
Dominating-Set-Based Searching in
Peer-to-Peer Networks

Chunlin Yang, Siemens Network Convergence LLC, Boca Raton, FL 33487,
Xiuqi Li, Member, IEEE, Dept. of Comp. Science & Eng., Florida Atlantic Univ., Boca Raton, FL 33431

Jie Wu, Senior Member, IEEE, Dept. of Comp. Science & Eng., Florida Atlantic Univ., Boca Raton, FL 33431

Abstract— The peer-to-peer network for sharing information
and data through direct exchange has emerged rapidly in recent
years. The searching problem is a basic issue that addresses the
question “Where is X”. Breadth-first search, the basic searching
mechanism used in Gnutella networks [7], floods the networks to
maximize the return results. Depth-first search used in Freenet
[6] retrieves popular files faster than other files but on average
the return results are not maximized. Other searching algorithms
used in peer-to-peer networks, such as iterative deepening [13],
local indices [13], routing indices [3] and NEVRLATE [2] provide
different improved searching mechanisms. In this paper, we
propose a dominating-set-based peer-to-peer searching algorithm
to maximize the return of searching results while keeping a low
cost for both searching and creating/maintaining the connected-
dominating-set (CDS) of the peer-to-peer network. This approach
is based on random walk. However, the searching space is
restricted to dominating nodes. Simulation has been done and
results are compared with the one using regular random walk.

I. I NTRODUCTION

Peer-to-peer network models such as Gnutella [7], Freenet
[6], and Napster [8] are becoming popular for sharing infor-
mation and data through direct exchange. These models offer
the important advantages of decentralization by distributing
the storage capacity and load across a network of peers and
scalability by enabling direct and real-time communication. In
fully decentralized peer-to-peer networks, there is no need for
a central coordinator. Communication is individually handled
by each peer. This has the added benefit of eliminating a
possible bottleneck in terms of scalability or reliability. The
peer-to-peer approach offers an alternative to traditional client-
server systems for some application domains. It circumvents
many problems of client-server systems but results in con-
siderably more complex searching, node organization and
reorganization, security, and so on [11].

The searching problem is a basic issue that addresses
the question “Where is X”. Breadth-first search (BFS), the
basic searching mechanism used in Gnutella networks [7],
floods the networks to maximize the return results. Depth-
first search (DFS) used in Freenet [6] retrieves popular files
faster than other files but on average the return results are
not maximized. Other searching algorithms used in peer-to-
peer networks, such as iterative deepening [13], local indices
[13], routing indices [3] and NEVRLATE [2] provide different
improved searching mechanisms. In this paper, we propose

This work was supported in part by NSF grants CCR 0329741, ANI
0073736, and EIA 0130806. Contact person: jie@cse.fau.edu.

a dominating-set-based peer-to-peer searching algorithm to
maximize the return of searching results while keeping a
low cost for both searching and creating/maintaining the
connected-dominating-set (CDS) of the peer-to-peer network.
A connected-dominating-set (CDS) [12] of a peer-to-peer
network is a connected subset of nodes of the network from
which all nodes in the network can be reached in one-hop.
Finding a minimum CDS is NP-complete for most graphs. Wu
and Li [12]’s marking process gives a simple and distributed
algorithm for calculating CDS. In this paper, we propose a
peer-to-peer network searching algorithm using CDS gener-
ated by the marking process with some modification of the
reduction rules 1 and 2 to maximize the searching results
while keeping the cost of searching and maintaining the CDS
low. This approach is based on random walk. However, the
searching space is restricted to dominating nodes. Simulation
results have been presented and discussed.

The remainder of the paper proceeds as follows. Related
work is discussed in Section 2, Section 3 introduces the
marking process and the modification to the reduction rules
1 and 2. Section 4 shows the dominating-set-based peer-to-
peer searching algorithm, Section 5 provides the simulation
results. Section 6 summarizes this paper and future work.

II. RELATED WORK

Gnutella [7] is the foremost large-scale, fully decentralized
directory and distribution system running on the Internet. It
uses a BFS with predefined depthD, whereD is the system-
wide maximum time-to-live (TTL) of a message in hops. Upon
receiving a request, a node sends a query to all its neighbors
and each neighbor searches its own resources and forwards
the message to all of its own neighbors. If a query is satisfied,
a response will be sent back to the original requester using
the reverse path. Queries are assigned unique IDs to avoid
repetition. Gnutella uses a TTL of 7 (about 10000 nodes) to
avoid network congestion [10]. BFS can still be cyclical, and
can cause excessive traffic and waste resources.

