
Optimizing MapReduce based on Locality of K-V Pairs and Overlap between Shuffle
and Local Reduce

Jianjiang Li∗, Jie Wu†, Xiaolei Yang‡, and Shiqi Zhong§
∗‡§Department of Computer Science and Technology, University of Science and Technology Beijing, China

†Department of Computer and Information Sciences, Temple University, USA
∗lijianjiang@ustb.edu.cn;†jiewu@temple.edu;‡ chinayangxiaolei@163.com; §zhongshiqi1991@163.com

Abstract—At present, MapReduce is the most popular pro-
gramming model for big data processing. As a typical open
source implementation of MapReduce, hadoop is divided into
map, shuffle, and reduce. In the mapping phase, according
to the principle moving computation towards data, the load
is basically balanced and network traffic is relatively small.
However, shuffle is likely to result in the outburst of network
communication. At the same time, reduce without consider-
ing data skew will lead to an imbalanced load, and then
performance degradation. This paper proposes a Locality-
Enhanced Load Balance (LELB) algorithm, and then extends
the execution flow of MapReduce to Map, Local reduce, Shuffle
and final Reduce (MLSR), and proposes a corresponding
MLSR algorithm. Use of the novel algorithms can share the
computation of reduce and overlap with shuffle in order to take
full advantage of CPU and I/O resources. The actual test results
demonstrate that the execution performance using the LELB
algorithm and the MLSR algorithm outperforms the execution
performance using hadoop by up to 9.2% (for Merge Sort) and
14.4% (for WordCount).

Keywords-MapReduce; hadoop; locality; overlap; cloud com-
puting

I. INTRODUCTION

Currently, as an open source implementation of Google’s

cloud computing system, hadoop[1][2] has been applied in

big data analysis and processing by many famous companies

such as eBay, Amazon, Google, Facebook, Adobe, Yahoo,

and so on. MapReduce[3][4] is one of the most important

parts of hadoop and Google’s cloud computing system. It

has been used in many fields, because it has the following

advantages: (1) It can be used to deal with big data, and can

hide many tedious details such as automatic parallelization,

load balancing, and disaster management, which will greatly

reduce the development effort of the programmer. (2) Its

scalability is so good that it can support tens of thousands

of MapReduce nodes.

The normal hadoop jobs will be divided into 3 phases:

map, shuffle, and reduce. During the mapping phase, the

data set of the input are processed by distributed tasks in

the clusters of computers. Then the MapReduce framework

writes the mapping output locally at each machine and

aggregates the relevant records at each Reducer by remotely

reading from the Mappers. This process of transferring

data is called the Shuffling phase. All reduce tasks must

start after the shuffle part of the map phase has been

completed. Therefore, it is obviously that the implementation

of MapReduce in hadoop still has plenty of shortcomings, as

follows. Firstly, the mapping output will be directly shuffled

without considering the locality of k-v pairs. At the same

time, each reducer uses a FIFO queue to deal with records

instead of k-v pairs [5]. Secondly, the granularities of Map

and Reduce are coarse, which is inefficient for overlapping

[6]. Finally, the concentrated outbreak of communication in

the Shuffling phase [6] will result in obvious communication

competition and latency.

Based on the above disadvantages, the main factors which

result in performance degradation of MapReduce are com-

munication cost in the shuffling phase and load imbalance

in the reduction phase. Therefore, there are currently several

kinds of methods proposed, as follows. Firstly, we consider

balancing the load in the reduction phase: Based on the

key distribution of intermediate pairs, [7–9] can schedule

the MapReduce workload. Secondly, we consider reducing

the communication costs in the shuffling phase: Through

overlapping mapping and shuffling, [10] hides communi-

cation costs in the shuffling phase. Through repartitioning

the input datasets and optimizing the distribution of keys

in the mapping phase, [11] increases the data locality in

the reduction phase. [5] develops a method to break the

barrier in MapReduce in a way that improves efficiency,

and [6] proposes MapReduce with communication overlap to

improve its execution performance. By using locality, [7, 8]

can decrease the amount of communication in the shuffling

phase.

Recognizing the reason leading to the performance de-

crease, we develop a novel algorithm, Locality-Enhanced

Load Balance (LELB) algorithm, which considers the ratio

of the kth key on the nth node while considering the ratio

of the kth key on the all nodes. The algorithm takes into

account which key has the best ‘internal locality’, as well

as which node has the better ‘node locality’; this is done in

order to choose the main key whose locality is the maximum.

Therefore, we can organize which keys are to be executed on

which nodes in the most efficient way possible. Besides, we

extend the steps of MapReduce to include the Map, Local

reduce, Shuffle, and final Reduce (MLSR). In the MLSR,



local reduce tasks can be executed concurrently so that the

computation amount of the final reduction task is reduced.

The MLSR overlaps the computation of local reduce and

shuffle to target better use of the CPU and I/O resources.

At the same time, a decentralized rather than concentrated

outbreak of shuffle relieves the pressure on the network

transmission. To quantify the performance of the LELB

algorithm and the MLSR algorithm, we conduct a compre-

hensive study which applies them to the MapReduce imple-

mentation of Merge Sort and WordCount. Our experiment

results demonstrate that the execution performance using the

LELB algorithm and the MLSR algorithm outperforms the

execution performance using traditional hadoop by up to

9.2% (for Merge Sort) and 14.4% (for WordCount).

