising/waiting time, as we will prove in the following theorem.
The key is to implement the corresponding shuffle and merging

processes with m-table. Note that m=0 indicates a possible matching
(see Eq. (4)) and it will be converted to a real reservation by setting
m=1 in phase 4. In the initialization phase, Eq. (1) is reused, but is
done so in order to consider the distance from where the reservation is
made to the first possible parking place in reach along the trajectory.

⎧⎨⎩m x y L x L y R x y
otherwise

( , ) = 0 ( ) + ( ) = ( , )
“ − ” (4)

Theorem 2 (the optimization achieved on average delay). Algorithm
2 will end with a bipartite matching m so that the total cruising time
can be minimized, i.e., R x y m x yargmax ∑ ∑ ( , ) ( , )m x X y Y∈ ∈ since the time
is represented in R ≤ 0.

Proof. Algorithm 2 is derived from Algorithm 1. Its completion with a
bipartite matching can be ensured as shown in Theorem 1.

Before m=1 is granted in phase 4, the capacity allowance @ is
checked. Otherwise, a longer period is considered in phase 3 with the
update of L and ▵, in order for more vehicles to reach available slots.
The progress α is the minimum at every time. Based on the Egervary
theorem, the maximum weight in the resultant matching m achieves
the minimum size of L, which is derived from R. According to the
definition of non-positive values in R (≤0), we have the minimum of the
total elapsed time. □.

Fig. 2 demonstrates step-by-step how the minimal total cruising
time in Fig. 1 (e) can be achieved with Alg. 2. In this sample, we have
the capacity C a b c d e( , , , , ) = (1, 1, 1, 1, 1) as a QAP. We also use this
process to explain the shuffle and the merging of E-paths in Algorithm
2, as an extension from the Hungarian algorithm in Algorithm 1. To
simplify the discussion, we use a unit road segment between any two
adjacent places.

Scenario 1. Data preparation in the initialization phase. At step 1 in
Fig. 2, not only is the arrival time interpreted in the cost table R, but
also is the reachability. With the implementation of our maximum
weight matching (e.g., x ray,), the non-positive R-value and the
corresponding m-value is initiated (as the same in Algorithm 1). As
indicated in Fig. 1 (c), vehicle 1 will take the route b c d→ → and has
the arrival time: 0, 1, and 2, respectively. We have R b(1, ) = 0,
R c(1, ) = − 1, and R d(1, ) = − 2. Because a and e are not reachable,
we have R a R e(1, ) = (1, )=“-”.

Scenario 2. Start of a new matching in the check phase. At the
beginning of the entire process (step 2 in Fig. 2) or when a bipartite
matching is accomplished for S-set X⊂ (e.g., step 5 in Fig. 2), a new
matching is initiated from an unsaturated vehicle (by Definition 1) as
the root of an E-tree. When all vehicles are assigned, the entire
procedure converges here.

Scenario 3. Seizing parking opportunities in the label update phase.
For instance, at step 3 in Fig. 2, α can be calculated. Then, the
succeeding arrival(s) with the minimum delay can be determined. With
the calculation of L, we can catch the arrivals of those vehicles S∈ in m-
table with Eq. (4). At α = 0, we have m b m b m a(1, ) = (2, ) = (3, )=
m a m a(4, ) = (5, ) = 0 , implying where these vehicles start the
cruising. This indicates a fair chance for each vehicle to seize a
parking opportunity: 1 and 2 at place b (i.e., N N b({1}) = ({2}) = { })
and 3, 4, and 5 at place a (i.e., N N N a({3}) = ({4}) = ({5}) = { }). See
the dashed lines in the bipartite matching.

Scenario 4. Direct assignment without shuffle in the table
construction phase. For instance, at steps 4, 9, and 32 in Fig. 2,
the root x will seize the opportunity and be assigned with an
unsaturated place under the capacity constraint. It is the simplest of
all three scenarios in this phase 4 of Algorithm 2. In step 4 in Fig. 2, we
can locate a new place y b N S T= ∈ ( ) − without being considered yet,
i.e., @ y > 0. We can make the assignment m x y m b( , ) = (1, ) = 1. See the
m-table update in interpreting the arrow line in E *1 and the thick line of
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the bipartite matching.

