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Abstract

An important open problem in wormhole routing has been to find a necessary and sufficient
condition for deadlock-free adaptive routing. Recently, Duato has solved this problem for a re-
stricted class of adaptive routing algorithms. In this paper, a necessary and sufficient condition is
proposed that can be used for any adaptive or nonadaptive routing algorithm for wormhole routing,
as long as only local information is required for routing. The underlying proof technique introduces
a new type of dependency graph, the channel waiting graph, which omits most channel dependen-
cies that cannot be used to create a deadlock configuration. The necessary and sufficient condition
can be applied in a straightforward manner to most routing algorithms. This is illustrated by proving
deadlock freedom for a partially adaptive nonminimal mesh routing algorithm that does not require
virtual channels and a fully adaptive minimal hypercube routing algorithm with two virtual chan-
nels per physical channel. Both routing algorithms are more adaptive than any previously proposed
routing algorithm with similar virtual channel requirements.

Keywords: wormhole routing, routing algorithms, deadlock freedom, channel waiting graph, nec-
essary and sufficient condition, mesh architectures, hypercube architectures.



1 Introduction

Wormhole routing [9] has become the switching technique of choice in modern distributed-memory
multiprocessors such as the Intel Paragon, the Cray T3D, the MIT J-machine, the Caltech MO-
SAIC, and the nCUBE-2/3. Implementations of wormhole routing typically divide each message
into packets, which are then divided into flits. The header flit of a packet contains the routing infor-
mation and the data flits of the packet follow the header flit through the network. Since the network
treats each packet as a separate message, we use the terms message and packet interchangeably.
When the header arrives at an intermediate router, the router immediately forwards the message
header to a neighboring router if an output channel the message can use is available. The data flits
then follow the header flit in a pipelined fashion. If the header is unable to proceed because no ap-
propriate output channel is free, the router buffers only a few flits, rather than the entire message.
Since the data flits contain no routing information, messages cannot share channels. Hence, each
channel in the path is reserved from the time the header flit acquires the channel until the last flit of
the message has traversed the channel. Since the flits of a message are forwarded as soon as pos-
sible, the message latency is largely insensitive to the distance between the source and destination.
On the other hand, packet switching buffers the entire message at every intermediate node before
forwarding any part of the message. Hence, wormhole routing has lower message latency when
there is little or no channel contention. In addition, wormhole routing requires only enough storage
at a router to buffer a few flits, rather than the entire packet. These two properties account for the
popularity of wormhole routing in distributed-memory multiprocessors. See Ni and McKinley [26]
for an in-depth discussion of wormhole routing.

The primary drawback to wormhole routing is the contention that can occur even with moder-
ate traffic, which leads to higher message latency. Whenever a message is unable to proceed due
to contention, the header and data flits are not removed from the network. Instead, the message
holds all the channels it currently occupies. Since all the channels in the path from the source to
the destination are held from the time they are acquired until the entire message has traversed the
channel (which is after the entire path has been established except for relatively short messages that
fit in the intermediate channel buffers), performance degradation due to contention can be severe
and message latency can be unacceptably high. A message that requires several channels can block
many messages while being transmitted. These blocked messages can in turn block other messages,
which further increases the message latency. Providing additional physical channels between nodes
in the network can reduce both latency and contention. This is an expensive solution, however, and
can actually increase message latency if the routers are pin-out constrained. A more cost-effective
method of reducing message latency, proposed by Dally [7], is to allow multiple virtual channels to
share the same physical channel. Each virtual channel has a separate buffer, with multiple messages
multiplexed over the same physical channel. Both latency and contention can be further reduced by
using the multiple paths that exist in the network between the source and destination nodes. Dally
and Seitz [9] have shown, however, that since a message holds channels until the entire message has
been transmitted, a routing algorithm with no restrictions on the use of virtual or physical channels
can result in deadlock.

The simplest routing algorithms are nonadaptive and define a single path between the source
and destination. Adaptive routing algorithms, on the other hand, support multiple paths between
the source and destination. A routing algorithm is either minimal or nonminimal. Minimal routing
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algorithms allow only shortest paths to be chosen, while nonminimal routing algorithms do not re-
quire messages to use only shortest paths. Minimal routing algorithms provide higher throughput
for high message traffic and are generally simpler to implement. Nonminimal routing algorithms
are useful for fault tolerance. Gaughan and Yalamanchili [15] present a good overview of adaptive
routing protocols.

