
J. Parallel Distrib. Comput. 96 (2016) 1–11
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Energy-efficient contention-aware application mapping and
scheduling on NoC-based MPSoCs
Dawei Li ∗, Jie Wu
Department of Computer and Information Sciences, Temple University, PA, 19122, United States

h i g h l i g h t s

• Energy-efficient application mapping and scheduling for Network-on-Chip systems.
• An approach that combines processor voltage scaling and link frequency tuning.
• A two-step method that provides clear and organized solution.
• Using genetic algorithm to achieve near-optimal voltage and frequency assignment.

a r t i c l e i n f o

Article history:
Received 17 September 2015
Received in revised form
16 March 2016
Accepted 13 April 2016
Available online 4 May 2016

Keywords:
Network-on-chip (NoC)
Application mapping
Energy-efficient scheduling
Dynamic voltage scaling
Dynamic link frequency tuning

a b s t r a c t

We consider the problem of energy-efficient contention-aware application mapping and scheduling on
Network-on-Chip (NoC) based multiprocessors. For an application represented by a directed acyclic
graph, we present a model where voltage scaling techniques for processors can be combined with
frequency tuning techniques for NoC links to save overall system energy consumption. We employ a
two-step approach to solve the overall mapping and scheduling problem. First, the application mapping
problem is formulated as a quadratic binary programming problem, which aims to minimize the
communication energy; we apply a relaxation-based iterative rounding algorithm to solve it. With the
mapping achieved, we further consider the application scheduling problem, which aims to find the
optimal voltage level for each task of the application and optimal frequency level for each communication
of the application to minimize the overall system energy consumption, given the application deadline.
To attack the second problem, we first design an algorithm based on the earliest time first scheduling
to determine the application’s finish time if a voltage and frequency assignment is given; then, we
develop a genetic algorithm to search the solution space for the voltage and frequency assignment that
minimizes the overall system energy consumption and meets the application’s deadline. Through these
two steps, we produce a mapping and scheduling that meets the application’s deadline, and significantly
reduces the overall system energy consumption. Experiments are conducted for a number of randomly
generated application graphs, as well as several real application graphs to verify the energy reduction and
applicability of the proposed model and algorithms.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

MultiProcessor System-on-Chips (MPSoCs) play an important
role in various computational systems, such as embedded systems,
ad hoc and mobile devices, etc. Modern MPSoCs may consist
of a large number of processors. Traditional bus-based on-chip
communications are known to have poor scalability. Modern
technology enables the use of Network-on-Chip (NoC) to support
on-chip communications [2,8].

∗ Corresponding author.
E-mail addresses: dawei.li@temple.edu (D. Li), jiewu@temple.edu (J. Wu).

http://dx.doi.org/10.1016/j.jpdc.2016.04.006
0743-7315/© 2016 Elsevier Inc. All rights reserved.
Energy consumption on these integrated systems has been a
critical issue. Previously, energy-aware task scheduling problems
have been studied extensively for traditional multiprocessor
platforms without the consideration of communication time and
energy. Generally speaking, processors are equipped with the
capability of Dynamic Voltage and Frequency Scaling (DVFS) [4].
When the processor’s utilization is low, it can be put to lower
voltage/frequency levels to save energy consumption. For NoC-
based MPSoCs, routers and links also consume a large portion
of on-chip energy. The integrated routers and links of the Alpha
21364 processor [21] consume 23 W out of the total chip power
of 125 W (20%). Among the 23 W power, 58% of the power is
consumed by the links; NoC links consume about 10% of the total

http://dx.doi.org/10.1016/j.jpdc.2016.04.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.04.006&domain=pdf
mailto:dawei.li@temple.edu
mailto:jiewu@temple.edu
http://dx.doi.org/10.1016/j.jpdc.2016.04.006

2 D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11
Fig. 1. A 3-by-3 mesh NoC architecture.

chip power. The IBM InfiniBand 8-port 12X switch is estimated to
consume 31 W, where links take up about 20 W (65%) [23]. With
the proposal of bufferless NoCs [14], links are expected to consume
more power. Also, some research work focuses exactly on the
power reduction on links [1]. Thus, taking into consideration the
NoC energy consumption for application mapping and scheduling
on NoC-based MPSoCs deserves extensive research endeavors.

The NoC architecture that we consider in this paper is a two-
dimensional mesh. Fig. 1 shows an example. All processors of
the MPSoC are assumed to be homogeneous [7,5], and are DVFS-
enabled. The NoC links can also operate on different frequency
levels, and thus, different power levels. The application can be
represented by a Directed Acyclic Graph (DAG), as assumed by
various existing works [10,17]. The problem we consider needs
to address the following issues: (i) mapping the tasks of the
application to the processors, (ii) setting a voltage level for each
mapped task, or the corresponding processor, (iii) setting the
frequency for each communication, or the links that construct
the path of the communication, and (iv) deciding the order of
task executions and task-to-task communications, such that tasks’
and communications’ precedence constraints are satisfied, and the
contention of NoC link usage is explicitly avoided. Our final goal is
to derive the mapping and scheduling that minimizes the overall
system energy consumption, while the application’s deadline is
met.

1.1. Motivational example

We provide an example that motivates our research. Detailed
assumptions and exact definitions are omitted here for simplicity.
We consider the DAG application shown in Fig. 2(a). Fig. 2(b) and
(c) show two possible mappings of the application. XY minimal
routing [30] is adopted for its simplicity. We assume that each
link’s energy consumption during one unit of communication time
is one unit. Then, the link energy consumption of mapping 1 can
be calculated as follows: 10 + 20 + 15 × 2 = 60. 15 is multiplied
by 2, because the communication, A → C should traverse 2
links. Similarly, the link energy consumption of mapping 2 can be
calculated as 10 × 2 + 20 + 15 = 55; compared to mapping 1, 5
units of link energy is saved. Notice that we just calculated energy
consumption on links; actually, similar calculations reveal that the
energy consumption on routers of mapping 2 is also less then
that of mapping 1. To save energy, mapping 2 should be adopted.
The intuition is that the tasks that have greater communication
volumes should be mapped to closer processors.

Given mapping 2, we now consider the actual scheduling of
the application, with both the precedence constraints and the
usage of NoC links in mind. Task A can begin executing first. Since
communications A → C and A → B both need to use the link from
A to C, they cannot occur at the same time; in other words, they
must be serialized. In this situation, we have two strategies. One
is to schedule communication A → C first; the second one is to
schedule communication A → B first.

In the first strategy, after communication A → C , only
communication A → B can happen, because B and C have not
received all the data they need. After that, B can start executing,
followed by communication B → C . Finally, task C executes. The
overall scheduling of the first strategy is shown in Fig. 2(d); the
schedule length, or the last task’s finish time, is 85.

In the second strategy, after communication A → B, B can start
executing because it will have received the data that it needs from
A; at the same time, communication A → C can also begin because
the links that this communication requires are available now.
Thus, task B’s execution and communication A → C can happen
simultaneously. Communication B → C can begin when task B
finishes its execution. Finally, C can execute. The overall scheduling
of the second strategy is shown in Fig. 2(e); the schedule length is
70.

Assume that the deadline of this application is 85. In scheduling
1 (Fig. 2(d)), though processors and links are capable of operating
on variable voltage and frequency levels, respectively, they cannot
do so. This is because they are all operating at the highest levels,
and reducing any of them will increase the application’s schedule
(a) DAG. (b) Mapping 1. (c) Mapping 2.

(d) Scheduling 1.

(e) Scheduling 2.