In Freenet [6], information is stored on hosts under search-
able keys. It uses a DFS with depth limitD. Each node
forwards the query to a single neighbor, and waits for a definite
response from that neighbor. If the query was not satisfied,
the neighbor forwards the query to another neighbor. If the
query was satisfied, the response will be sent back to the query
source using the reverse path. Each node along the path copies
data to its own database as well. In this approach, more popular

2

information becomes easier to access. However, DFS suffers
from poor response time.

Iterative Deepening [13] searching method initiates multiple
DFSs with successively larger depth limits, until the query is
satisfied or the maximum depth has been reached. Searching
in Local Indices [13] needs to store information of all nodes
within a defined number of hops. Each node maintains an
index of the data of all nodes withinr hops, wherer is a
system-wide variable known as the radius of the index. When
receiving a query, a node can process it on behalf of every
node withinr hops, data can be searched on fewer nodes to
reduce the cost while keeping the query satisfaction.

In NEVRLATE [2] (Network-Efficient Vast Resource
Lookup At The Edge), directory servers are organized into
a logical 2-dimensional grid, or a set of servers enabling reg-
istration (publish) in one “horizontal” dimension and lookup
in the other “vertical” dimension. Each node is a directory
server. Each set of servers, the vertical cloud, can reach each
other member of the set. The set of sets of servers is the
entire NEVRLATE network. Each host registers its resource
and location to one node of each set. When a query comes,
only one set needs to be searched to get all locations containing
the satisfied query information.

Routing Indices [3] uses only single DFS but allows a node
to select the “best” neighbor to send a query to. Routing
Indices is a data structure and associated algorithms that, given
a query, returns a list of neighbors ranked according to their
goodness for the query. The goodness is measured byk-hop
ranking which is a weighted total number of documentations
within k hops. In general, the larger thek the smaller the
weight assigned to the number of documentations atk hops.
The 0-hop ranking reflects the number of documentations
associated with the node. However, ifu has a higherk-hop
ranking thanv, it does not imply thatu has a higher 0-hop
ranking thanv.

The hierarchical P2P searching methods include Kelips [5],
Coral [4], Hieras [14], and the systems in [1] and [9]. Kelips
consists ofk group each of which has a few nodes as group
contacts. Nodes are hashed to their belonging groups. Files
are hashed to their belonging groups and stored in randomly
selected nodes. To look for a file, the querying node hashes the
file to a group. If the group is its own group, the file is found
from the querying node’s index. If not, the query is forwarded
to one contact in the file’s group. This contact finds the file by
checking its file indexes. Coral organizes nodes into a 3-level
hierarchy of clusters and places nearby nodes into the same
cluster. Coral’s hierarchy is built on top of Chord. Each cluster
is a Chord ring. Each node belongs to one cluster at each
level and has the same node id in all its belonging clusters.
Searching for a file starts on a cluster in the lowest level. If the
file is not found, the node closest to the file key in the lowest
level is reached. The search then continues on the cluster in
the next higher level to which this node belongs. Hieras uses a
similar approach. There is no superpeer in Kelips, Coral, and
Hieras.

The system in [1] also builds a two-tier hierarchy on top of
Chord. The bottom tier is the original Chord ring and includes
all nodes. The top-tier is a complete graph and includes only

superpeers. Each superper is responsible for an arc in the
Chord ring. To look for a file, the querying node sends the
query directly to its superpeer. If the file key is in its arc,
the superpeer locates the responsible node in its peer table.
If not, the superpeer forwards the query to the superpeer
responsible for the arc containing the file key. The system in
[9] is a two-tier hierarchy. At the bottom tier, different groups
of nodes form their own overlays. The top-tier is a Chord
ring including all superpeers in each group. Searching in this
system is similar to Coral.

Note that all existing hierarchical P2P systems construct a
dominating set, but it is not connected. A separate constructing
process is needed to connect two dominating nodes (super-
peers) via some regular nodes or to establish another logical
link between them.

III. E XTENDED MARKING PROCESS

The dominating-set-based searching algorithm defined be-
low tries to maximize the return results while minimizing the
searching and maintenance costs. No global information is
needed to construct and reduce the CDS using the marking
process and reduction rule 1 and rule 2 [12].

Specifically, the marking process is a localized algorithm
described in [12] in which hosts interact only with others in
a restricted vicinity. Each host performs exceedingly simple
tasks such as maintaining and propagating information mark-
ers. Collectively, these hosts achieve a desired global objective
of finding a small CDS. The marking process marks every
vertex in a given connected and simple graphG = (V,E).
m(v) is a marker for vertexv ⊂ V , which is eitherT
(marked) orF (unmarked). The marking process consists of:
(1) Initially, assign markerF to eachv in V . (2) Eachv
exchanges its open neighbor setN(v) with all its neighbors.
(3) Eachv assigns its markerm(v) to T if there exist two
unconnected neighbors. It is shown that given a graphG =
(V, E) that is connected but not completely connected, the
vertex subsetV ′, derived from the marking process, forms a
connected dominating set ofG.