Whether minimal or nonminimal, adaptive routing algorithms can be further differentiated by
the fraction of shortest paths they allow. Partially adaptive routing algorithms do not allow all mes-
sages to use any shortest path. Fully adaptive routing algorithms do allow all messages to use any
shortest path. Although all fully adaptive routing algorithms allow a message to use any physical
channel that is part of a shortest path, different restrictions may be placed on the choice of virtual
channels on that physical channel. Hence, not all fully adaptive routing algorithms are equivalent.
Some fully adaptive routing algorithms allow more adaptiveness than others by placing fewer re-
strictions on the choice of virtual channels.

Since each virtual channel needs a separate buffer and the virtual channels are multiplexed over
the physical channel, the number of virtual channels required by an adaptive routing algorithm gives
a good approximation of the hardware cost of the router. Routing algorithms that require more vir-
tual channels need additional router control logic and are usually more complex. Multiplexing and
scheduling virtual channels on a physical channel is more complicated with additional virtual chan-
nels. Router latency and cycle time also increase with the number of virtual channels [3], so fewer
virtual channels are generally better. Reducing the number of virtual channels needed for a given
degree of adaptiveness is accomplished by using a less restrictive routing algorithm [28]. Con-
versely, when the same number of virtual channels is used, a less restrictive routing algorithm has
better performance than a more restrictive routing algorithm [18, 25].

Recent research on adaptive routing algorithms has partially addressed both of these issues by
reducing the virtual channel requirements and imposing fewer restrictions on the virtual channels.
A natural question arises: Exactly how restrictive must a routing algorithm be to guarantee deadlock
freedom? In other words, what is a necessary and sufficient condition for deadlock-free routing? In
this paper, we present a theoretical result for minimizing the restrictions imposed for deadlock-free
wormhole routing. Besides providing a necessary and sufficient condition for deadlock freedom,
the routing algorithms developed using this proof technique are substantially less restrictive than
previous routing algorithms. The only restriction we impose on the routing algorithms is that only
local information available at the router is used to make the routing decision. In general, routing is
done based solely on local information, because of the overhead of accumulating non-local infor-
mation and the additional router complexity that is required to utilize this information.

2 Previous Work

Designing deadlock-free routing algorithms for wormhole routing was simplified by Dally and Seitz
with a proof that an acyclic channel dependency graph guarantees deadlock freedom [9]. Each ver-
tex of the channel dependency graph is a virtual channel. There is a directed edge from one virtual
channel to another if a message is permitted to use the second virtual channel immediately after the
first. Since the graph is acyclic, deadlock freedom can be shown by assigning a numbering to the
edges of the graph, ensuring that all channels are used in strictly increasing or strictly decreasing
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order.
Dally and Seitz proposed their proof technique for nonadaptive routing algorithms. Nonadap-

tive routing algorithms can be characterized by functions of the form ���������	�
��� � , where
the input channel, belonging to the set of channels � , and the current and destination node, be-
longing to the set of nodes � , define an output channel on which to route the message. An acyclic
channel dependency graph has also been used as a basis for developing adaptive routing algorithms
defined by relations of the form �����
���	����� ��� , where a set of output channels, rather than
a single channel, is defined on which to route the message [2, 4, 6, 10, 16, 17, 18, 21, 24, 30]. Since
a set of output channels is provided, a selection function is then used to select which of these output
channels a message uses.

Glass and Ni [18] and Boura and Das [2] have proposed methodologies for generating deadlock-
free algorithms, but both proof techniques require an acyclic channel dependency graph. Glass and
Ni propose a method of analyzing routing algorithms based on the permitted and prohibited depen-
dencies from one channel to another. These dependencies are characterized as turns, with the set of
possible turns defined by the topology. For example, meshes have ����� turns (when switching from
a channel in one dimension to a channel in a different dimension), ��� turns (when switching from
one channel to another channel in the same direction), and ������� turns (when switching from one
channel to a channel in the opposite direction of the same dimension). The turn model groups the
turns into cycles and breaks all cycles by prohibiting some turns. This is equivalent to removing
edges from the channel dependency graph. It is then necessary to show that cycles cannot be cre-
ated from the remaining turns, based on the assumption that an acyclic channel dependency graph
is required for deadlock freedom. Boura and Das propose a method of proving deadlock freedom
by partitioning the channels into two sets and requiring messages to route completely in the first set
before using channels in the second set.