The remainder of this paper is organized as follows.

Section 2 introduces related work. Section 3 describes the

basic components of the LELB algorithm and the MLSR

algorithm in detail. The performance evaluation and analysis

of the LELB algorithm and the MLSR algorithm are dis-

cussed in Section 4. Finally, we make a summary in Section

5.

II. RELATED WORK

According to the discussion in Section 1, we could see

that MapReduce still has some shortcomings, and one of its

major drawbacks is that its execution performance is not as

good as people anticipated. The main factors which result in

performance degradation of MapReduce are communication

cost in the shuffling phase, and load imbalance in the

reduction phase. In our paper, we refer to such imbalanced

situations as map-skew and reduce-skew, respectively. There

are many situations that result in the skew. [12] has described

lots of reasons for skew, and gives examples to avoid

some situations. Additionally, there are many studies on

decreasing skew and load imbalance.

An investigation [13] is given, which demonstrates the

goodness of scheduling multiple tasks simultaneously, based

on fine data locality, and the authors also study how the

different factors influence the performance of data locality.

M. Zaharia et al. designed a new robust scheduler for a ho-

mogeneous environment called LATE to deal with selecting

speculative tasks by estimating time left instead of progress

rate, and achieved significant improvements on hadoop re-

sponse times [14, 15]. [16] shows that coupling the map

phase and reduce phase appropriately can also improve the

computing performance, thus it comes up with a new model

based on MapReduce’s basic scheduling characteristics.

III. LELB AND MLSR

The problem we study and try to solve in this pa-

per is that in the case of giving a distribution of keys,

how these keys are scheduled in order to minimize the

execution time of all of MapReduce. Fig. 1 shows a

simplified example of the distribution of keys. We could

Figure 1. The distribution of keys (A simplified example).

use it to illustrate the key problems. Here, there are 3

keys A, B and C on 3 nodes. Suppose that the sum

of the workload for each key on 3 nodes is equal, that

is sum of workload(A) = sum of workload(B) =

sum of workload(C). So, the key issues in this paper

could be converted into: Which node will keys A, B and C be

executed on? Which job will be executed first on every node?

For each node, will it send/receive data using a network

source, or will it reduce using the computing source?

This paper will follow four steps to solve these issues

above.

(1) Based on the locality of keys, we can determine the

order in which keys will be executed. (2) According to the

rule of data movement, we can judge whether the key on

other nodes needs to be immediately transferred to this node

for reducing, or it must be reduced after locally reducing

and moving this key to this node. If some keys arrived at

this node, the number of the keys on this node needs to be

modified.

(3) When the total workload of some node exceeds the

average load, this node cannot execute a new workload.

(4) The next round of workload distribution will start

from the node with minimal workload. We will introduce

important parts, respectively, in detail.

A. Locality-Enhanced Load Balance (LELB) Algorithm

This step chooses the main keys to execute on each node

in order to decrease the communication during the shuffling

phase. By sampling the input data to Map nodes, we can

get the key distribution on each Map node. Suppose keykn is

the kth key on the nth Map node and 1 ≤ k ≤ numKeys,

1 ≤ n ≤ numMapNodes, then we define:

(1) Locality1kn = keykn/
∑numKeys

k=1 keykn is the propor-

tion of the kth key on the nth Map node.

(2) Locality2kn = keykn/
∑numMapNodes

n=1 keykn is the

proportion of the kth key on all the Map nodes. Obviously,

Locality1kn shows the key’s internal locality of one Map

node, Locality2kn shows the key’s locality among all the

Map nodes.

As shown in Fig. 2, the length of the key indicates

the proportion of the key: the longer the length is, the



Figure 2. The distribution of keys on 3 Map nodes.

bigger the proportion is. From this figure, we know: key

4 has the highest proportion of Map node 1, key 5 has the

highest proportion of Map node 2, and key 3 has the highest

proportion of Map node 3. Compared to Map node 1 and

Map node 3, Map node 2 has the highest proportion of key1.

So, according to the above definitions, on Map node 1, key

4 has the best internal locality (Locality141). On Map node

2, key 5 has the best internal locality (Locality152). On Map

node 3, key 3 has the best internal locality (Locality133).

Based on key1, compared to Map node 1 and Map node 3,

Map node 2 has a better node locality (Locality212).

To a large extent, we can choose the kth key’s maximum

Locality2kn to determine which node the kth key should

be located on in order to achieve the minimum shuffle

time. However, if we take the load balance of the reduce

period into consideration, for example, when the load on

one Map node is greater than its average load and beyond

the threshold, then we possibly move this key to the other

Map node, which has the second Locality2kn for the reduce

period. Based on this principle, we can finally locate all the

keys to the Map nodes. Similarly, we can use Locality1kn
to determine the key’s execution order on the same Map

node during the reduce period. The key with the biggest

Locality1kn will be the first executed reduce task. Therefore,

based on Locality1kn and Locality2kn , we define:

Localitykn = Locality1kn ∗ Locality2kn

= (keykn/

numKeys∑

k=1

keykn) ∗ (keykn/
numMapNodes∑

n=1

keykn)

= (keykn)
2/(

numKeys∑

k=1

keykn ∗
numMapNodes∑

n=1

keykn)

The above definitions of locality take into account both

the internal node locality and locality between all the nodes,

so we call this method Locality-Enhanced. Here we give our

Locality-Enhanced Load Balance algorithm. The key steps

in algorithm 1 are as follows:

• Line 1: The numMapNodes sets of potential reducers

to schedule (Rn, where 1 ≤ n ≤ numMapNodes) are

initialized, that is Rn = ∅.