Fig. 2. Motivational example. (a): The application consists of three tasks A, B, and C, with execution times of 10, 20, and 10, respectively. The communication durations of
A → B, B → C , and A → C are 10, 20, and 15, respectively. All these values are obtained when the processors operate at their highest voltage levels and links operate at
their highest frequencies. (b) and (c): Two possible mappings of the application. (d) and (e): Two possible schedulings based on mapping 2; we use dark blocks to represent
computation duration, and white blocks to represent communication durations; the two figures share the same time axis.

D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11 3
length, and will result in the application missing its deadline.
However, in scheduling 2 (Fig. 2(e)), both tasks are allowed to
operate on lower voltage levels, and links are allowed to operate on
lower frequency levels to save energy. Thus, we can further apply
voltage scaling and frequency tuning techniques to save energy
consumption. Notice that we have many options. For example, we
can reduce just the voltage of task B, or both A and B, or A, B,
and C at the same time, as long as the deadline is still met; we
can also choose to what extent to scale the voltage of each task.
We can also choose to reduce the frequencies of communications
A → B, B → C , and/or A → C . Among various choices, we
need to decide which choice results in the least overall energy
consumption.

In this paper, we address the problem of application mapping
and scheduling, while considering all of the four issues as de-
scribed. We apply a two-step approach to solve the overall prob-
lem. Specifically, the application mapping problem addresses the
first issue, and the application scheduling problem addresses is-
sues ii–iv. The organization of the paper is as follows. Relatedworks
and our contributions are described in Section 2. The systemmod-
els, which include the application model, the platform model, and
some basic assumptions, are provided in Section 3; the formal
problem definition is also presented. Our two-step approach is dis-
cussed in detail in Sections 4 and 5: Section 4 addresses the ap-
plication mapping problem; Section 5 addresses the application
scheduling problem. Simulations are presented in Section 6. Con-
clusions are made in Section 7.

2. Related works and our contributions

A comprehensive survey for applicationmapping techniques on
NoCs is provided by Sahu et al. [22]. A two-step Genetic Algorithm
(GA) for applicationmapping onto NoCs has been proposed in [17].
[31] provides a delay model considering practical factors, and
also applies the genetic algorithm. However, the goal of [17,31]
is to reduce the overall execution time, and they do not consider
energy issues. Authors in [20] consider designing heterogeneous
on chip networks according to applications’ bandwidth and latency
sensitiveness.

Power/energy management is an important issue in NoC-
based MPSoCs [9,28]. [12] addresses energy-aware task allocation
for NoC-based heterogeneous multiprocessors. DVFS-enabled
processors are assumed; operating frequencies of network links
are assumed to be fixed. Similar models, as that of [12], are also
considered in [3,11]. [29] utilizes the network slack to adjust the
operating frequencies of routers to provide just enough power
to NoC to meet the deadlines. Contention-aware application
mapping is addressed by [6], which quantifies the contention and
aims to minimize it along with weighted distance. [23] proposes
voltage and frequency scaling with links based on a link’s average
utilization for energy optimization.

Our work differs from existing works in two important aspects.
First, we address the problem of both application mapping and
application scheduling, where NoC link usage contentions are
considered explicitly. Second, we present a model, where DVFS
techniques for processors and frequency tuning techniques for
NoC links can be combined together to achieve the goal of
minimizing system energy consumption; in other words, the
communication and/or computation slacks of an application can
be shared efficiently by both communications and computations
to achieve overall energy reduction.

Considering application mapping and scheduling in one step is
two complex. To attack the problem, we employ a two-step ap-
proach. First, we formulate the application mapping problem as a
Quadratic Integer Programming (QIP), more precisely, a Quadratic
Binary Programming (QBP) problem, and apply a relaxation-based
iterative rounding technique to solve it. Second, after achieving
the mapping, we further consider the energy-efficient schedul-
ing problem, which aims to find the optimal voltage setting for
each task of the application and optimal frequency setting for each
communication of the application to minimize the overall system
energy consumption. TheDAG scheduling problem to find themin-
imum schedule length is generally NP-hard [24]. Thus, we adopt
another two-step approach to solve our energy-efficient schedul-
ing problem: first, we design an algorithm based on the Earliest
Time First (ETF) scheduling to get the application’s earliest finish
time, given a voltage and frequency assignment; next, we develop
a genetic algorithm to search the solution space (various voltage
and frequency assignments) to find a voltage and frequency assign-
ment that tries to minimize the overall system energy consump-
tion, and meets the application deadline.

3. Systemmodel and problem definition

3.1. Application model

An application can be represented by a DAG, G = (T , E).
T = {τ1, τ2, . . . , τN} is the task set of the application. N = |T |

is the number of tasks. Each task has an execution requirement of
ci, which represents the number of processor clock cycles. E =

{e1, e2, . . . , e|E|} is communication set of the application, where
ei = (τs, τd, wi), (s ≠ d, τs, τd ∈ T) represents the communication
from task τs to task τd. wi is the communication volume of ei in the
unit of bit. |E| is the cardinality of set E, in other words, the total
number of communications of all the tasks. Communications also
represent data dependencies. A task can begin to execute if and
only if it has received all the data destined to it [10,17].

3.2. Platform model

3.2.1. Processor model
We assume homogeneous independent processors. The proces-

sors are DVFS enabled, and can operate on a set of voltage levels,
v = {v1, v2, . . . , vnV }, where nV is the total number of voltage lev-
els. Without loss of generality, we assume these voltage levels are
sorted in ascending order. Denote the execution speed (or the clock
frequency) and the power consumption of a processor operating at
voltage vj by f v

j and pv
j , respectively.

We assume that one processor can hold at most one task, due
to its limited resources, such as cache, memory, etc. [6]. When task
τi, (1 ≤ i ≤ N) is executed by a processor operating at voltage
vj, (1 ≤ j ≤ nV), its execution time is

tvi,j = ci/f v
j , (1)

and its energy consumption is

Ev
i,j = pv

j ci/f
v
j . (2)

Though exact relations between vj and f vj , pvj may exist, we do
not make such assumptions in our model. What we are interested
in are the discrete frequency points and the corresponding power
consumption values. Thus, various processor models can be ap-
plied; and other practical considerations can be easily incorporated
into our model, such as the static power consumption of proces-
sors; also, the voltage switching overhead, if not significantly in-
fluential, can be taken into account by regarding it as a fixed power
consumption value at the given frequency point.

4 D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11
3.2.2. NoC model
The dimension of theNoC architecture is nR×nC , where nR is the

number of rows, and nC is the number of columns. Each processor
is associated with a router. The total numbers of processors and
routers are both M = nRnC . A router has at most five ports,
each for communicating with the associated processor and its at
most four neighbor routers. The ports for communicating with
neighbor routers and its associated processor are equipped with
two directed links with two opposite directions, namely, one from
itself, and the other to itself. We call the links connecting routers
global links, and the links connecting a router and a processor are
called local links. We assume that all global links are identical with
the same bit width bw , and have only one virtual channel. Local
links have four virtual channels, and the associated processor can
send through the four virtual channels and/or receive from the four
virtual channels at the same time. Similar assumptions are made
in [17]. We neglect energy consumption on local links, and only
consider the energy consumption on global links. In the rest of the
paper, all links refer to global links, unless otherwise specified.