Scenario 5. Merging assignments in the table construction . For
instance, at steps 7 and 17 in Fig. 2, an existing assignment will merge
into the current consideration on S and T. This is a preparation in order
to find a connecting path for alternating the assignments later. In step
7, N S N b( ) = ({2}) = { }. However, m b(1, ) = 1 as derived in step 4 early.
Place b (Cb=1) does not have enough space for both vehicles 1 and 2
(i.e., @ b = 0). Therefore, we merge the assignment m b(1, ) = 1 to E *2
(interpreted by S, T, and m) and will have S = {1, 2} and T b= { }. This
is fulfilled in the saturated case of phase 4 in Algorithm 2.

Scenario 6. Expanding ▵ in the label update phase for more parking
opportunities. For instance, at steps 8 and 16 in Fig. 2, after N S T( ) =
is confirmed, α is calculated as the minimum time for vehicles S∈ to
reach any place that has not been considered yet, i.e., Y T∈ − . After

that, L is updated to include both existing and new parking
opportunities of vehicles S∈ . See the updated m-table with Eq. (4) in
step 8 in Fig. 2. Those records involved in this update are highlighted in
red circles. Note that those m=1 records do not need any change. Only
those m=0 records may be reset to an unreachable status when the
corresponding vehicle is not in the current S-set (e.g., m a(5, ) in step
16).

Scenario 7. Shuffle to balance the bipartite matching in the table
construction phase. For instance, at step 21 in Fig. 2, we can find a
new unsaturated place y that cannot be assigned directly to the place x
(i.e., the root of E-tree). However, it can be assigned directly to a
preassigned vehicle i, so that the occupied slot for vehicle i can be
released to x. It is called the shuffle process, and such a process may
involve many assignments. The sequence of slot releasing, reassigning,

Fig. 2. Process with Algorithm 2 to achieve the optimization in Fig. 1 (e) where some important intermediate result at each step is highlighted in red. Note that some steps are omitted
due to the limit of space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and releasing again is denoted by the E-path Ex
i. It will continue until

we achieve a new bipartite matching by considering that place y and
the root vehicle x with those existing assignments. In step 21, we assign
place d, by releasing the occupancy of a from vehicle 3 and making
room to reassign a to vehicle 4. The resultant assignments after this
shuffle are highlighted in red in the bipartite graph and with circles in
the m-table.

The above process can easily be extended to the situation when a
place y is capable of having multiple slots (i.e.,C > 1y ). In the following,
we prove the bound of the computational cost of our solution and the
cruising/waiting time of each individual vehicle while it plays a local
role in achieving the global optimization.

Theorem 3 (the bound of computational overhead). The overall
complexity of Algorithm 2, T n( )2 , is O n( )4 , where n Y= | |.

Proof. We assume that the capacity of each place Cy is limited by a
constant threshold C. So searching all available slots has the same
complexity as searching all places Y∈ . Moreover, for a complete
matching, all vehicles will become saturated at the end. So we have
X C Y| | ≤ × | |. For each vehicle in phase 2, we have a loop to stop at
phase 4 until the E-path can be constituted. The place matching will
check every place in Y for an unsaturated candidate, while the E-path
can be implemented with König's graph theorem. The complexity in
tree construction can be controlled within O Y(| | )2 . The expanding of ▵is
no more complicated than O Y(| | )2 because the size of S is smaller than
C Y× | |. Such an expanding is executed only when no unsaturated place
is available. Therefore, each iteration of this matching loop has a
complexity O Y(| | )3 and then the statement is proven. □.

Corollary 1. T n T n( ) = ( )1 2 .

Proof. The result is obvious based on Theorems 1 and 3. □.
Corollary 1 proves that Algorithms. 1 and 2 have the equivalent

complexity. Note that Y X| | < < | |. The complexity of our MDP solution
in Algorithm 2 can be controlled with the size of garages, rather than
that large amount of vehicles. That is, Algorithm 2 is a practical
solution.

Corollary 2 (the upper bound of cruising/waiting as the worst case).
While achieving the global optimization in total cruising time, the
upper bound of cruising time for any vehicle x X∈ in Algorithm 2 is
r r= maxi X i∈ , where ri is the cycle of every vehicle i along its loop.