• Lines 2-4: By computing Locality1kn and Locality2kn,

the locality enhanced of the kth key on the nth

Map node, which is named as Localitykn can

be obtained. Here, 1 ≤ k ≤ numKeys and

Algorithm 1 LELB Algorithm

Input:
keyk: the kth key

keykn: the number of kth keys on the nth Map node,

Where,1 ≤ k ≤ numKeys,

1 ≤ n ≤ numMapNodes
numKeys: the number of keys

numMapNodes: the number of Map nodes

M={keyk,1 ≤ k ≤ numKeys}
LTV : the threshold value

Output:
load balance scheduling scheme during reduce phase

1: initialize numMapNodes sets of potential reducers to

schedule,Rn = ∅,1 ≤ n ≤ numMapNodes
2: for all 1 ≤ k ≤ numKeys do
3: for all 1 ≤ n ≤ numMapNodes do
4: Locality1kn ⇐ keykn/

∑numKeys
k=1 keykn

Locality2kn ⇐ keykn/
∑numMapNodes

n=1 keykn
Localitykn ⇐ Locality1kn ∗ Locality2kn

5: averageload ⇐ ∑numMapNodes
n=1

∑numKeys
k=1 keykn

/numMapNodes
6: Loadn ⇐0,1 ≤ n ≤ numMapNodes
7: calculate maximum-value

maxLocality=max{Localitykn , keyk ∈ M }
mk ⇐ k and mn ⇐ n

8: Loadmn ⇐ Loadmn +
∑numMapNodes

n=1 keymk
n

9: if |Loadmn - averageload | ≤ LTV then
10: add keymk to Rmn, keymk will be executed reduce

task on the mnth Map node; delete keymk from M
11: else
12: Loadmn ⇐ Loadmn −∑numMapNodes

n=1 keymk
n

13: delete Localitymk
mn from {Localitymn ,1 ≤ k ≤

numKeys ,1 ≤ n ≤ numMapNodes}
14: if M is not empty then
15: go to Line 7

16: else
17: return Rn,1 ≤ n ≤ numMapNodes

1 ≤ n ≤ numMapNodes. Localitykn takes into

account both the internal node locality and the locality

between all the nodes.

• Lines 5-6: The average load of the Map nodes is

computed. The real load of every Map node is set to

zero.

• Line 7: To search the maximum value of Localitykn and

record the corresponding mk (the sequence number of

keys) and mn (the sequence number of Map nodes).

• Line 8: The load of the mkth key will be added to the

load of the mnth Map node.

• Lines 9-12: If the absolute value of the difference

between real load and average load of the mnth Map

node is less than the predefined threshold value, then



keymk will be added to the set of Rmn. The mkth key

will be executed to reduce the task on the mnth Map

node, meaning that other Map node’s data of the same

key will be sent to this Map node, and keymk will be

deleted from the set of M.

• Line 13: Localitymk
mn is deleted from {Localitykn, 1 ≤

k ≤ numKeys, 1 ≤ n ≤ numMapNodes}
• Lines 14-17: If the set of M is not empty, it will be

executed repeatedly. Otherwise, return the Rn, 1 ≤ n ≤
numMapNodes and the LELB algorithm finishes.

Below, we will briefly explain the key selection of the

LELB algorithm under some different situations.

(1) Suppose that the sum of every key on all nodes is the

same, so it can be treated as a constant number and Locality

can be redefined as:

Localitykn = (keykn)
2/

numKeys∑

k=1

keykn

We choose the main key whose Locality is maximized to
execute on some nodes.

For example, the keys distribution is as follows. There

are 3 nodes. Node1 {key1:50, key2:100, key3:50, key4:40,

key5:60, key6:80} means that there are 50 key1, 100 key2,

50 key3, 40 key4, 60 key5 and 80 key6 on node1. The

situation of node2 and node 3 are in the Tables I. Using

the LELB algorithm, we choose key1 and key4 to execute

on node3, key5 and key3 to execute on node2, and key2

and key6 to execute on node1. Table II show the locality of

different keys on every node in this situation. Additionally,

the sequence numbers (������) show the order of the

scheme according to the LELB algorithm.

(2) Suppose that the number of keys on every node is

almost the same, so it can be treated as a constant number

and Locality can be redefined as:

Localitykn = (keykn)
2/

numMapNodes∑

n=1

keykn

We choose the main key whose Locality is maximized to

execute on some node.

For example, the keys distribution is as follows. There are

3 nodes. Tables III show the number of different keys on

every node in this situation. Using the LELB algorithm, we

choose key2 and key5 to execute on node2, key6 and key3 to

execute on node1, and key1 and key4 to execute on node3.

Table IV show the locality of different keys on every node

in this situation. The sequence numbers (������) show

the order of the scheme according to the LELB algorithm.