All the links can operate at a set of frequencies, f = {f1, f2,
. . . , fnF }, where nF is the total number of available frequencies.
Like the voltage levels for processors, the frequencies are also
in ascending order. The bandwidth of a global link operating at
frequency fk is Bf

k = bwfk. We refer to the timing model in [19],
and assume that the communication volumes are large enough
such that the serialization delay dominates the router delay. For
a communication that needs to traverse several links, the link
with the lowest frequency determines the serialization delay. Thus,
to avoid unnecessary energy waste, for each communication, the
operating frequencies of all its traversed links should be kept the
same as the lowest one among them. We denote this frequency
as the corresponding communication’s frequency. The time for
communication ei, if it is carried by links operating at fk, can be
calculated as follows:

t fi,k = wi/B
f
k = wi/(bwfk), (3)

where fk is the communication ei’s frequency.
We adopt the bit energy model presented in [27,19]. The bit

energy consumption of communication ei can be calculated as
follows: Ebiti = (di + 1)ERbit + diELbit(f). di is the Manhattan
distance of the communicating taskswhen they have beenmapped
to the processors, and thus, is equal to number of global links that
the bit passes. (di + 1) equals the number of routers that a bit
passes during the communication. ERbit is the energy consumption
of a bit on one router, and ELbit(f) is the energy consumption of
a bit on one link when all the links of ei operate at frequency f .
Denote the power consumption of a link at frequency fk by p

f
k. Then,

ELbit(fk) = pfk/(bwfk). Thus, when communication ei, (1 ≤ i ≤ |E|)
is routed by links operating at frequency level fk, (1 ≤ k ≤ nF), the
energy consumption of ei can be calculated as follows:

E
f
i,k = wi((di + 1)ERbit + dip

f
k/(bwfk)), (4)

where wi is the communication volume of ei. Again, though an
exact relation between fk and pfk may exist, we do notmake such an
assumption; thus, any power consumption model can be applied
here, and other practical considerations can be easily incorporated
into our model. Though our frequency tuning is communication-
by-communication and link-by-link, the frequency changing rate
is not as high as we may imagine. As a matter of fact, we schedule
communications that share the same link(s) serially; thus, a link’s
frequency is only changedwhen it sees a new communication. Link
frequency tuning at this level is quite common [23].
3.3. Additional assumptions

In this paper, we do not consider adjusting routers’ frequency,
because several communications traversing the same router(s)will
make the problemmore complex.We just assume that the router’s
frequency are fixed and can satisfy the clock frequencies of all links.
Adjusting routers’ frequency is left for future work. We assume
the winner-take-all bandwidth allocation on NoC links, which
allocates all of the bandwidth to one packet until it is finished,
before serving any other packet [17]. Thus, at any time, a link can
only serve one packet transmission; if two communications of the
application graph intend to use the same link(s) for routing at the
same time, they must be serialized due to contention. We assume
wormhole routing, for it reduces the requirement for buffer. XY
routing is used for simplicity.

3.4. Problem definition

We are given a mesh NoC-based MPSoC, where homogeneous
independent processors can operate at a set of voltage levels,
and NoC links can operate at a set of frequency levels. We are
also given an application represented by a DAG, which consists of
tasks with data dependencies and task-to-task communications.
Our goal is to derive a task-to-processor mapping, as well as a
scheduling such that the application’s deadline is met, all the
precedence constraints are satisfied, contentions of NoC link usage
are explicitly avoided, and the overall system energy consumption
is minimized.

Taking both mapping and scheduling into account at the same
time makes the problem too complex to solve. We employ a two-
step approach to attack the overall problem.We first deal with the
mapping problem, which aims at minimizing the communication
energy, assuming all links are operating at the highest frequency
level. We formulate the mapping problem as a QBP problem and
apply a relaxation-based iterative rounding algorithm to solve it.
With the mapping achieved, the second step tries to derive an
energy-efficient scheduling that takes into account the voltage and
frequency assignments for tasks and communications, as well as
deciding the execution order of all tasks and communications.

4. Energy-efficient application mapping

4.1. Problem analysis

For the application mapping problem, we aim to minimize the
total energy consumption for communications, i.e., links’ energy
consumption and routers’ energy consumption, assuming that all
links are operating at the highest frequency. The total energy
consumption for all communications can be calculated as follows:

E
f
total =

|E|
i=1

{widi(ERbit + ELbit(fnF)) + wiERbit}

= (ERbit + ELbit(fnF))
|E|
i=1

widi +
|E|
i=1

wiERbit . (5)

When the application is given, wis have known values;
ERbit , ELbit(fnF) are parameters related to the platform. Finding a
mapping that minimizes E

f
total is equivalent to finding a mapping

that minimizes
|E|

i=1 widi, i.e., the sum of weighted distances of all
communications.

We denote X as a mapping matrix. Xi,j = 1 means that task τi is
mapped to processor j, ∀i = 1, 2, . . . ,N, ∀j = 1, 2, . . . ,M; oth-
erwise, Xi,j = 0. We further denote that Xi = (Xi,1, Xi,2, . . . , Xi,M).

D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11 5
Denote L as the minimal/Manhattan distance matrix between pro-
cessors. Specifically, Li,j is theManhattan distance between proces-
sors i and j, ∀i, j = 1, 2, . . . ,M . Thismatrix can be easily calculated
by first conducting an index-to-coordinates conversion, and then
summing the absolute values of the differences of the x-axes and
y-axes of processors i and j. For example, the coordinates of pro-
cessor i in the mesh are (⌊(i− 1)/nR⌋, i− 1− ⌊(i− 1)/nR⌋nR); the
coordinates of processor j in the mesh are (⌊(j − 1)/nR⌋, j − 1 −

⌊(j − 1)/nR⌋nR). Li,j can be calculated as follows:

Li,j =

 i − 1
nR


−


j − 1
nR


+

i − j −


i − 1
nR


−


j − 1
nR


nR

 . (6)

We use the following lemma to calculate the distance between
two tasks given a mapping.

Lemma 1. Theminimal/Manhattan distance between τi and τj can be
calculated as XiLXT

j , ∀i, j = 1, 2, . . . ,N.

Proof. The distance between the ith and jth processors can be cal-
culated by ALB, where A = (a1, . . . , aM), ak = 0, ∀k ≠ i, ai = 1,
and B = (b1, . . . , bM)T , bk = 0, ∀k ≠ j, bj = 1. Assume that τi
is mapped to processor k; then, Xi,k = 1; also, assume that τj is
mapped to processor l; then, Xj,l = 1. All other values of Xi and Xj
are zeros. Then, the distance between tasks τi and τj is just the dis-
tance between the kth and the lth processors, and can be calculated
by XiLXT

j , ∀i, j = 1, 2, . . . ,N , where XT
j is the transpose of Xj.