Duato [11, 13] proved that requiring an acyclic channel dependency graph is too restrictive for
routing algorithms defined by relations of the form ����������� � � , where the current node and
the destination node, independent of the input channel, define the set of output channels on which to
route the message. Cycles are permitted in the channel dependency graph if some subset of channels
defines a connected routing subfunction with an acyclic extended channel dependency graph. An
extended channel dependency graph contains both the direct and the indirect dependencies. Each
edge in the channel dependency subgraph defines a direct dependency. An indirect dependency is a
dependency between two channels in the subgraph that exists only because of the intermediate use
of one or more channels not in the subgraph. Berman, et al. [1] propose a torus routing algorithm
with a routing relation of the form ���!�"�#�$�#��� ��� that allows cyclic dependencies among
the channels.

Dally and Aoki [8] prove deadlock freedom for a routing algorithm with cyclic dependencies by
guaranteeing an acyclic packet wait-for graph. A packet wait-for graph is defined dynamically by
the packets in the network and contains an edge from packet %'& to packet %!( if packet %�& is waiting
for a channel held by packet %)( .

All these proof techniques provide only a sufficient condition for deadlock-free adaptive rout-
ing. Although Dally and Seitz proved that an acyclic channel dependency graph is a necessary and
sufficient condition for nonadaptive routing algorithms [9], determining what constitutes a neces-
sary and sufficient condition for adaptive routing algorithms has remained an open problem.

Lin, McKinley, and Ni [23] propose a proof technique based on the observation that a rout-

3



ing algorithm is deadlock-free if none of the channels in the network can be held forever. If every
message that uses a given channel is guaranteed to reach its destination, no matter which path (of
those allowed by the routing algorithm) the message takes, then a deadlock configuration cannot
arise from the use of this channel. Since sink channels cannot be part of a deadlock configuration,
the proof starts with the sink channels and works backward through the network. If it is possible to
show that no channel can be held forever by a message, regardless of the destination and path taken,
then the routing algorithm is deadlock-free. This proof technique was proposed as a necessary and
sufficient condition, although Duato points out that only sufficiency is proved [14].

Duato [14] has recently proposed a necessary and sufficient condition for proving deadlock free-
dom for a restricted class of adaptive routing algorithms. This proof technique applies only to rout-
ing relations of the form ��� � � � � � � . The proof requires the identification of a subset of
channels, � � � � , which has an acyclic extended channel dependency graph. Unlike the sufficient
condition, the set of channels in � � can differ for different source-destination pairs. Hence, Duato
introduces the notion of cross dependencies. A cross dependency is a dependency from � &��#� � to
� (�� � � , where � & and � ( are both in � � , but for different source-destination pairs. As with regular
dependencies, there are direct cross dependencies and indirect cross dependencies. A routing algo-
rithm is deadlock-free if and only if some connected � � exists with no cycles arising from direct,
indirect, direct cross, and indirect cross dependencies.

The technique proposed in this paper applies to routing relations of the form ����� � � � ���
� � , while Duato’s proof technique is more restrictive and applies only to routing relations of the
form � � � � � � � � . The latter routing relations can always be converted to routing relations
of the former type by providing the same set of output channels for every input channel that the
message could have used to reach that node (including input from the source when the source is the
current node). In general, however, routing relations of the form ��� � � � � � � � � cannot
be converted to routing relations of the form ��� � � � � � � , since the set of output channels
can differ for the same destination when the message arrives on different input channels. In addi-
tion to requiring the routing relation to be of the form � �!� �#� � � � , Duato also imposes two
further restrictions on the routing algorithms for which the proof technique is a necessary and suf-
ficient condition, neither of which is imposed by our proof technique. First, the routing algorithm
must provide a minimal path between every pair of nodes, even for nonminimal routing algorithms.
Second, the routing algorithm must be coherent. A routing algorithm is coherent if it permits every
partial path from any source to any destination to be used by the same source to reach an intermedi-
ate node on the path or by an intermediate node on the path to reach the same destination. In other
words, a coherent routing algorithm that allows a message from processor � & to ��( to route through
processor ��� , must allow a message to use the partial path between � & and ��( when routing from
processor � & to processor ��� or from processor �	� to processor ��( . Although requiring coherence
may appear to be a modest restriction, in Section 9 we propose two simple routing algorithms that
are not coherent.

3 Assumptions and Definitions

Several assumptions and definitions are introduced to facilitate the presentation of the necessary
and sufficient condition. These are standard assumptions made when proving deadlock freedom
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for wormhole routing algorithms and have also appeared in [9, 13].

1. A node can generate messages of arbitrary length destined for any other node at any rate.

2. A message arriving at its destination is eventually consumed.

3. Since wormhole routing is used, once a channel queue accepts the header flit of a message,
it must accept all the flits of the message before accepting any flits from another message.