Proof.We have assumed that there is sufficient parking vacancy. Thus,
there exists a solution to match all the vehicles to their places before
everyone completes a cycle in its cruising. However, such an
assumption does not provide the assignment solution and cannot
guarantee its optimization. In Algorithm 2, the global optimization
can be achieved with Theorem 2. Moreover, any vehicle x can reach its
farthest place in time rx along the trajectory loop. Otherwise, some
loops are isolated and the problem can be reconsidered as an individual
in each connected graph. Therefore, the upper bound of cruising/
waiting time is r r= maxi X i∈ . □.

The arrangement in Fig. 1 (f) can also be achieved with Algorithm 2,
from C C= = 1b c at time t=0. In the next section, we will demonstrate
how to schedule parking slots after considering the vacancy growth in
the time scale. As a result, the assumption of sufficient vacancy at the
scheduling moment can be released. In Fig. 1 (g), when only one slot is
available (C a b c d e( , , , , ) = (0, 1, 0, 0, 0)0 ) at time t=0, the proposed
scheme can guide both vehicles 1 and 3 to reach their targets within a
time bound.

6.2. Solution with the vacancy growing along the time scale

The above solution requires the sufficient capacity to consume all
parking requests, i.e., X C| | ≤ ∑y Y y∈ . It cannot completely support our
hot-spot parking when the demand exceeds the supply. We need to
utilize the capacity growth along the time scale, which can be induced

by the enforced leaving under our parking restriction or other facts.
Here, we present the complete solution for our maximum-weight
matching mt in Algorithm 3.

The unsaturated status of vehicle or place can be defined as follows
in Definition 4, with the consideration of capacity against occupancy
along the time scale.

Definition 4. Any x X∈ is called unsaturated when m x y( , ) ≠ 1t for
every t0 ≤ ≤ ▵ and y Y∈ . Any y Y∈ is called unsaturated at time t
when C m x y− ∑ ∑ ( , ) > 0y

t
x X i t

i
∈ 0≤ ≤ , simply y > 0@ . Especially, we

consider y > 0@ at time ▵.
The implementation is derived from Algorithm 2, with the exten-

sion of R andm to Rt andmt respectively. For the assignment shuffle at
different time t0 ≤ ≤ ▵, the E-tree will consider all records in the past.
Respectively, each mt must be stored. Thus, the E-tree is built on the
union m⋃ t

t
0≤ ≤▵ and the corresponding E-path can be defined as the

follows in Definition 5.

Definition 5. The path existing in E*u (Definition 2) with the m-
weight on each edge is called augmenting path (or simply called E-
path) and is denoted by Evu (Definition 3) when such a path starts
from u and ends with v. Along this path, the corresponding m-value of
its edge x y{ , }t or y x{ , }t (i.e., m x y( , )t respectively) changes
alternatively between 1 and 0.

Considering a valid occupancy, each Cty will trigger a recalculation
of Rt. R will be updated with the most recent Rt (t ≤ ▵) where the ▵is
derived from the update of L(X) with Eq. (3) and has the progress of α
with Eq. (2). The use of Eq. (5) is to obtain the initial result in our
extension, as the use of Eq. (1) in Algorithms 1 and 2. Eq. (6) resets L
within the current consideration S for each update of Rt. The rest will
be treated as the same as applying Algorithm 2 in an extended R-table
with the consideration of capacity change in Cy

t.

⎪

⎪

⎧
⎨
⎩

L v
R v y v X

v Y
( ) =

max ( , ), ∈

0, ∈
y Y t

t

∈ ,0≤ ≤∇

(5)

⎪

⎪

⎧
⎨
⎩

L v
R v y v S

v Y
( ) =

max ( , ), ∈

0, ∈
y Y t

t

∈ ,0≤ ≤∇

(6)

Algorithm 3. Slot allocation extended from Algorithm 2 to consider
the capacity growth in the time scale.

REQUIRE: Global time t, Y in a indoor parking system where

C C<y
t

y
t δ+ for each y Y∈ during any period t t δ[ , + ], X, and their

cyclic routes Rt after each possible Cy
t appears.