Thus, the following M × M matrix represents the distances
between all task pairs given a mapping X:

L′
= XLXT , (7)

where

L′
i,j = XiLXT

j . (8)

Denote the tasks’ communications by an N × N matrix, CN×N .
If there is no direct communication from τi to τj, Ci,j = 0.
If there exists a direct communication from tasks τi to τj, Ci,j
equals the volume of this communication. Thus, the weighted
distance from τi to τj can be calculated as L′

i,jCi,j. To minimize
the total weighted distance of all communications is equivalent
to minimize

N
i=1

N
j=1 L

′
i,jCi,j. The application mapping problem

can be formulated as follows:

min
N
i=1

N
j=1

L′
i,jCi,j (9)

s.t.
M
j=1

Xi,j = 1, ∀i = 1, 2, . . . ,N; (10)

N
i=1

Xi,j ≤ 1, ∀j = 1, 2, . . . ,M; (11)

Xi,j = 0 or 1, ∀i = 1, 2, . . . ,N, ∀j = 1, 2 . . . ,M. (12)

The constraints in (10) mean that each task is assigned to a
processor. The constraints in (11) mean that a processor can be
assigned at most one task. By further transformation, we notice
that the problem formulated in (9)–(12) is a standard Integer
Quadratic Programming (IQP) problem, more precisely, a Binary
Quadratic Programming (BQP) problem, which is known to be NP-
hard [15].
Algorithm 1 RIRAM: Relaxation-based Iterative Rounding for
Application Mapping
Input: The task set T = {τ1, τ2, · · · , τN} and associated

communication matrix CN×N ;
Output: Binary matrix MapN×M indicating the final mapping;
1: Initialize the assignment matrix: Mapi,j = 0 (∀i =

1, 2, · · · ,N; j = 1, 2, · · · ,M);
2: Sort the task, such that Vi1 ≥ Vi2 ≥ · · · ≥ ViN .
3: for k := 1 to N do
4: Solve Prob k.
5: Xik,j∗k

= max{Xik,1, Xik,2, · · · , Xik,M}.
6: Xik,j∗k

= 1; Xik,j = 0, ∀j ≠ j∗k .
7: Mapik,j∗k = 1;

returnMap;

4.2. Algorithm

To solve the problem, we propose to use a relaxation-based
iterative rounding method [18]. The basic idea of this method is
as follows. We first relax the constraints in (12), such that Xi,j can
be any fraction between 0 and 1, i.e., the constraints in (12) are
replaced by

0 ≤ Xi,j ≤ 1, ∀i = 1, 2, . . . ,N, ∀j = 1, 2 . . . ,M. (13)

We denote the relaxed problem by Prob 1. Notice that Prob 1
is a convex quadratic programming problem that can be solved
efficiently by several methods, such as the Active Set method
and the Interior Point method. Intuitively, when mapping tasks to
processors, the task that has the greatest communication volume
(including both the communications sourced from it and destined
at it) has the highest priority, and should be considered first. Thus,
we sort the tasks in the non-increasing order of the following
value:

Vi =

N
k=1

Ci,k +

N
l=1

Cl,i. (14)

Denote the sorted tasks as (τi1 , τi2 , . . . , τiN), where (i1, i2, . . . , iN)
is a permutation of (1, 2, . . . ,N), and Vi1 ≥ Vi2 ≥ · · · ≥ ViN .

The next step is to assign τi1 based on the solution of Prob 1. We
also denote the optimal solution for Prob 1 as XN×M without any
confusion. We find the j∗1 such that Xi1,j∗1

is the greatest among all
Xi1,j values, ∀j = 1, 2, . . . ,M . Then, we map τi1 to processor j∗1 ,
which means that, we set Xi1,j∗1

= 1, and Xi1,j = 0, ∀j ≠ j∗1 . Then
we update Prob 1 as

min
N
i=1

N
j=1

L′
i,jCi,j (15)

s.t.
M
j=1

Xi,j = 1, ∀i = 1, . . . , i1 − 1, i1 + 1, . . . ,N; (16)

N
i=1

Xi,j ≤ 1, ∀j = 1, . . . ,M; (17)

0 ≤ Xi,j ≤ 1, ∀i = 1, . . . , i1 − 1, i1 + 1, . . . ,N,

j = 1, . . . ,M. (18)

which we denote by Prob 2, since the solution of it will
provide the information for mapping τi2 . Though Prob 2 and
Prob 1 look similar, they are actually quite different. In Prob 2,
Xi1,1, . . . , Xi1,M have fixed values, and the optimization variables
are just X1,1, . . . , X1,M ; X2,1, . . . , X2,M; . . . ; Xi1−1,1, . . . , Xi1−1,M ;
Xi1+1,1, . . . , Xi1+1,M; . . . ; XN,1, . . . , XN,M .

6 D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11
To map τi2 , the similar approach is applied. Namely, we first
solve Prob 2, and find the Xi2,j∗2

that is the greatest among all Xi2,j

values, ∀j = 1, 2, . . . ,M . Then, map τi2 to processor j∗2; in other
words, set Xi2,j∗2

= 1, and Xi2,j = 0, ∀j ≠ j∗2 .
After that, update Prob 2 as Prob 3, and map τi3 based on Xi3,j

(solved for Prob 3), ∀j = 1, 2, . . . ,M; . . . ; update Prob (k − 1)
as Prob k, and map τik based on Xik,j (solved for Prob k), ∀j =

1, 2, . . . ,M; We conduct the above iterative rounding and
mapping till we have mapped all of the tasks.

The overall algorithm is outlined in Algorithm 1, which involves
solving the convex optimization problems N times. In every
iteration, we consider mapping the task with the most traffic
volume with other tasks; after that we update our convex
programming problem and consider the next unassigned taskwith
the most traffic volume with other tasks, taking into account that
all previously considered tasks have been mapped to a processor.
Since solving the convex optimization problems are polynomial,
Algorithm 1 is still a polynomial time algorithm.

5. Energy-efficient contention-aware application scheduling

5.1. Problem analysis

With themapping achieved, the next step is to derive a schedul-
ing for the mapped application. A scheduling needs to consider
all of the following issues: set the voltage levels for all tasks; set
the link frequencies for all communications; satisfy the precedence
constraints of the application graph; decide the overall order and
start times and finish times of tasks and communications.

Since the application consists of two kinds of events: tasks and
communications, to enable the use of traditional DAG scheduling
algorithms,we first transform the application graph to an extended
one, in which each unified node represents an event that can be ei-
ther a task or a communication. The transformation is quite simple.
First construct an extra node for each edge/communication in the
original graph;we call this node a communication node; each com-
munication node has one and only one parent, which is the source
of the communication, and has one and only one child, which is the
destination of the communication. The nodes in the original graph
are kept unchanged, and they are called task nodes. The execution
time of each node is the task’s execution time or a communication’s
time. We denote the transformed graph by G∗

= (T ∗
+ E∗, E ′),

where T ∗ is the set of task nodes, E∗ is the set of communication
nodes, and E ′ is the set of edges in the transformed graph.

If the deadline of the application is infinite, all tasks and
communications can choose the lowest voltage and frequency
available. However, for a practical application with a deadline con-
straint, choosing the lowest voltage and frequencies will result in
the applicationmissing its deadline. Given a voltage and frequency
assignment for the application, the energy consumption of the ap-
plication can be calculated, which can be achieved by summing up
all the energy consumption of tasks and communications. Tomake
this energy consumption value practically achievable, we should
derive a valid scheduling that utilizes these voltage and frequency
settings, namely, a scheduling with a schedule length that is less
than or equal to the deadline of the application.