(3) In general, we choose the main key whose Locality is

Table I
THE NUMBER OF DIFFERENT KEYS ON EVERY NODE IN SITUATION(1)

key1 key2 key3 key4 key5 key6
node1 50 100 50 40 60 80
node2 30 80 100 70 130 50
node3 120 20 50 90 10 70

Table II
THE LOCALITY OF DIFFERENT KEYS ON EVERY NODE IN SITUATION(1)

key1 key2 key3 key4 key5 key6
node1 6.58 26.32� 6.58 4.21 9.47 16.84�
node2 1.96 13.91 21.74� 10.65 36.74� 5.43
node3 40.00� 1.11 6.94 22.50� 0.28 13.61

Table III
THE NUMBER OF DIFFERENT KEYS ON EVERY NODE IN SITUATION(2)

key1 key2 key3 key4 key5 key6
node1 50 100 70 40 50 90
node2 20 130 100 60 80 10
node3 90 50 80 80 60 40

Table IV
THE LOCALITY OF DIFFERENT KEYS ON EVERY NODE IN SITUATION(2)

key1 key2 key3 key4 key5 key6
node1 15.63 35.71 19.60� 8.89 13.16 57.86�
node2 2.50 60.36� 40.00 20.00 33.68� 0.71
node3 50.63� 8.93 25.60 35.56� 18.95 11.43

maximized to execute on some nodes. Here, the Locality is:

Localitykn = Locality1kn ∗ Locality2kn

= (keykn/

numKeys∑

k=1

keykn) ∗ (keykn/
numMapNodes∑

n=1

keykn)

= (keykn)
2/(

numKeys∑

k=1

keykn ∗
numMapNodes∑

n=1

keykn)

B. The Extended Execution Flow of MapReduce

This paper extends the execution flow of MapReduce to

Map, Local reduce, Shuffle and final Reduce (MLSR) as

shown in Fig. 3. Local reduce can share the computation

of reduce and overlap with shuffle in order to take full

advantage of CPU and I/O resources, compared with the

traditional MapReduce framework. LReduce in Fig. 3 means

local reduce and the number of mappings on a machine

can be larger than 1. The amount of data does not reduce

during the local reducing phase, but the performance is

better than when using original MapReduce, according to

the experiments in Section 4.

This paper will deduce the circumstances under which

the key on other nodes executes local reduce, shuffle, and

final reduce, without needing to be immediately trans-

ferred to this node (traditional shuffling). Suppose that

the time complexity of computation for n keys is fc(n)



Table V
THE RELATIONSHIP BETWEEN TIME COMPLEXITY OF REDUCE AND THE SCOPE OF α

Time Complexity The upper bound of α Scope of α

fc(n) = O(1) 0 0

fc(n) = O(n) 1−maxm
i=1{O(βi)} [0, 1− 1/m]

fc(n) = O(n2) 1−maxm
i=1{O(β2

i )} [0, 1− 1/m2]

fc(n) = O(n3) 1−maxm
i=1{O(β3

i )} [0, 1− 1/m3]

fc(n) = O(nk), k ≥ 1 1−maxm
i=1{O(βk

i )} [0, 1− 1/mk]

fc(n) = O(logn) −maxm
i=1{O(log(βi))}/O(logN) [0, logNm]

fc(n) = O(nlogn) 1−maxm
i=1{O(βi)} −maxm

i=1{O(βilogβi)}/O(logN) [0, 1− 1/m+ logNm/m]

Figure 3. The execution flow of MLSR.

and the time complexity of communication for n keys is

fT (n), then the cost of executing local reduce, shuffle,

and final reduce is: Cost1 = max{fc(n1), ..., fc(nm)} +
max{fTi(n1), ..., fTi(nm)} + αfc(n1 + ... + nm), where

0 ≤ α ≤ 1. α is the ratio of the time of executing ‘final

reduce’ in MLSR and ‘reduce’ in traditional MapReduce.

The cost of executing traditional shuffle and reduce is:

Cost2 = max{fTi(n1), ..., fTi(nm)}+ fc(n1 + ...+ nm).
Suppose that N =

∑m
i=1 ni, i=1, 2, ...,m, where m is the

number of nodes being used to map and N is the total of

some key. Let us define βi =
ni

N , where i = 1, 2, ...,m. Note

that
∑m

i=1 βi = 1, 0 ≤ βi ≤ 1. Therefore, Cost2−Cost1 =
(1− α)fc(N)−maxm

i=1{fc(βiN)}.

If α ≤ 1 − maxm
i=1{fc(βiN)}/fc(N), then Cost1 is

smaller than Cost2, that is, the scheme of ‘local reduce,

shuffle, and final reduce’ will be applied. Otherwise, the

scheme of ‘traditional shuffle and reduce’ will be applied.

Here, we will analyze how different time complexities

of computation for n keys (fc(n)) will impact the scheme

of ‘local reduce, shuffle and final reduce’ and ‘traditional

shuffle and reduce’. Then, the situation with which the

MLSR has better execution performance will be easily

seen.

(1) fc(n) = O(1)

α ≤1−maxm
i=1{fc(βiN)}/fc(N)

=1−maxm
i=1{O(1)}/O(1)

=1− 1 = 0

That is, the scheme of ‘traditional shuffle and reduce’

will be applied. Cost2 − Cost1 = (1 − α)O(1) − O(1) =
−αO(1), so the scheme of ‘traditional shuffle and reduce’

will be applied.