ENSURE: saturated matching m x y( , ) = 1t for each x X∈ to Y.
1) Initialization. Apply phase 1 of Algorithm 2 for m m= 0 and

R R= 0. Calculate ∇and L (with Eq. (5)). Then, update ▵.
2) Completion check. Set t=0. Apply phase 2 in Algorithm 2 to

initiate S, T and E*x for an unsaturated vehicle x X∈ (defined in
Definition 4); otherwise, stop the algorithm.

3) Label update for any possible assignment at ▵. Repeat
the following process until N S T( ) ≠ , then go to the next
phase.

• Calculate α with Eq. (2).

• When C > 0y
k (k α≤ + ▵) exists, find the minimal k. For

each x S∈ and its R R=x x
t where t k< , set R R=x x

k. Then,
calculate ∇, L (with Eq. (6)), and ▵.

• Apply the label update phase of Algorithm 2 and reset each
parking opportunity in m with Eq. (4) when m ≠ 1.

4) Table construction for any y N S T∈ ( ) − and its edge
m i y( , ) = 0 where i S∈ . The same as the phase 4 in Algorithm
2, with the saturated/unsaturated status of y at time ▵ defined

in Definition 4 and the E-tree E*u (or E-path Evu) defined in
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Definition 5.

In the following Lemma 1, we prove that capacity check at time
▵ will be effective for the entire matching process. The result also
ensures the feasibility of assignment shuffle between different times.
Then, in Theorem 4, we prove the optimization at the global view level
achieved by Algorithm 3. After that, a bounded reservation service can
be ensured, in terms of the cruising/waiting time proven in Theorem 5.
We also show that the computational overhead of Algorithm 3 can be
controlled in an acceptable range, in terms of the limited information
collected during a certain long period (i.e., γ r[0‥( + 2 )] in Theorem 5)
and the time complexity (in Corollary 3).

Lemma 1. The capacity constraint @ applied on place y at time ▵can
ensure that no occupied slot can be included in m at any time and then
be double-booked.

Proof. Assume we have Cy
t1 and Cy

t2. Without loss of generality, t t1 < 2
and C C≤y

t
y
t1 2. We assume there is no other Cty that t t t1 < < 2. For any

new m=1 record to occupy a slot in C C−y
t

y
t2 1, its capacity check on Rt2

is enough. Meanwhile, for any m=1 shuffle (along the E-path at time
▵), the capacity has been checked in the past and Algorithm 3 will rely
on the use of the earliest appearance. As the ▵advances, the statement
holds in the entire process. □.

Fig. 3. Process with Algorithm 3 to achieve the optimization in Fig. 1 (g), where initially C a b c d e( , , , , ) = (0, 1, 0, 0, 0) and the capacity changes (C = 1c
1 and C = 2c

4 ); that is, a solution

for the starvation problem in current shortest-path-based and assignment-based schemes of vehicle dispatching.
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Theorem 4 (the optimization on average delay). The bipartite
matching achieved with Algorithm 3 is optimal on total elapsed
time in R when each Cty is accurate.

Proof. With Lemma 1, the convergence can be ensured.
Derived from Algorithm 2, the pace α advances in two dimensions:

one is the elapsed time in R as calculated in Eq. (2), and the other is the
time t for each Cty update, which may induce a new R-table and the
corresponding elapsed time. That is, L has the minimum of the elapsed
time in R. Then, similar to the proof of Theorem 2, we have this
statement proven. □.

Lemma 2. For Algorithm 3 to schedule the vacancy growing along
the time scale until time γ, a saturated matching can be achieved iff

C X∑ ≥ | |t γ i Y i
t

0≤ ≤ , ∈ and Y γ y C C X y γ ϕ( ) = { |min { ∑ − ∑ − | ( , )|} < 0} =y Y t γ i Y i
t

t γ y
t

∈ 0≤ ≤ , ∈ 0≤ ≤

where R x y( , )t is the set of vehicles that never reach y during period
γ[0‥ ].

Proof. The sufficiency is obvious. We assume that we have enough
vacancy slots for all X| | in the entire system, but we can find
y Y γ ϕ∈ ( ) ≠ . Therefore, we cannot have enough vacant slots (i.e., the
remaining C C∑ − ∑t γ i Y i

t
t γ y

γ
0≤ ≤ , ∈ 0≤ ≤ ) for those vehicles in X y γ( , ).