4. A channel queue cannot contain flits belonging to more than one message at a time. The
channel must transmit the tail flit of the current message before the channel queue accepts
the header flit of the next message.

5. A node arbitrates among messages which simultaneously request the same output channel.
Messages already waiting for a channel are chosen in an order that prevents starvation.

Definition 1 An interconnection network � is a strongly connected directed multigraph, ������� ��� �
	 ,
where the vertices, �'& � � , are the processors and the arcs, � & � � , are channels that connect
neighboring processors. Each channel, � & , can transmit messages from one processor, denoted � & ,
to a neighboring processor, denoted �!& .

Definition 2 A routing relation has the form � ��� � � � ��� ��� and specifies a set of output
channels based on the input channel, the current node, and the destination of the message.

Definition 3 A selection function has the form 
 � ��� � � ��� � � � and chooses a single
output channel based on the input channel, the set of output channels, and the status of the output
channels. � represents the possible states of an output channel. For fault-tolerant routing, ����

free, busy, faulty � ; otherwise, ��� � free, busy � .

Definition 4 A routing algorithm ��� on interconnection network � is represented by ����� � &�� ��(�	
and for each source-destination pair defines the set of paths available to a message. The routing
is accomplished by application of a routing relation and then a selection function at each router
between the source and destination of the message. The routing algorithm may be adaptive or non-
adaptive; minimal or nonminimal; fault-tolerant or not fault-tolerant.

Definition 5 Routing algorithm ��� is prefix-closed if a path that ��� permits from node � & to node
��( that routes through node ��� ( � &��� �	� ) implies that ��� also permits the partial path from � & to
the first occurrence of ��� on the path from �'& to ��( when �	� is the destination.

Definition 6 Routing algorithm ��� is suffix-closed if a path that ��� permits from node �'& to node
��( that routes through node � � implies that ��� also permits the partial path from � � to ��( when �	� is
the source. Note that every routing algorithm with a routing relation of the form ����� ��� � � �
is suffix-closed.

Definition 7 Routing algorithm ��� is coherent if ��� is prefix-closed, suffix-closed, and never routes
a message through the same node more than once.
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Definition 8 A waiting channel is a channel at the source or an intermediate node for which the
message waits when the message is unable to proceed because every channel the message can use
is unavailable. A message may have multiple waiting channels at the source or an intermediate
node.

Definition 9 The channel waiting graph � ��� �
	 for a given routing algorithm �
� and intercon-
nection network � is a directed graph, ����� � ��� ����� 	 . The vertices of ����� are the channels
of � . The arcs of ����� are pairs of channels, � � & � � (�	 , where � ( is a waiting channel for a message
that occupies � & . Formally,

� � � � � & � � ( 	���� �	� � ��
 � � such that
�
����� � � & � ����� � � ( � ����� � �#� � � �	� � ��
 	

and � ( is a waiting channel for ��� � ��� � �	
 	 on this path �
Note: There is no requirement that the message waits for � ( immediately after using � & , only that
the message is long enough to fill the channel queues from ��& to � ( . Since arbitrary message lengths
are permitted, this imposes no restrictions under our system model.

Definition 10 Routing algorithm ��� is wait-connected if for every input channel on a path, there
exists a waiting channel through which the message can be routed. In other words, regardless of
which input channel the message uses (including the injection channel when the message is at the
source), there is always an output channel for which the message can wait. Formally,

�
��� � ��
 �#��� � � &��#� such that

�
����� � � & � ����� � �#� � � ��� � �	
 	� � (��#��� �
����� � � & � � ( � ����� � � � � � �	� � �	
 	 and
� ( is a waiting channel for ��� � �	� � ��
 	 after using � &

Note: A message must be able to reach its destination. Hence, a blocked message must wait for at
least one output channel. Otherwise, this message is never delivered if it reaches an intermediate
node where all the output channels are busy. Therefore, any deadlock-free routing algorithm must
be wait-connected.

Definition 11 A configuration is an assignment of messages to channels. The header and data flits
of each message are stored in the channel queues and each channel queue holds flits from at most
one message. The leading channel is the channel the message has most recently acquired and its
channel queue contains the message header. Any other channels occupied by this message contain
only data flits. A configuration is legal if each message in the configuration occupies one or more
consecutive channels; the message header is stored at the head of the leading channel queue that the
message occupies; each message occupies only channels the routing algorithm permits the message
to use; and the storage capacity of each occupied channel has not been exceeded.