(2) fc(n) = O(nk)

α ≤1−maxm
i=1{fc(βiN)}/fc(N)

=1−maxm
i=1{O(β2

i N
k)}/O(Nk)

=1−maxm
i=1{O(βk

i )}

So, when fc(n) = O(nk), k ≥ 1, if α ≤ 1 −
maxm

i=1{O(βk
i )} then the scheme of ‘local reduce, shuffle,

and final reduce’ will be applied. Otherwise, the scheme of

‘traditional shuffle and reduce’ will be applied.

(3) fc(n) = O(logn)

α ≤1− (maxm
i=1{fc(βiN))/(fc(N))

=1−maxm
i=1{O(log(βiN))}/O(logN)

=−maxm
i=1{O(log(βi))}/O(logN)

(4) fc(n) = O(nlogn)

α ≤1−maxm
i=1{fc(βiN))/(fc(N)

=1−maxm
i=1{O(βiNlog(βiN))}/O(NlogN)

=1−maxm
i=1{O(βi)}

−maxm
i=1{O(βilogβi)}/O(logN)

Table V shows the relationship between time complexity

and α.

C. Map, Local reduce, Shuffle, and final Reduce (MLSR)
Algorithm

• When the number of nodes being used to map is 1, and

the value of α is always zero, this indicates that direct

use of traditional shuffle and reduce.

• When fc(n) = O(nk), k ≥ 1 , with the increase of m,

the value of α tends to be 1, which means the execution

performance using the MLSR is nearly always superior

to the execution performance using traditional shuffle

and reduce.

• When fc(n) = O(n) and fc(n) = O(nlogn), the

values of their α are similar. That is, the execution



Reduce B

Shuffle B

Shuffle A

Reduce A

Figure 4. the execution flow of shuffle and reduce in traditional MapRed-
cue (Case 1).

Reduce B

Shuffle A

Shuffle B

LR A

LR A

LR B

LR B

Reduce A

Figure 5. Case 2.

Reduce ALR A

LR A

LR B

LR B

Shuffle B

Shuffle A

Reduce B

Figure 6. Case 3 & Case 4 (1).

Shuffle B

Reduce B

LR A

LR ALR B

Reduce ALR B

Shuffle A

Figure 7. Case 3 & Case 4 (2).

LR B

LR ALR B

LR A

Shuffle B

Shuffle A

Reduce B

Reduce A

Figure 8. Case 3 & Case 4 (3).

performance using the MLSR is nearly always superior

to the execution performance using traditional shuffle

and reduce.

• In general, m is smaller than N, so when fc(n) =
O(logn), the value of α is very small, indicating direct

use of traditional shuffle and reduce.

Here, we use four different cases to show how the MLSR

could make full use of the CPU and I/O resources to have

better execution performance.

Suppose that key A and key B are distributed on M1 and

M2 (different Map/Reduce nodes) after the mapping phase.

There are four cases as follows:

Case 1: If key B on M1 must wait for key B on M2 to

reduce on M1, at the same time, key A on M2 must wait

for key A on M1 to reduce on M2. Then while moving key

A to M2 and moving key B to M1, key B on M1 and key

A on M2 cannot be executed. In the shuffling phase, only

the I/O resource is used in Case 1.

Case 2: If key B will be executed on M1 and may be

locally reduced on M2, at the same time, key A will execute

on M2 and may be locally reduced on M1. Then during

execution, key A and key B cannot be shuffled. During the

Algorithm 2 Map, Local reduce, Shuffle, and final Reduce

(MLSR) Algorithm

Input:
keyk: the kth key

numKeys: the number of keys

numMapNodes: the number of Map nodes

Rn, 1 ≤ n ≤ numMapNodes : load balance schedul-

ing scheme during the reduce phase generated by the

LELB algorithm

Output:
scheduling scheme generated by the MLSR algorithm

1: for all 1 ≤ n ≤ numMapNodes do
2: for all 1 ≤ k ≤ numKeys do
3: if keyk /∈ Rn then
4: if Cost(Local reduce, Shuffle, and final Reduce)

of keyk is less than

Cost(traditional Shuffle and Reduce) of

keyk then
5: local reduce for keyk on the nth node

6: shuffle for keyk

7: for all 1 ≤ n ≤ numMapNodes do
8: for all 1 ≤ k ≤ numKeys do
9: if keyk ∈ Rn then

10: local reduce for keyk on the nth node

11: find reduce for keyk, 1 ≤ k ≤ numKeys

shuffle phase, only I/O resources are used in Case 2.

Case 3: If key B will be executed on M1 and may be

locally reduced on M2, at the same time, key A on M2 must

wait for key A on M1 to reduce on M2, then during moving

key A from M1 to M2, key B will be locally reduced on

M2. During the shuffle phase, both CPU and I/O resources

are used in Case 3.

Case 4: If key A will be executed on M2 and may be

locally reduced on M1, at the same time, key B on M1 must

wait for key B on M2 to reduce on M1, then while moving

key B from M2 to M1, key A will be locally reduced on

M1. During the shuffle phase, both CPU and I/O resources

are used in Case 4.