Now, we prove the necessity. Assume that there exists an unsatu-
rated vehicle x and its Rx. If Y R= x, x goes through all parking places
and we have C X∑ < | |t γ i Y i

t
0≤ ≤ , ∈ . IfY R⊃ x and C X∑ ≥ | |t γ i Y i

t
0≤ ≤ , ∈ , we can

find y Y R∈ − x to meet the above condition of Y γ( ). Otherwise, there
exists another vehicle that goes through all parking places, but ends
with C X∑ < | |t γ i Y i

t
0≤ ≤ , ∈ . □.

Theorem 5 (the fairness and starvation-freedom). In Algorithm 3,
the upper bound of cruising/waiting time of each vehicle is γ r+ and
will be scheduled within time period γ r[0‥( + 2 )], where γ is the
minimum provided with Lemma 2 and r r= maxx X x∈ (see definition in
Table 1).

Proof. We assume that each Cty is underestimated. Due to the
definition of ▵, the exclusive reservation made with Algorithm 3 can
help the last vehicle to reach the vacant slot in time γ r+ . γ is the time
when not only the entire area has the capacity to hold all X| | vehicles,
but also each vehicle has at least one vacant slot appearing within reach
along its trajectory (see Lemma 2). r denotes the longest cycle of
vehicle along its trajectory. The proof is obvious. After ▵extends to
γ r+ , union m⋃ t is a complete graph, and a bipartite match will be
achieved.

In Rγ r+ , γ r r∇ ≤ ( + ) + according to the definition of ∇. Therefore,
the information collection of each trajectory is limited within the
interval γ r[0‥( + 2 )]. □.

Corollary 3. The overall complexity of Algorithm 3, T n( )3 , is O n( )5

where n Y= | |.

Proof. Since the capacity is limited by C, the number of a valid Cty and
the update of Rt, is limited by C Y× | |. In the iteration of interior loop,
the update of α and the E-path construction both introduce the time
scale. Therefore, based on the proof of Theorem 3, the complexity of
the interior part is O Y(| | )4 . As a result, the overall cost is O Y(| | )5 . □.

Corollary 4 (the scalability). The extension from Algorithm 2–3 is
under a linear-time incremental structure.

Proof. T n T n O n( ) = ( ) = ( )1 2 4 by Theorem 3 and Corollary 1. Based on
Corollary 3, T n nT n( ) = ( )3 2 . □.

Fig. 3 shows a sample process of using Algorithm 3, for scheduling
the first 3 vehicles in Fig. 1 (c), under the scenario in Fig. 1 (g). The
schedule of vehicles 1 and 3 is to demonstrate our solution for the
starvation problem in the existing shortest-path-based PGI schemes.
Since vehicles 1 and 2 adopts the same routine, the schedule of vehicles
2 and 3 here is to demonstrate our solution discussed in early Section 3
with the consideration of capacity growth along the time scale. This
distinguishes our MDP from existing assignment-based scheme of

vehicle dispatching. Initially we have C a b c d e( , , , , ) = (0, 1, 0, 0, 0)
and only one vehicle is allowed to confirm the parking at t=0. After
that, we have C = 1c

1 and C = 2c
4 .

In step 1, vehicle 3 has the longest cycle r r= = 33 so that
r∇ = = 33 . Then, we set R R= 0 and m. We add succeeding trajectories

of vehicles 1 and 2 to R in order to complete the table R with the period
∇(i.e., [0 .. 3]). After that, we set L and get ▵ = 0. From step 2–4, vehicle
1 is matched with the unsaturated place b, forcing the other two to
wait. See the competition among vehicles 1 and 2 in step 8 (i.e.,
N S N b T( ) = ({1, 2}) = { } = ). In step 9, before we consider the arrivals
at t α= ▵ + = 1, R R= 1 due to a new slot available at t=1 (Cc

1). R a(3, )
is the last stop in the cycle from t=1 and triggers an update of ∇ = 4.
After that, m-table is reset and these arrivals (R c(1, ) and R c(2, )) can
be considered within the period [1‥4]. Finally, in step 10, we assign
place c to vehicle 2. In step 11, R R= 0 for the only vehicle unassigned.
R-table is soon updated to R1 in the next step. The reservation conflict
is observed while the existing assignment b(1, ) = 1 at m0 blocks the
possible assignment b(3, ) = 0 in m1. Then, in step 16, R R= 4 due to
the existence of C = 2c

4 . This triggers the assignment switch between
vehicles 1 and 3 at place b in step 17, as we expected in Fig. 1 (g). Note
that Algorithm 3 requires to check the complete m-tables along the
time scale, though each update is made on a snapshot in a specified mt.