Two localized reduction rules 1 and 2 [12] are provided to
reduce the size of the CDS: if the neighbor set of nodeu in
the CDS is covered by that of another nodev or those of two
connected nodesv and w in the CDS, then nodeu can be
removed from the CDS. In this case,u is said to be covered
by v (or by v andw). To avoid simultaneous removal of two
nodes covering each other, each nodeu is assigned a distinct
id. A node is removed from the CDS when it is covered by
node(s) with higher id(s).

In this paper, we modify rules 1 and 2 [12] to use the
a special 1-hop ranking, denoted asdocs, of each node as
the priority to break a tie.1-hop ranking,docs, is defined as
the total documentation number of nodev plus the highest
documentation number of av’s neighbor. We treat all types
of documentation the same and will classify them in the future
research. To get a unique total number of documentations, we
can easily assign a unique node id. In case of a tie in the 1-hop
ranking, node id is used to break a tie. Here are the modified
rules 1 and 2:

3

v u u v w

Fig. 1. Examples of rule 1 (left) and rule 2 (right).

Rule 1: Consider two verticesv and u in V ′. If N(v) ⊂
N(u) in G and docs(v) < docs(u), change the marker ofv
to F if node v is marked, i.e.,G′ is changed toV ′ − v.

Rule 2: Assume thatu andw are two marked neighbors of
marked vertexv in V ′. If N(v) ⊂ N(u) ∪ N(w) in G and
docs(v) = min(docs(v), docs(u), docs(w)), then change the
marker ofv to F .

In the example shown in Figure 1 (left), using the marking
process and above modified reduction rule 1, nodeu will be
the only dominating node in the graph if nodeu has a higher 1-
hop ranking than nodev. If nodeu has a lower 1-hop ranking
than nodev, nodev will be the only dominating node in the
graph. In the example shown in Figure 1 (right), nodev can
be eliminated from the dominating set based on rule 2 if node
v has the minimumdocs within these three nodesu, v, and
w.

IV. D OMINATING -SET-BASED PEER-TO-PEER SEARCHING

ALGORITHM

For a peer-to-peer network, we can use the above marking
process with the modified rules 1 and 2 to get a CDS and
use this subset of nodes for the searching in the network. The
searching process resembles a random walk with an assigned
TTL (depth). The searching process stops when TTL expires
or a visited node is reached again. Unlike regular random walk,
the searching process is restricted to dominating nodes only. In
addition, we allow “one-hop branches” along the walk when
certain conditions are met. Each one-hop branch connects to a
non-dominating neighbor with the maximum 0-hop ranking in
the neighborhood of the corresponding dominating neighbor.

1) First calculate 0-hop ranking and 1-hop ranking (docs)
of each node.

2) Use the above defined marking process and modified
reduction rules 1 and 2 to get a CDS.

3) When a nodeS receives a request,S searches from its
own database and returns the results to the requester if
there is any documentation.

4) If node S is the original request node and is not a
dominating node (marked asF), it forwards the request
to the dominating neighbor (marked asT) which has
the highest 1-hop ranking among all of its dominating
neighbors. If nodeS is not the original requestor nor a
dominating node, it will not send a query to any of its
neighbors.

5) If node S is a dominating node, it sends the request to
the dominating neighbor with the highest 1-hop ranking
among all of its dominating neighbors. NodeS also
sends the request to the non-dominating neighbor which
has the highest 0-hop ranking among all of its neighbors

(10,6)

(2,7)

C

G:(10,3)

F

E

B

A

D

(0,1)

(6,2) (1,4)

(8,5)

(12,7)G

(14,5)
(16,6)

(10, 1)
(16,2)
(12,3)
(7,4)

A:
B:
C:
D:
E:
F:

Fig. 2. A sample network with three dominating nodes.

(dominating neighbors and non-dominating neighbors) if
there is one.

6) Repeat steps 3 to 5 until either the maximum number of
hops is reached or a visited node is reached again.