However, the DAG scheduling problem that tries to find the
minimum schedule length is generally NP-hard [24]. Involving the
voltage and frequency assignment will make the scheduling prob-
lem more complex. Thus, we adopt another two-step approach:
first, we design an algorithm based on the Earliest Time First (ETF)
scheduling to get the application’s finish time, given a voltage and
frequency assignment; next, we develop a genetic algorithm to
search the solution space to find a voltage and frequency assign-
ment that tries to minimize the overall system energy consump-
tion, and meets the application deadline.
Algorithm 2 ETFGBF
Input: G = (T , E) and a voltage and frequency assignment;
1: E = energy consumption of all tasks and communications;
2: Conduct graph transformation to get the extended graph G∗

=

(T ∗
+ E∗, E

′

); calculate the execution time and b-level of each
unified node in T ∗

+E∗; initialize the ready times of entry nodes
as zeros;

3: Unscheduled = |T ∗
| + |E∗

|;
4: while Unscheduled ≠ 0 do
5: ReadySet = nodes in G∗ with all parents scheduled;
6: Choose the node in ReadySet with the earliest ready time

to schedule; when encountering a tie, choose the one with the
greatest b-level to schedule; if encountering a tie again, choose
randomly;

7: For any node that is a child of the just scheduled node, label
this parent as scheduled; if all its parents have been scheduled,
label it as ready, and set the node’s ready time as themaximum
finish time of all its parents;

8: For any node that has potential contention with the just
scheduled node, add it as a child of the scheduled node, and
updated its ready time as the maximum among its previous
ready time and the scheduled node’s finish time; ◃ Lines 7 and
8 update G∗ after scheduling a node

9: Unscheduled = Unscheduled − 1;
10: L = maximal finish time of all the nodes;
11: return E and L;

5.2. Minimizing schedule length given a voltage and frequency
assignment

The Earliest Task First (ETF) scheduling is a classic heuristic
algorithm that tries to minimize a DAG’s schedule length [24]. A
task’s ready time can be calculated as the maximum finish time of
all its parents. The ETF heuristic always schedules the task with
the earliest ready time first, when the corresponding resources
become available. We also adopt the ETF strategy to schedule the
transformed DAG. As has been mentioned, in our problem, if two
communications (with the same ready time) need to use the same
link(s), they cannot occur at the same time. In other words, they
must be serialized; one has to be executed before the other. Thus,
the question arises: which communication should execute first in
order to minimize the schedule length?

Before describing our strategy, we borrow some concepts
from [24]. A node with no parent is called an entry node, and a
node with no child is called an exit node. The b-level of a node is
the longest time between the start time of itself and the finish time
of an exit node. The b-level of a node can be calculated recursively.
First, for an exit node, the b-level is just the node’s own execution
time. For any other node, if all of its children’s b-levels have been
calculated, its b-level is just the sum of the maximal b-level of its
children and its execution time.

When there might be a communication contention, our
scheduling policy is to schedule the communication node that has
the Greatest b-level First (GBF). Other unscheduled communica-
tion nodes that have potential contention with this event (i.e., use
some same link(s)) will be considered a child of this node. Notice
that, when XY-routing is chosen and a mapping is given, whether
two communications have potential contentions can be deter-
mined according to the coordinates of their source tasks and desti-
nation tasks. Algorithm2 gives the details of our overall scheduling
scheme.

Fig. 3 is an illustration example of the scheduling algorithm,
given a voltage and frequency assignment. Notice that, given a
voltage and frequency assignment, all the execution times of tasks
and communications can been calculated. All values in Fig. 3

D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11 7
(a) DAG. (b) Mapping. (c) The transformed DAG.

(d) Scheduling.

Fig. 3. An illustrative example. (a) The original DAG with task execution times and communication times calculated; each circle represents a task; the first number in the
circle is the execution time requirement, and the second number in the circle is the total amount of in and out traffic with other tasks. (b) A mapping derived by the iterative
rounding algorithm. (c) The transformed DAG, in which each node can represent either a task or a communication. (d) The scheduling derived by Algorithm 2.
are calculated assuming processors and NoC links operate at the
highest available values. At the beginning, τ1 and τ6 are ready at
the same time 0; τ1 has the greatest b-level; so, τ1 can be scheduled
first. After that, τ6 will become the onewith the earliest ready time
and be scheduled. Then, communications τ1 → τ2, τ1 → τ3,

τ1 → τ3, τ6 → τ4, and τ6 → τ8 become ready. Communications
τ1 → τ2 and τ1 → τ4 have contention because they both need
to use the link from processor P3 to processor P6. Since τ1 → τ2
has a greater b-level than τ1 → τ4, τ1 → τ2 will be scheduled
first; then, τ1 → τ4 will add τ1 → τ2 as a father, and τ1 → τ4’s
ready time will be updated as τ1 → τ2’s finish time. The overall
scheduling with a schedule length of 216 is shown in Fig. 3(d).

5.3. Genetic algorithm for voltage and frequency assignment

We have solved the problem of minimizing schedule length
given a mapping and a voltage and frequency assignment for
both tasks and communications. Next, we consider how to
determine the optimal feasible voltage and frequency assignment.
We develop a Genetic Algorithm (GA) to solve the problem. GAs
search for good solutions to a problem among a large number of
possible solutions, called a population. GAs begin with a set of
candidate solutions. A new population is created from solutions
of an old population in the hope of getting a better population.
Solutions which are chosen to form new solutions (the next
generation) are selected according to their fitness values. Themore
fitter the solutions are, the bigger chances they have to reproduce.
This process is repeated until the number of generations reaches a
predefined Limit or when the population converges.

In our problem, a solution can be represented by a vector with
length |T | + |E|, denoted by

s = (s1, s2, . . . , s|T |, s|T |+1, s|T |+2, . . . , s|T |+|E|),

where si ∈ v, (1 ≤ i ≤ |T |), is the voltage level for task
τi, and s|T |+i ∈ f , (1 ≤ i ≤ |E|) is the frequency level for
communication ei. For a solution s, we denote Es and Ls as the
energy consumption and schedule length derived by Algorithm 2,
respectively. We define the fitness value of a solution as follows:

fitnesss =


1
Es

if Ls ≤ Deadline;
1
Es

10
 Ls
Deadline

2 if Ls > Deadline.
(19)

Since our goal is to minimize the energy consumption, the so-
lution with less energy consumption will be fitter than the one
with greater energy consumption. However, if a solution’s sched-
ule length exceeds the deadline of the application, it is actually in-
feasible. Thus, its fitness value should be reduced significantly, but
not to zero. In practical systems, power consumption may be pro-
portional to the cube of operating frequency. This fact may result
in an approximate relation between Es and Ls: Es ∝ 1/L2s . When
Ls > Deadline, dividing 1/Es by (Ls/Deadline)2 can avoid the situa-
tion where a very large schedule length still makes the scheduling
have a great fitness value. The definition in Eq. (19) reflects these
considerations.

We adopt the roulette-wheel selection algorithm, in which the
possibility of a solution being selected as parents for the next
generation is proportional to the fitness value of the solution. We
apply the single point crossover for two parents to produce two
descendants. For example, for two solutions,

s1 = (s11, s
1
2, . . . , s

1
|T |+|E|

) and

s2 = (s21, s
2
2, . . . , s

2
|T |+|E|

),

we randomly generate the locus, l, for crossover. Then, the two
descendants will be

s1
′

= (s11, s
1
2, . . . , s

1
l , s

2
l+1, . . . , s

2
|T |+|E|

) and

s2
′

= (s21, s
2
2, . . . , s

2
l , s

1
l+1, . . . , s

1
|T |+|E|

).

For amutation process, we denote themutation probability of each
element of the solution by pm. For si, (1 ≤ i ≤ |T |), the probabil-
ity of it mutating to another voltage vk, (vk ≠ si) is pm/(nV − 1);

8 D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11
Algorithm 3GAVFA: Genetic Algorithm for Voltage and Frequency
Assignment
1: Randomly generate a population of solutions;
2: while the total number of generations is less than or equal to

Limit and the population does not converge do
3: for each solution s in the population do
4: (Es, Ls) =ETFGBF(T , E, s);
5: Calculate fitnesss according to Equation (19);
6: Find the two feasible solutions that have the greatest fitness

values as two solutions in the next generation;
7: Select the solutions as the parents for the next generation

according to the Roulette-wheel algorithm;
8: Conduct single point crossover to generate the next

generation;
9: Conduct mutation on each solution;

10: return the feasible solution with the greatest fitness value and
the corresponding scheduling;

for s|T |+i, (1 ≤ i ≤ |E|), the probability of it mutating to another
frequency fk, (fk ≠ si) is pm/(nF −1). For producing the next gener-
ation, we apply the elitist scheme [25], which keeps the two feasi-
ble solutions that have the greatest fitness values as two solutions
in the next generation. Since, in each generation, two best feasible
solutions are kept, the final solution quality and schedulability are
expected to be improved. The overall approaches and procedures
are described in Algorithm 3.