Therefore, both starvation problems discussed early in Fig. 1 (f) are
solved in our MDP solution.

6.3. Service implementation

Algorithm 3 can be applied directly to a real road system when the
cost between two adjacent parking places is various for every vehicle
and represented with a decimal number in R. For any reserved vehicle
to reach its slot within the expected bound, the reservation cannot be
depleted. Otherwise, a starvation may incur. For every vehicle comes
after an assignment is fulfilled, it can be scheduled with Algorithm 2
immediately if there exists any vacant slot in the network. This kind of
service adopts the FIFO policy. Otherwise, our allocation center can
wait until another unsaturated vehicle x approaches very close to an
unsaturated place y. Then all unsaturated vehicles that have submitted
their requests will be scheduled with Algorithm 3, to those potential
places that will create vacancy along the time scale. The time between
two consecutive allocations is called the schedule interval (Geng and
Cassandras, 2013) and can be used to avoid the computation overhead
that is triggered by every incoming request. Therefore, a seamless
service can be provided and every parking request can be satisfied.
There might be room to improve the scheduling of two consecutive
MDP assignments between an interval time period. However, the need
for a separated MDP assignment is due to the lager of request sending.
Such deviation to the theoretical optimization is out of the technical
scope and the corresponding solution for the drivers to obtain a better
reservation (e.g., Polak and Axhausen, 1989) is omitted.

7. Simulation

We set up our simulation based on the real scenario around the
West Lake. The street map is derived from OpenStreetMap (Haklay and
Weber, 2008). The trace data of each vehicle is generated by the
simulation SUMO (Behrisch et al., 2011), based on the traffic informa-
tion fetched via all media channels such as Yang (2014) and our road
tests. Note that this simulation work is not to show whether we can
cover all schedules in the entire lake area. Indeed, it is a smallest field
environment to cover all possible delay problems in other existing
work, including those discussed in both Sections 3 and 6. This is used
to prove the delay improvement under a real traffic mode by our MDP
solution (also MDP+).

We chose 5 major parking facilities for the attractions around the
lake as shown in Fig. 1. To avoid the effect of bottleneck, we assume
that each place has a uniformed size C=150 (in red dash-dot line in
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Fig. 4). The occupancy of daily parking, weekend parking, and the one
during the Golden Week Holiday is shown in Fig. 4 in blue lines, under
a continuous surveillance of 3 h. Each represents the situation of low,
medium, and high traffic volume, respectively. When the vehicles are
allowed to dwell around the reserved place due to the cost for driving to
the next available place, more reservations are allowed than the
capacity of each place (denoted by “allowance” in green line in Fig. 4).

This data of occupancy also implies the amount of parking needs at
any moment along the time scale. We randomly select a scenario from
Fig. 4, and then apply different PGI schemes to schedule those vehicles
coming to reserve the vacant slots. We test TSP (Ayala et al., 2012),

SMART (Geng and Cassandras, 2013), our MDP, and its extension
MDP+ with the dwelling around the reserved place. SMART allows the
user to select the closest place, while TSP simply follows the pre-
determined trajectory to the next available one. In SMART, MDP and
MDP+, each driver will predetermine a routine trajectory according to
the travel plan and then submit the request with such path information.
The place from where the request is received by the center will be
considered as the starting point in the scheduling, and can be different
according to the timing of submission. Along such a trajectory, the
arrival at each parking place is determined by the GPS in different
modes of traffic volume: daily parking low, weekend parking medium,

Fig. 4. Size, occupancy, and capacity of a parking place in different traffic models.