For example, in Figure 2, each node has two numbers: the
first number is the 0-hop ranking of that node and the second
number is the unique node id. In Figure 2, the right column
lists docs (i.e. 1-hop ranking) of each node. When nodeA
gets a request, it first searches its own database. Then nodeA
sends the request to nodeB which is the dominating neighbor
with a higherdocs than nodeC. Node B sends the request
to nodeF , which has the highest priority (0-hop ranking and
node id) of all neighbors of nodeB, and gets additional 10
documentations. Overall, this searching process gets a total of
16 documentations. If nodeF is a requester, it will send a
message to nodeB and then toA andC to get a total of 26
documentations. Note that in this caseG will not be searched,
since it has a smaller 0-hop ranking than the dominating node
C.

Notice if in the same example we use random walk by
treating all nodes the same and by sending a message to
the “best” ranking neighbor, nodeA will send the request
to nodeB, which has a higher 1-hop ranking than the other
neighborC, nodeB will send the request to nodeF . If node
F is the requester, after sending the message to nodeB,
nodeB will choose nodeE for the next searching because
E has the next highest 0-hop ranking in all non-dominating
neighbors ofB. The process will stops becauseE has no
more unvisited neighbor. The the searching process initiated
from F will get 18 documentations instead of 26 as in the
dominating-set-based approach. The searching stops before the
defined maximum TTL (we use 20 in our simulation) has been
reached.

The above proposed dominating-set-based searching algo-
rithm in peer-to-peer networks needs only local information to
get the CDS. Wu [12] has proven that the process calculates
CDS in O(∆2) time with distance-2 neighborhood informa-
tion, where∆ is the maximum node degree in the network.
The above modified reduction rules 1 and 2 will not change the
complexity of the calculation of the CDS and reduction. The
proposed algorithm also uses constant (2) rounds of message
exchange.

In general, a ranking just gives a “direction” towards
the document, rather than its actual location. To create and
maintain an “accurate” routing ranking, global information
is needed or we can usehop count ranking[3] which also
needs information from nodes within a certain number of hops.

4

Max degree All nodes DS nodes Non-DS nodes
2 2.5230 2.6735 1.9856
5 6.1677 6.4964 4.9937

10 12.1713 12.7712 10.0288

TABLE I

AVERAGE 1-HOP RANKING IN A NETWORK WITH 50,000NODES.

More cost will be added to create and maintain ranking of all
affected nodes of the network if there are loops in the network.

In the CDS approach, when a node is added or dropped from
the network, only its neighbors will be notified whereas the
routing indices will update almost all nodes withink-hops to
keepk-hop ranking up-to-date. In our simulation, we will see
that the average ranking of all dominating nodes will be higher
than the non-dominating nodes. That means by restricting the
searching space to dominating nodes more documentations can
be found.

V. SIMULATION

A C++ program has been implemented to simulate a peer-to-
peer network searching using random walk and CDS described
above. The network is randomly generated with a maximum
degree ofmax degree, each node is randomly assigned a
number from 0 tomax docs documentations. To generate the
network, 1 or 2 nodes with a degree less thanmax degree are
randomly selected from the connected set, which was initially
assigned with one node, to connect to a new selected node
from the unconnected set. This procedure repeats until all
nodes in the unconnected set get connected to the connected
set. This will guarantee that the result network is connected
and can have loops. After all nodes get connected and assigned
a number of documentations, both 0-hop ranking and 1-hop
ranking are calculated for each node. The above defined
marking process with modified rules 1 and 2 will mark/unmark
a node to aT (a dominating node) orF (a non-dominating
node) to get a CDS for the network.

Table I shows the average 1-hop ranking for all nodes,
dominating nodes and non-dominating nodes in a network with
50,000 nodes. It is clear that dominating nodes have a higher
average 1-hop ranking than non-dominating nodes. This is due
to the fact that the dominating nodes have higher connectivity
than non-dominating nodes. Based on the modified rules 1 and
2, the dominating nodes have moredocs′ than non-dominating
nodes.

Two searching methods are simulated. First, in regular
random walk, a request will only be sent to the “best” neighbor
with the highest 1-hop ranking. The second searching method
is dominating-set-based, which sends a request to the “best”
dominating neighbor which has the highest 1-hop ranking of
all of its dominating neighbors and to the non-dominating
neighbor which has the highest 0-hop ranking if there is one.
We used 20 hops as the maximum number for both searching
methods.