Fig. 4 shows the execution flow of shuffle and reduce in

traditional MapReduce. Fig. 5, Fig. 6, Fig. 7 and Fig. 8 show

the execution flow of Map, Local reduce, Shuffle and final

Reduce in extended MapReduce (MLSR). LRs in Fig. 5, Fig.

6, Fig. 7, and Fig.8 mean Local Reduce. Obviously, Fig. 8

has the best execution performance. Algorithm 2 describes

the Map, Local reduce, Shuffle, and final Reduce (MLSR)

algorithm, which has the best execution performance as

shown in Fig. 8.

Here we give the MLSR algorithm. The key steps are

explained as follows:

• Lines 1-6: If the kth key does not belong to Rn and the

Cost(Local Reduce, Shuffle, and final Reduce) of keyk



is less than the Cost(traditional Shuffle and Reduce) of

keyk , keyk on the nth node will execute local reduce.

On the other hand, if the kth key does not belong to Rn

and the Cost(Local Reduce, Shuffle, and final Reduce)

of keyk is not less than the Cost(traditional Shuffle and
Reduce) of keyk, keyk on the nth node will execute

shuffle directly.

• Lines 7-10: If the kth key belongs to Rn, keyk on the

nth node will execute local reduce.

• Line 11: Finally, all keys will execute reduce.

It is noted that in order to highly overlap the shuffle

and local reduce, some light loads need to be passed away

immediately or conducted after local reducing, because light

loads may be largely sent to other nodes to execute final

reducing.

Rather, some heavy loads will largely execute ultimate

reducing on their own nodes. Therefore, while heavy loads

are executing local reducing, they receive corresponding

keys from other Map nodes so that the shuffle and local

reduce can be overlapped to a high degree.

IV. PERFORMANCE EVALUATION AND ANALYSIS

In this paper, we use different experiments to test the

performance of the LELB algorithm and the MLSR al-

gorithm. We apply the LELB algorithm and the MLSR

algorithm to the MapReduce implementation of Merge Sort

and WordCount. What’s more, we use different sizes of data

and different numbers of map tasks to discuss how the data

scale and map tasks impact the computing performance.

In the end, we give the explanation according to all the

test results. The hardware and software test environment is

shown in Tables VI and VII.

A. Merge Sort

We compare the execution performance of Merge Sort

between using classical MapReduce in hadoop and using

the LELB algorithm and the MLSR algorithm proposed

in this paper. On each DataNode, we use a basic class

‘RandomWriter’ to generate a specified size of unordered

data set, which is the data source processed by Merge Sort.

Merge Sort uses classical MapReduce in hadoop: The

initial data is the unsorted data. After the map phase, the

value of the key in the pairs equals 0, and the value of the

value in the pairs is equal to the data. Then the reduce task

receives the output of the map task, and runs the Merge Sort

algorithm to generate the sorted result.

Merge Sort using the LELB algorithm and the MLSR

algorithm as proposed in this paper: The initial data is the

unsorted data. In the first place, the data set is divided into

the map task. In our experiments, we set a public variable-

named counter in the configuration of the MapReduce job.

The initial counter is equal to 0. During the division of

the initial data, we assign the counter to each map task.

During each map task, we use counter and postfix in an

Table VI
THE HARDWARE TEST ENVIRONMENT

NameNode DataNode
1 Intel multi-core server 3 SMP Intel Servers

4-way 4-core Intel Xeon 2.13 GHz 2-core Intel Xeon 3.0GHz
2 x 2M L2 Cache 1M L2 Cache

2GB Memory
36GB Hard Disk

2 x Intel EtherExpress/1000 network cards

Table VII
THE SOFTWARE TEST ENVIRONMENT

NameNode DataNode
Redhat Enterprise Linux Server Release 5.2 Fedora 3

hadoop: 0.20.2
Eclipse: Europa 3.3

increment of 1. For example, map task 3 firstly finished

reading the data, using a counter to be the output value of

the keys in this map. The second map task using a counter
is map task 4; the counter after postfix increment becomes

1. So the output value of the keys in the map 4 is 1. This

operation means using counters to tag all data in each map

to the subsequent operation. During the map phase, we set

the value of the key in pairs equal to the counter, and the

value of the value in pairs is equal to data. Then we conduct

the Local reduce operation: we sort the pairs according to

the value. After forming new pairs in which the key stays

the same but the value becomes the sorted value-list, the

value-list is in ascending order by the values of the data.

After the above operations, the reduce task receives all the

output of the map task. We use the key’s value as the tag

to distinguish the value-list and merge them. After several

recursion merges, we finally generate the sorted data.

The Merge Sort algorithm consists of two parts: division

and merge. We use map task to divide the initial data and

conduct parallel sort, then we use the reduce task to merge

the output of the map task. To improve the computing

performance, we set a public variable named counter and

set all the values of the key in the pairs equal to the counter
if they come from the same map task. After parallel sorting

the initial data, we could get the sorted value-list which

is equal to the local reduce operation. The local reduce

operation will decrease the computing time of the reduce

phase, and in this way we could improve the computing

performance when faced with a large scale data set.

Fig. 9 shows the execution time when the map tasks is 10.