6. Simulations

In this section, we conduct extensive simulations to verify
our model and overall method. Since our overall method first
uses the iterative scheme to derive a mapping, and then assumes
variable voltages and variable frequencies, we denote it as it_vv_vf,
representing iterativemappingwith variable voltages and variable
f requencies. We compare our model/method with five other
models and/or methods.

Light-Weight Mapping with Variable Voltages and Variable Fre-
quencies (lw_vv_vf): this method applies a light-weight algorithm
to generate a task-to-processor mapping. Based on this mapping,
it also applies the genetic algorithm, Algorithm GAVFA combined
with Algorithm ETFGBF, to derive the final scheduling, including
the voltage and frequency assignment. We notice that Algorithm
RIRAM is quite time consuming to generate a mapping, due to it-
erative solving quadratic programming problems, especially when
the numbers of processors and tasks are large. Thus, we come up
with a light-weight algorithm that can derive amapping efficiently
without sacrificing too much performances. We briefly describe
this light-weight algorithmas follows. First,wedetermine themin-
imal target square in theNoC that can hold all the application tasks.
Then, given the original application DAG and the selected target
square, we assign all the entry nodes of the graph to the proces-
sors close to the top-left corner of the target square, and assign all
the exit nodes to the processors close to the bottom-right corner
of the target square. After this we do a breadth-first traversal from
the entry nodes, and a breadth-first traversal from the exit nodes
by turns to assign the rest nodes of the graph; when assigning each
node, we choose the best location for it such that it has the mini-
mumweighted communication distances with nodes that have al-
ready been assigned. The algorithm terminates when we finished
assigning all nodes to processors.

RandomMapping with Variable Voltages and Variable Frequencies
(rd_vv_vf): this method randomly generates a valid task-to-
processor mapping; then, it also applies the genetic algorithm,
Algorithm GAVFA combined with Algorithm ETFGBF, to derive the
final scheduling, including the voltage and frequency assignment.
Table 1
Processor configurations.

Voltage, vj (V) 0.75 1.0 1.3 1.6 1.8
Frequency, f v

j (MHz) 150 400 600 800 1000
Power, pv

j (mW) 80 170 400 900 1600

Table 2
NoC link configurations.

Frequency, fj (MHz) 200 400 600 800 1000
Bandwidth, Bf

j (Gbps) 6.4 12.8 19.2 25.6 32
Power consumption, pfj (mW) 160 180 520 880 1600

Iterative Mapping with Variable Voltages and Fixed Frequencies
(it_vv_ff): this method also applies the iterative scheme to derive
a mapping; then it assumes that the links’ frequencies are fixed at
the highest value and cannot be changed. However, the processors’
operating voltages are variable. The genetic algorithm is also used.
In this method, it only needs to determine the voltage levels for
tasks or the corresponding processors.

Iterative Mapping with Fixed Voltages and Variable Frequencies
(it_fv_vf): this method is similar to it_vv_ff ; the difference is that
it assumes that the processors’ voltages are fixed, and that links’
frequencies are variable.

Iterative Mapping with Fixed Voltages and Fixed Frequencies
(it_fv_ff): this method is similar to both it_vv_ff and it_fv_vf ; the
difference is that it assumes that the processors’ voltages and links’
frequencies are all fixed. Thus, the genetic algorithm is not needed.
Algorithm ETFGBF is applied directly to derive a scheduling.

6.1. Simulation settings

We apply our methods to several randomly generated graphs,
as well as graphs from a real application. The tasks’ execution re-
quirements and communication volumes are generated such that
the time for computation and the time for communication are com-
parable; in other words, neither dominates the other, and neither
of them can be omitted. In this situation, the application slack can
be utilized by either computations or communications in order
to save the overall system energy consumption. For the proces-
sors, we adopt the Intel XScale processor’s power configurations
as shown in Table 1 [13,16]. The configuration for NoC links are
provided in Table 2. NoC links’ bit width is bw = 32. These settings
reflect practical configurations [23]. Application tasks’ execution
requirements are randomly generated within [10, 100] × 106, in
the unit of processor’s clock cycles. Communication volumes are
randomly generatedwithin [80, 800]×106, in the unit of bits. ERbit
is set as 0.01 nJ, such that the power consumption on links is com-
parable to that of on routers. The deadline of an application is set
as twice that of the it_fv_ff such that we have a reasonable slack
for energy reduction.

6.2. Simulations with randomly generated graphs

We randomly generate several application graphs, and run our
algorithms on these graphs. The application characteristics and
experimental results are provided in Table 3. The first column
is the application number. The first, second, third, and fourth
columns under the ‘‘application characteristics’’ are the number
of tasks in the application, the number of communications in the
application, the application tasks’ total execution requirement,
and the application’s total communication volume, respectively.
Due to space limit, we do not draw the application graphs. The
‘‘experimental results’’ include six fields, namely, TE0, TE1, TE2,
TE3, TE4, and TE5, representing the total energy consumption

D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11 9
Table 3
Simulation applications and results.

No. NoC dim Application characteristics Simulation results
|T | |E| cp/106 cm/106 TE0 TE1 TE2 TE3 TE4 TE5

1 3 × 3 7 5 350 2064 269.94 273.53 288.56 317.40 627.08 704.48
2 3 × 3 7 9 324 4584 348.21 393.46 431.80 512.68 682.23 878.88
3 3 × 3 8 7 365 2760 327.22 324.83 358.43 396.46 684.50 806.00
4 3 × 3 8 13 402 7176 527.51 627.56 670.88 817.81 922.05 1267.20
5 4 × 4 12 11 582 6900 576.64 696.71 739.14 866.85 1197.40 1524.40
6 4 × 4 12 15 675 8208 724.65 786.90 912.12 1069.70 1416.70 1838.20
7 4 × 4 13 12 689 6432 710.56 700.03 821.10 887.24 1356.90 1671.40
8 4 × 4 14 18 747 9852 902.32 931.77 1170.37 1279.96 1608.84 2127.48
9 6 × 6 28 33 1385 14650 1854.86 1789.63 2524.86 2688.94 3102.40 4192.50
Fig. 4. ATR graph.

of it_vv_vf, lw_vv_vf, rd_vv_vf, it_vv_ff, it_fv_vf, and it_fv_ff,
respectively. All energy consumption values are in the unit of nJ.

As we can see, the proposed it_vv_vf model and algorithms
achieve a much less energy consumption than all others, except
the lw_vv_ff algorithm. Taking the No. 3 application as an example,
the energy reductions of it_vv_vf compared to rd_vv_vf, it_vv_ff,
it_fv_vf and it_fv_ff are 8.7%, 17.5%, 52.2%, and 59.4%, respectively.
Since processors consume most of the power, up to 90% in
our experiments for different models, fixing the voltage levels
of processors significantly limits the platform’s ability to utilize
application’s slack to reduce energy consumption; thus, the energy
consumptions of it_fv_vf and it_fv_ff are much higher than others.
Allowing the processors to operate on multiple voltage levels,
the energy consumption on processors is significantly reduced;
this also results in a significant reduction in the total system
energy consumption. By allowing NoC links to operate on variable
frequencies, the platform can better utilize the application’s slack
to reduce total energy consumption; as a result, the total energy
consumption of it_vv_vf is always less than that of it_vv_ff.
Comparing it_vv_vf and lw_vv_vf with rd_vv_vf, we can see
that the relaxation-based iterative rounding algorithm and the
light-weight algorithm help to derive a better task-to-processor
mapping.