Fig. 5. Average cruising time of each vehicle (i.e., time to stay in the traffic) in each test case.

Fig. 6. Maximum cruising time in MDP and MDP+, compared with the upper bound in our analysis.

Fig. 7. Distribution of vehicle assignments (on average).
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and Golden Week Holiday high, with a considerable change of
+/ − 25% on the time/speed that is estimated with Asif et al. (2014),
Ganti et al. (2014) in our MDP calculation. That is due to the impact of
road traffic or congestion in real time. Note that, in existing schemes
TSP and SMART, the starvation problem cannot be solved. In this
paper, we show the results from the first 200 times of scheduling,
which are consistent with all of our results.

In Fig. 5, we show the average cruising time needed for vehicles to
obtain their parking opportunities. Fig. 6 shows the worst case with our
analysis on its bound in Theorem 5, which is denoted by MDP-A. In
order to facilitate the calculation, the simulation adopts the commonly
used 3-h parking limit to ensure the time γ < 180 minutes in Lemma 2.
Fig. 7 shows the distribution of slot allocation.

Our observations are summarized in fourfold: (1) From Fig. 5, the
global optimization on total cruising time can be seen obviously via the
average cruising time in MDP and MDP+, compared with those
existing PGIs. MDP, TSP, and SMART are listed as the second, third
and fourth. Note that we focus on the parking in an extremely crowded
area, not the one in a small town. Without any guidance, the cruising
may need hours even in the weekdays (with low traffic volume), and
becomes worse in the weekends (with medium traffic volume) and the
holiday seasons (with high traffic volume). (2) Fig. 5 also shows that
the average cruising of each individual vehicle under MDP or MDP+
can outperform those in the existing PGIs. When the parking demands
exceed the supply, our results show that the simple rule in TSP
outperforms the flexibility in SMART. Our MDP always outperforms
TSP and SMART, while MDP+ sacrifices the driving speed (slowly
cruising around and waiting in the local area) to reduce the cruising
time. The time reduction in MDP+, compared with MDP, convinces us
about the fact that roughly knowing how long to wait will favor the
driver. (3) Fig. 6 shows the effectiveness of our performance bound in
MDP as the analysis provided in Theorem 5. The worst case on that
bound is even better than the average achieved in the existing PGIs,
showing the substantial improvement of our MDP. This bound can be
lifted up when the number of vehicles increases in the denser traffic
condition, and can also be extended to MDP+ after the corresponding
data in estimation is used. (4) Fig. 7 shows the distribution of
reservations. No place in our MDP and MDP+ will have the occupancy
exceeding the maximum one in either TSP or SMART. Our new
schemes have the capability to obtain the parking opportunity in the
entire network, without relying on any specified place. This proves the
fairness in our MDP and MDP+ assignments. Moreover, MDP and
MDP+ are distance-relevant schemes and will prefer those places close
to the starting point of each vehicle. The results show that many drivers
living in center city will enter the system from place b. For people from
suburban areas and even nearby cities, place a is more convenient
because it is close to the highway exit.

8. Conclusion and future work

In this paper, a new PGI, denoted by MDP, has been proposed, in
order to mitigate the impact of the parking hassle of delay (in both the
average and the worst cases). We provide a spatiotemporal assignment,
in order to take advantage of the vacancy that grows along the time
scale when the demands exceeds the supply. The unique directive is to
solve the aforementioned starvation problem in other PGI schemes or
similar vehicle dispatching. The contribution is to reduce delay without
increasing the facility supply. Both analytical and experimental results
demonstrate that our approach can achieve a bounded service, in terms
of vehicle cruising time and the overhead cost of information collection
and computation. Moreover, we study the extension by trading in the
local waiting when the driver knows how soon the vacancy becomes
available. The corresponding assignment is denoted by MDP+. After
that, a full service can be provided for scheduling every parking
request.

In our future work, we will consider the capacity decadence when

both assisted and non-assisted drivers co-exist in the parking field. We
will st udy the tradeoff between the global optimization and the greedy
approximation algorithm, so that even more practical solutions can be
achieved. We also expect to apply this spatiotemporal assignment
scheme to other resource shortage problems (e.g., Akhtar et al., 2016;
Khan et al., 2016), while a global optimization is desired.
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