When the data size is 1GB, the execution performance of

Merge Sort using classical MapReduce in hadoop is better

than that using the LELB algorithm and the MLSR algorith-

m, as proposed, because compared with Merge Sort using

the LELB algorithm and the MLSR algorithm, Merge Sort

using classical MapReduce in hadoop has little computing

during the map phase. Merge Sort using the LELB algorithm

and the MLSR algorithm takes more time to compute k-v
pairs. As a result, the increasing time is longer than the time



27
130

243
135

742

1503

147

723

1365

27
130

243
135

742

1503

147

723

1365

1GB 5GB 10GB
0

200

400

600

800

1000

1200

1400

1600

Th
e
ex
ec
ut
io
n
tim
e
(s
)

The size of data for Merge Sort

Random Writer
MapReduce in Hadoop
LELB and MLSR

Figure 9. The relationship between the computing performance and the
size of data for Merge Sort.

maptask:8 maptask:16 maptask:32 maptask:64
1400

1500

1600

1700

1800

1900

2000

Th
e
ex
ec
ut
io
n
tim
e
(s
)

The number of map tasks

LELB and MLSR
MapReduce in Hadoop

Figure 10. The relationship between the computing performance and the
number of map tasks for Merge Sort.

which the local reduce operation saves, when the size of

the data set is relatively small. However, when the data set

comes to be 5GB, Merge Sort using the LELB algorithm

and the MLSR algorithm is faster than Merge Sort using

classical MapReduce in hadoop, by up to 2.5%. When the

size increases to 10GB, the advantage ascends to 9.2%.

The experiment results demonstrate that as the size of the

data set becomes bigger, Merge Sort using the LELB algo-

rithm and the MLSR algorithm proposed in this paper has

better execution efficiency than Merge Sort using classical

MapReduce in hadoop, especially when faced with large-

scale data.

Fig. 10 demonstrates the relationship between the comput-

ing performance and the map task number for Merge Sort.

According to the data, when the number of the map tasks

is 16, the sort algorithm has the best performance. If the

number of map tasks is too little, each map has to process too

much data. The lower the level of parallelism for DataNode,

the weaker the performance. On the other hand, too many

map tasks will bring too many disk I/O jobs. In particular,

while the number of map tasks is far larger than the physical

cores, the performance degradation is quite obvious.

B. WordCount

We compare the execution performance of WordCount

between classical MapReduce in hadoop and using the

LELB algorithm and the MLSR algorithm as proposed in

this paper.

The test data sets (1GB,5GB,10GB) were generated by

random word lengths varying from 3 to 10. In order to

test the proposed algorithm in the paper, we test the Word-

Count program in 3 different ways:(1) WordCount without

combiner using MapReduce in hadoop.(2) WordCount with

combiner using MapReduce in hadoop.(3) WordCount using

the LELB algorithm and the MLSR algorithm proposed in

this paper.

WordCount without using classical MapReduce in

hadoop: The ‘No Combiner’ WordCount is the classic

example among the hadoop examples. Without combiner,

the intermediate data will increase exponentially. This will

challenge the network bandwidth.

WordCount using classical MapReduce in hadoop: The

‘Combiner’ WordCount is the default program given by the

hadoop example. We test the data set by setting the

job.setCombinerClass(IntSumReducer.class). With

this combiner, we can reduce the amount of intermediate

data.

WordCount using the LELB algorithm and the MLSR

algorithm as proposed in this paper: Firstly, the data set

is equally divided to all the map tasks. In each map task,

we firstly use our ‘Duplicate Removal’ method to get an

ArrayList to save all of the words of map tasks: we call this

ArrayList ‘KeyList’. In this KeyList, every word appears

only once, so we call these keys ‘LocalKeys’. Then we use

an array called ‘LocalSum[ ]’ to get and save the numbers

of each of the LocalKeys of this map task. Finally, we

write the context with a loop: we write the context for

KeyList.size() times, and each time we write the context

with one of the LocalKeys and its number in this map task.

Fig. 11 shows the relationship between the computing

performance and the size of data for WordCount. From

Fig. 11, we learn that: When the amount of map tasks

is 16 (The suitable maptask amount for this application),

the performance improvement of ‘the LELB algorithm and

the MLSR algorithm’ plan grows with the size of data set.



283

1332

2361

64
297

508

60
263

435
283

1332

2361

64
297

508

60
263

435

1GB 5GB 10GB
0

1000

2000

Th
e
ex
ec
ut
io
n
tim
e
(s
)

The size of data for wordcount

MapReduce in Hadoop (No combiner)
MapReduce in Hadoop (Combiner)
LELB and MLSR

Figure 11. The relationship between the computing performance and the
size of data for WordCount.

maptask:8 maptask:16 maptask:32 maptask:64

500

1000

1500

2000

2500

3000

MapReduce in Hadoop (No combiner)
MapReduce in Hadoop (Combiner)
LELB and MLSR

Th
e
ex
ec
ut
io
n
tim
e
(s
)

The number of map tasks

Figure 12. The relationship between the computing performance and the
number of map tasks for WordCount.

When the data set is 1GB, ‘the LELB algorithm and the

MLSR algorithm’ is faster than the Combiner plan by up to

6.7%. When the data set is 5GB, the improvement is 11.4%.

Meanwhile, when the data set is 10GB, the improvement

grows to 14.4%. Also from Fig. 11, we see that there will be

a great performance degradation if the WordCount program

runs without combiner. The execution time will increase by

nearly 5 times.