The proposed light-weight method (lw_vv_vf) reduces the
simulation time significantly. At the same time, it also achieves
comparable energy consumption values as those of the it_vv_vf
method. For most of the application graphs, lw_vv_vf achieves
greater energy consumption values than it_vv_vf. For applications
3, 7, and 9, the energy consumption achieved by lw_vv_vf is even
slightly less than that of it_vv_vf. We can see that, though lw_vv_vf
is much efficient than it_vv_vf, it is not a very stable method. For
example, it results in 21.0% more energy consumption compared
to it_vv_vf in application 5.

6.3. Simulations with real application graphs

We also conduct simulations on real-world application graphs
obtained from the Automatic Target Recognition (ATR) application,
which does pattern matching of targets in images [26]. ATR graphs
are different for different numbers of target detections in an image.
We choose the one corresponding to 3 target detections; the graph
is shown in Fig. 4. The application ismapped to a 4-by-4NoC-based
MPSoC. We conduct experiments on two cases of the application
graph.

In the first case, the total task execution requirement of the
application is 700 × 106, and the total communication volume is
Fig. 5. Results of the ATR application (Case 1).

3390×106. Fig. 5 shows related energy consumption values of this
case. ‘‘energy_total’’ represents the overall energy consumption of
processors, NoC links and routers; ‘‘energy_comp’’ represents the
energy consumption for computation, i.e., the energy consumption
on processors; ‘‘energy_comm’’ represents the energy consump-
tion for communication, i.e., the energy consumption on NoC links
and routers. All energy consumption values are in the unit of nJ. As
we can see, our proposedmodel and developed algorithm, it_vv_vf,
achieves the lowest overall energy consumption. In it_fv_ff, all pro-
cessors can only operate at the highest voltage level, and all links
can only operate at the highest frequency level; thus, it_fv_ff can-
not utilize the application slack for energy reduction, and its en-
ergy consumption is much greater than that of others. When the
links’ frequencies are fixed, only voltage scaling can utilize the
slack for energy reduction; compared to it_vv_vf, the processors’
energy consumption of it_vv_ff is even less, since voltage scaling
can utilize all the slack for energy reduction on processors; how-
ever, the overall energy consumption of it_vv_ff is still greater than
that of it_vv_vf, because it_vv_ff prevents the use of frequency tun-
ing to better utilize the application slack. Compared with it_vv_vf,
link frequency tuning of it_fv_vf can utilize all the slack for energy
reduction on links; thus, the energy consumption for communica-
tion is less than that of it_vv_vf ; however, the overall energy con-
sumption of it_fv_vf is still greater than that of it_vv_vf, because
it_fv_vf prevents the use of voltage scaling on processors to better
utilize the application slack. In sum, the proposed model, it_vv_vf,
which allows both processors and NoC links to utilize the applica-
tion slack in a coordinated and complementary way, can achieve
the greatest overall energy reduction.

In the second case, we double the volume of each commu-
nication in the first case, while any other aspects are kept un-
changed. Fig. 6 shows related energy consumption values of this
case.We can see that, the energy consumption for communications
of rd_vv_vf, and it_vv_ff even exceeds the energy consumption for

10 D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11
Fig. 6. Results of the ATR application (Case 2).

computation. In this situation, allowing links to adjust their fre-
quency can save more energy. For example, in Fig. 5 the energy
saving of it_vv_vf over it_vv_ff is 19.6%; in Fig. 6 the energy saving
of it_vv_vf over it_vv_ff increases to 26.5%.

In both of the two cases, compared to it_vv_ff, the light-weight
lw_vv_ff method reduces the simulation time significantly, and
results in similarly low total energy consumption values.

7. Conclusion and future work

In this paper, we address the energy-efficient contention-
aware applicationmapping and scheduling problem on NoC-based
MPSoCs.Wepresent amodelwhere processors’ voltage scaling and
NoC links’ frequency tuning can be combined together to reduce
the overall system energy consumption. A two-step approach
is adopted. First, the application mapping problem, which aims
to find the mapping that minimizes the communication energy,
is formulated as a quadratic integer programming problem,
and solved by a relaxation-based iterative rounding scheme;
we also provide a light-weight algorithm as an alternative,
which reduces the overall algorithm complexity significantly and
achieves comparable energy saving levels. The secondproblem, the
application scheduling problem, is solved by a developed genetic
algorithm, combined with a scheduling algorithm based on the
ETF strategy. Finally, a mapping and scheduling for the application
is derived, which significantly reduces the overall system energy
consumption, verifying that jointly utilizing dynamic voltage
scaling on processors and frequency tuning on NoC links provides
great potential for overall energy reduction in MPSoCs.

Our work in this paper is for offline/static settings, where we
know the application characteristics before-hand, and can batch
consider them together. Practical systems may involve on-line
application settings with or without our required characteristics.
If the incoming application have known characteristics as in our
model, i.e., the computation requirement and communication
requirement, we can still formulate the incremental scheduling
problem in a similar way as in our current problem formulation.
The incremental scheduling will be much simpler and easier
to solve. But, we may arrive at good local solution, but may
deteriorate the overall system performance in a long run.
Discussions on the general online versions of the problem is
beyond the scope of this paper, and are left for future work.

References

[1] C.S. Behere, S. Gugulothu, Power reduction in network on chip links, in: Green
Computing Communication and Electrical Engineering, ICGCCEE, International
Conference on, March 2014, pp. 1–4.
[2] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, Computer
35 (1) (2002) 70–78.

[3] S. Chai, Y. Li, J. Wang, C. Wu, An energy-efficient scheduling algorithm for
computation-intensive tasks on NoC-based MPSoCs, J. Comput. Inf. Syst. 9 (5)
(2013).

[4] J.-J. Chen, C.-F. Kuo, Energy-efficient scheduling for real-time systems on dy-
namic voltage scaling (DVS) platforms, in: Proc. 13th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications,
2007, pp. 28–38.

[5] C.-L. Chou, R. Marculescu, Incremental run-time application mapping for
homogeneous NoCs with multiple voltage levels, in: Proc. 5th IEEE/ACM/IFIP
International Conference onHardware/Software Codesign and SystemSynthe-
sis, 2007, pp. 161–166.

[6] C.-L. Chou, R. Marculescu, Contention-aware application mapping for
network-on-chip communication architectures, in: Proc. IEEE International
Conference on Computer Design, 2008, pp. 164–169.

[7] C.-L. Chou, R. Marculescu, User-aware dynamic task allocation in
Networks-on-Chip, in: Proc. Design, Automation and Test in Europe, 2008,
pp. 1232–1237.

[8] W.J. Dally, B. Towles, Route packets, not wires: On-chip inteconnection
networks, in: Proc. 38th Annual Design Automation Conference, 2001,
pp. 684–689.

[9] M. Gaur, V. Laxmi, M. Zwolinski, M. Kumar, N. Gupta, Ashish, Network-on-
chip: Current issues and challenges, in: VLSI Design and Test, VDAT, 19th
International Symposium on, 2015, pp. 1–3.