In Table II, search no is the number of trials.RW docs
(RW cost) is average documentation returned from (average
number of hops using) random walk searching.DS docs
(DS cost) is average documentation returned from (average

nodes no 5,000 50,000 50,000
max docs 10 5 10
max degree 6 6 6
search no 100 100 100
RW docs 102.78 42.86 92.83
RW cost 14.25 11.21 12.53
RW avg 7.2126 3.8233 7.4086
DS docs 148.66 80.11 161.47
DS cost 18.62 (2.64) 18.29 (3.59) 19.31 (2.54)
DS avg 7.9838 4.3799 8.3619

TABLE II

SEARCHING RESULTS.

number of hops using) dominating-set-based searching. We
can see that the number of documentations retrieved from
dominating-set-based searching is much higher than the num-
ber returned from random walk searching. InDS cost, two
costs are recorded,c1(c2), wherec1 is the number of steps
in depth andc2 is the number of one-hop branches.RW avg
(DS avg) measures the average number of documentations
returned for each step (in depth) in random walk search-
ing (dominating-set-based searching). In general,DS avg is
higher thanRW avg. The reason for this is that dominating-
set-based searching sends requests to the “best” dominating
neighbor which has higher connectivity and higherdocs and to
the non-dominating neighbor which has the maximum number
of documentations. As mentioned before, the cost of maintain-
ing CDS in dominating-set-based searching is minimum since
only local information is required.

Based on the results of Tables I and II, we have the
following conclusions: (a) Dominating-set-based searching
terminates later than random walk searching. As a result, the
average number of documentations returned from dominating-
set-based search is more than random walk searching. (b)
The number of “one-hop branches” is relatively insignificant.
This is because such branches are generated only when it
has a higher 0-hop ranking than its dominating node. (c)
In dominating-set-based searching, the average number of
documentations returned per step (in depth) is higher than
random walk searching.

VI. CONCLUSION

In this paper we have proposed a peer-to-peer searching
algorithm using CDS. The CDS is constructed using the
marking process [12] with the modified rules 1 and 2 for
reduction. Simulation shows that dominating-set-based search-
ing returned more documentations than random walk searching
and kept the searching cost low. The cost of creating and
maintaining the CDS is lower than that of the cost to create
and maintain the routing indices ranking or hop count ranking
as in [13]. Our future research will focus more on in depth
simulation of dominating-set-based approach using different
searching algorithms, such as DFS. Other ways of defining
k-hop ranking (k > 1) will also be explored.

5

REFERENCES

[1] V. Kumar A. T. Mizrak, Y. Cheng and S. Savage. Structured superpeers:
Leveraging heterogeneity to provide constant-time lookup.Proc. of 2003
IEEE Workshop on Internet Applications, pages 104–111, 2003.

[2] A. Chander, S. Dawson, P. Lincoln, and D. Stringer-Calvert. Nevrlate:
scalable resource discovery.Proc. 2nd IEEE/ACM Int’l Symposium on
Cluster Computing and the Grid, pages 382–388, 2002.

[3] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer
systems.Proc. 22nd Int’l Conference on Distributed Computing Systems,
pages 23–32, 2002.

[4] M. J. Freedman and D. Mazieres. Sloppy hashing and self-organized
clulsters. Proc. 3rd Int’l Conference on Peer-to-Peer Systems, pages
45–55, 2003.

[5] I. Gupta, K. Birman, P. Linga, A. Demers, and R. V. Renesse. Kelips:
building an efficient and stable P2P DHT through increased memory
and background overhead.Proc. 3rd Int’l Conference on Peer-to-Peer
Systems, pages 160–169, 2003.

[6] http://freenet.sourceforge.net (Freenet website).
[7] http://www.gnutella.com (Gnutella website).
[8] http://www.napster.com (Napater website).
[9] P.A. Felber K.W. Ross L. Garces-Erice, E.W.Biersack and G. Urvoy-

Keller. Hierarchical peer-to-peer systems.Proc. of the 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies,
pages 643–657, 2003.

[10] M. Portmann and A. Seneviratne. The cost of application-level broadcast
in a fully decentralized peer-to-peer network.Proc. 7th Int’l Symposium
on Computers and Communications, pages 941–946, 2002.

[11] M. Krishna Ramanathan, V. Kalogeraki, and J. Pruyne. Finding good
peers in peer-to-peer networks.Proc. Int’l Symposium on Parallel and
Distributed Processing, pages 232–239, 2002.

[12] J. Wu and H Li. On calculating connected dominating sets for efficient
routing in ad hoc wireless networks.Proc. 3rd Int’l Workshop on
Discrete Algorithm and Methods for Mobile Computing and Commu-
nications, pages 7–14, 1999.

[13] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer
networks. Proc. 22nd Int’l Conference on Distributed Computing
Systems, pages 5–14, 2002.

[14] R. Min Z. Xu and Y. Hu. HIERAS: a DHT based hierarchical P2P
routing algorithm. Proc. 3rd Int’l Conference on Parallel Processing,
pages 187–194, 2003.