Fig. 12 shows the relationship between the computing

performance and the numbers of the maptask. Without a

combiner, WordCount using MapReduce in hadoop runs

slowly. The combiner is of great importance to the Word-

Count because it can significantly reduce the volume of

data during the shuffle phase. According to Fig. 12, the

suitable number of map tasks for this test is 16. When the

maptask is 16, WordCount using the LELB algorithm and

the MLSR algorithm proposed in this paper has the best

permformance. This situation is faster than WordCount with

a combiner using MapReduce in hadoop by up to 14.4%. As

with the ‘Combiner’ WordCount, ‘the LELB algorithm and

the MLSR algorithm’ WordCount can reduce the amount of

intermediate data through the local reduce phrase. What is

more, for the ‘the LELB algorithm and the MLSR algorithm’

WordCount, the volume of output data from the map task

can be reduced significantly (due to the ‘Duplicate Removal’

method); thus the time of disk spinning is reduced. So the

‘the LELB algorithm and the MLSR algorithm’ WordCount

is even faster than the ‘Combiner’ WordCount. We could

see that it is more obvious compared to our Merge Sort test

(which is 9.2%). The key reason is that by using the LELB

algorithm and the MLSR algorithm proposed in this paper,

the volume of intermediate data during the shuffle phrase

can be reduced significantly (Each word has its own local

sum value instead of 1) while the amount of intermediate

data in the Merge Sort test remains unchanged (The only

change is the order of the data). This is why it can save the

time of intermediate data being transferred.

V. CONCLUSION

In this paper, we studied the performance optimization of

MapReduce by considering the locality of keys and overlap-

ping between shuffle and local reduce. This paper proposes a

Locality-Enhanced Load Balance (LELB) algorithm, where

Locality-Enhanced takes into account both the internal node

locality and locality between all the nodes. Besides, this

paper extends the execution flow of MapReduce to Map,

Local reduce, Shuffle and final Reduce (MLSR), where

local reduce tasks can be executed concurrently to decrease

the computation amount of the final reduce task; at the

same time, a decentralized outbreak of shuffle relieves the

pressure on the network transmission and can be hidden by

overlapping between shuffling and local reduce. Therefore,

local reduce can share the computation of reduce and overlap

with shuffle, in order to take full advantage of CPU and

I/O resources. The actual test results show that when the

size of the data set is 10GB, the execution using the LELB

algorithm and the MLSR algorithm proposed in this paper

is faster than the execution using classical MapReduce in

hadoop, by up to 9.2% (for Merge Sort) and 14.4% (for

WordCount).

ACKNOWLEDGMENT

This work was supported in part by the National High

Technology Research and Development Program of China

(No.2015AA01A303), Beijing Key Subject Development

Project (XK10080537), NSF grants CNS 149860, CNS

1461932, CNS 1460971, CNS 1439672, CNS 1301774,

ECCS 1231461, ECCS 1128209, and CNS 1138963.



REFERENCES

[1] “Hadoop,” http://hadoop.apache.org.
[2] “Hadoop tutorial,” http://developer.yahoo.com/hadoop/

tutorial/.
[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” To appear in OSDI, p. 1, 2004.
[4] R. Lämmel, “Googles mapreduce programming modelłrevis-

ited,” Science of computer programming, vol. 70, no. 1, pp.
1–30, 2008.

[5] A. Verma, B. Cho, N. Zea, I. Gupta, and R. H. Campbell,
“Breaking the mapreduce stage barrier,” Cluster computing,
vol. 16, pp. 191–206, 2013.

[6] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar,
“Mapreduce with communication overlap (marco),” 2007.

[7] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen:
Locality/fairness-aware key partitioning for mapreduce in
the cloud,” in Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on.
IEEE, 2010, pp. 17–24.

[8] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu,
“Handling partitioning skew in mapreduce using leen,” Peer-
to-Peer Networking and Applications, vol. 6, no. 4, pp. 409–
424, 2013.

[9] L. Fan, B. Gao, X. Sun, F. Zhang, and Z. Liu, “Improving
the load balance of mapreduce operations based on the key
distribution of pairs,” arXiv preprint arXiv:1401.0355, 2014.

[10] M. Lin, L. Zhang, A. Wierman, and J. Tan, “Joint opti-
mization of overlapping phases in mapreduce,” Performance
Evaluation, vol. 70, no. 10, pp. 720–735, 2013.

[11] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and
P. Valduriez, “Data partitioning for minimizing transferred
data in mapreduce,” in Data Management in Cloud, Grid and
P2P Systems. Springer, 2013, pp. 1–12.

[12] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A study of
skew in mapreduce applications,” Open Cirrus Summit, 2011.

[13] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality
in mapreduce,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting. IEEE Computer Society, 2012, pp. 419–426.

[14] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. S-
toica, “Improving mapreduce performance in heterogeneous
environments,” in OSDI, vol. 8, 2008, p. 7.

[15] A. MateiZaharia, A. Joseph, and I. RandyKatz, “Improv-
ing mapreduce performance in heterogeneous environments,”
2010.

[16] J. Tan, X. Meng, and L. Zhang, “Performance analysis of
coupling scheduler for mapreduce/hadoop,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 2586–2590.