[10] P. Ghosh, A. Sen, A. Hall, Energy efficient application mapping to NoC
processing elements operating at multiple voltage levels, in: Proc. 3rd
ACM/IEEE International Symposium on Networks-on-Chip, 2009, pp. 80–85.

[11] P. Ghosh, A. Sen, A. Hall, Energy efficient application mapping to NoC
processing elements operating at multiple voltage levels, in: Proc. 3rd
ACM/IEEE International Symposium on Networks-on-Chip, 2009, pp. 80–85.

[12] J. Huang, C. Buckl, A. Raabe, A. Knoll, Energy-aware task allocation for
network-on-chip based heterogeneous multiprocessor systems, in: Proc. 19th
Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, 2011, pp. 447–454.

[13] Intel XScale microarchitecture. http://developer.intel.com/design/intelxsc-
ale/benchmarks.htm.

[14] Y.-H. Kao, H. Chao, Design of a bufferless photonic Clos network-on-chip
architecture, IEEE Trans. Comput. 63 (3) (2014) 764–776.

[15] K. Katayama, H. Narihisa, Performance of simulated annealing-based heuristic
for the unconstrained binary quadratic programming problem, European J.
Oper. Res. 134 (1) (2001) 103–119.

[16] W.Y. Lee, Energy-saving DVFS scheduling of multiple periodic real-time tasks
on multi-core processors, in: Proc. 13th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, 2009, pp. 216–223.

[17] T. Lei, S. Kumar, A two-step genetic algorithm for mapping task graphs to
a network on chip architecture, in: Proc. Euromicro Symposium on Digital
System Design, 2003, pp. 180–187.

[18] D. Li, J. Wu, Energy-aware scheduling for frame-based tasks on heterogeneous
multiprocessor platforms, in: Proc. 41st International Conference on Parallel
Processing, 2012, pp. 430–439.

[19] C. Marcon, N. Calazans, F. Moraes, A. Susin, I. Reis, F. Hessel, Exploring
NoC mapping strategies: An energy and timing aware technique, in: Proc.
Conference on Design, Automation and Test in Europe, 2005, pp. 502–507.

[20] A.K. Mishra, O. Mutlu, C.R. Das, A heterogeneous multiple network-on-chip
design: An application-aware approach, in: Proceedings of the 50th Annual
Design Automation Conference, 2013, pp. 36:1–36:10.

[21] S. Mukherjee, P. Bannon, S. Lang, A. Spink, D. Webb, The Alpha 21364 network
architecture, IEEE Micro 22 (1) (2002) 26–35.

[22] P.K. Sahu, S. Chattopadhyay, A survey on application mapping strategies for
network-on-chip design, J. Syst. Archit. 59 (1) (2013).

[23] L. Shang, L.S. Peh, N.K. Jha, Dynamic voltage scaling with links for power
optimization of interconnection networks, in: Proc. Ninth International
Symposium on High-Performance Computer Architecture, 2003, pp. 91–102.

[24] M. Shang, S. Sun, Q. Wang, An efficient parallel scheduling algorithm of
dependent task graphs, in: Proc. of the Fourth International Conference on
Parallel and Distributed Computing, Applications and Technologies, 2003,
pp. 595–598.

[25] D. Thierens, Selection schemes, elitist recombination, and selection intensity,
in: Proc. 7th International Conference on Genetic Algorithms, Morgan
Kaufmann, 1998, pp. 152–159.

[26] R. Xu, R. Melhem, D. Mosse, Energy-aware scheduling for streaming
applications on chip multiprocessors, in: 28th IEEE International Real-Time
Systems Symposium, December 2007, pp. 25–38.

[27] T.T. Ye, L. Benini, G. De Micheli, Analysis of power consumption on switch
fabrics in network routers, in: Proc. 39thDesignAutomation Conference, 2002,
pp. 524–529.

[28] J. Zhan, J. Ouyang, F. Ge, J. Zhao, Y. Xie, DimNoC: A dim silicon approach
towards power-efficient on-chip network, in: Design Automation Conference,
DAC, 52nd ACM/EDAC/IEEE, 2015, pp. 1–6.

[29] J. Zhan, N. Stoimenov, J. Ouyang, L. Thiele, V. Narayanan, Y. Xie, Design-
ing energy-efficient NoC for real-time embedded systems through slack
optimization, in: Proc. 50th Annual Design Automation Conference, 2013,
pp. 37:1–37:6.

http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref2
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref3
http://developer.intel.com/design/intelxsc-ale/benchmarks.htm
http://developer.intel.com/design/intelxsc-ale/benchmarks.htm
http://developer.intel.com/design/intelxsc-ale/benchmarks.htm
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref14
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref15
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref21
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref22
http://refhub.elsevier.com/S0743-7315(16)30012-0/sbref25

D. Li, J. Wu / J. Parallel Distrib. Comput. 96 (2016) 1–11 11
[30] W. Zhang, L. Hou, J. Wang, S. Geng, W. Wu, Comparison research between
xy and odd–even routing algorithm of a 2-dimension 3x3 mesh topology
network-on-chip, in: Proc. WRI Global Congress on Intelligent Systems—
Vol. 03, 2009, pp. 329–333.

[31] W. Zhou, Y. Zhang, Z. Mao, An application specific NoC mapping for optimized
delay, in: Proc. International Conference on Design and Test of Integrated
Systems in Nanoscale Technology, 2006, pp. 184–188.

Dawei Li is a Ph.D. candidate in the Department of
Computer and Information Sciences at Temple University
since September 2011. He earned the Bachelor’s degree
from the Advanced Class, Department of Electronics and
Information Engineering, Huazhong University of Science
and Technology, Wuhan, Hubei, People’s Republic of
China. His research interest includes energy-aware task
scheduling on multi-cores/multiprocessors, network-on-
chip and data center networks.
Jie Wu is the chair and a Laura H. Carnell professor in
the Department of Computer and Information Sciences at
Temple University. He is also an Intellectual Ventures en-
dowed visiting chair professor at the National Laboratory
for Information Science and Technology, Tsinghua Uni-
versity. Prior to joining Temple University, he was a pro-
gram director at the National Science Foundation and was
a distinguished professor at Florida Atlantic University.
His current research interests include mobile computing
andwireless networks, routing protocols, cloud and green
computing, network trust and security, and social network

applications. Dr. Wu regularly publishes in scholarly journals, conference proceed-
ings, and books. He serves on several editorial boards, including IEEE Transactions
on Service Computing and the Journal of Parallel and Distributed Computing. Dr.
Wu was general co-chair/chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS
2013, and ACMMobiHoc 2014, as well as program co-chair for IEEE INFOCOM 2011
and CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee on Distributed
Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the IEEE.
He is the recipient of the 2011China Computer Federation (CCF) OverseasOutstand-
ing Achievement Award.

	Energy-efficient contention-aware application mapping and scheduling on NoC-based MPSoCs
	Introduction
	Motivational example

	Related works and our contributions
	System model and problem definition
	Application model
	Platform model
	Processor model
	NoC model

	Additional assumptions
	Problem definition

	Energy-efficient application mapping
	Problem analysis
	Algorithm

	Energy-efficient contention-aware application scheduling
	Problem analysis
	Minimizing schedule length given a voltage and frequency assignment
	Genetic algorithm for voltage and frequency assignment

	Simulations
	Simulation settings
	Simulations with randomly generated graphs
	Simulations with real application graphs

	Conclusion and future work
	References