Definition 12 A deadlock configuration for routing algorithm �
� on interconnection network �
is a non-empty legal configuration consisting of a set of messages, � � ����� � ����� ����� � ��� � , where
each message, ��& , in the set has acquired at least one channel. The header flit of ��& has not reached
its destination and is unable to proceed because every output channel for � & is unavailable. More-
over, every waiting channel for � & is occupied by either data flits of � & or the header or data flits
of another message in the set. The data flits at the head of any other channel queue held by � & are
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unable to proceed because the next channel queue occupied by � & is full. Thus, each message is
blocked and must wait for an unavailable waiting channel held by another message in the set. Al-
ternatively, when � ��� , � � waits for a channel already occupied by itself. The set of messages
can be ordered such that:

��& waits for a channel occupied by � &�� � ����� � and
��� waits for a channel occupied by � �

4 Livelock Freedom

Livelock occurs when a message is always routed away from the destination. A livelock configura-
tion is possible only with nonminimal routing. If the message length exceeds the storage capacity
of all the channel queues in the network, however, the message finally arrives at an intermediate
node where the message already occupies every output channel the message is permitted to use.
Hence, a sufficiently long message eventually deadlocks. Livelock could occur when a short mes-
sage is routed in a cycle of � channels and the message can fit in ����� channel queues. The message
could then continually route to the same channel used the previous time through the cycle. By As-
sumption 5, however, this message cannot prevent other messages from using these channels when
the channels become free, so this message cannot create a deadlock configuration due solely to the
livelock problem. Hence, deadlock freedom can be proved even for routing algorithms that are not
livelock-free.

5 Sufficient Condition

Most techniques for proving that wormhole routing algorithms are deadlock-free require that the
channel dependency graph be acyclic in some manner. The channel dependency graph describes
the order in which channels can be used. From Definition 12, however, it is clear that any deadlock
configuration is based on the waiting channels, rather than the channels a message could use. (The
idea of waiting channels was introduced independently by Lin, McKinley, and Ni [23], however,
the methodology presented in this paper is novel.) The routing algorithm may allow a message to
use a channel when the channel is free, even if the message is not permitted to wait for this channel
when the channel is busy. This is our motivation for using the ����� , since it ignores dependencies
that cannot result in deadlock. Since the channel waiting graph is a subset of the channel depen-
dency graph, requiring an acyclic channel waiting graph is less restrictive than requiring an acyclic
channel dependency graph.

Theorem 1 If routing algorithm ��� is wait-connected and the ��� � for ��� is acyclic, then ���
is deadlock-free.

Proof. � � is wait-connected, so every message always has a waiting channel when all output chan-
nels are busy. Assume there is a deadlock configuration involving � messages. If � � � , then there
is a cycle in the ����� from a channel to itself, which is not possible since the ��� � is acyclic.
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Figure 1: Duato’s Example of an Incoherent Routing Algorithm

Otherwise, (
��� �

� ) there is an edge in the ��� � from every channel occupied by ��& to the chan-
nel occupied by ��&�� � for which ��& is waiting (call this channel �

�
& � � ). There is also an edge in the

��� � from every channel occupied by � � to the channel occupied by � � for which ��� is waiting
(call this channel �

� � ). Hence, there is an edge in the ����� from �
�
& to �

�
&�� � (

��� �
� ) and from �

��
to �

� � . The ����� for � � is acyclic, however, so no such set of edges is possible. Therefore, no
deadlock configuration exists and ��� is deadlock-free.

�

An edge in the ��� � requires only the existence of a path from some channel to a waiting chan-
nel. The specific intermediate channels used between this channel and the waiting channel are not
considered when creating the ��� � . Hence, it is possible that a cycle in the ����� exists only if
two or more messages occupy the same channel. For this reason, we divide cycles in the �����
into two classes: False Resource Cycles and True Cycles. A False Resource Cycle is a cycle in the
��� � that requires at least one channel to be occupied simultaneously by more than one message
in order to create the cycle. Note that this shared channel is not necessarily within the cycle. Ob-
viously, a False Resource Cycle cannot occur, since this is physically impossible. (Even though
the configuration is legal, it is not a reachable configuration [5].) Therefore, a False Resource Cy-
cle cannot be used to create a deadlock configuration. A True Cycle is a cycle in the ��� � that
permits every message in the cycle to occupy different channels. In Section 7, we provide a more
complete description of False Resource Cycles and present a technique for distinguishing between
False Resource Cycles and True Cycles.

To illustrate the difference between False Resource Cycles and True Cycles, Duato’s exam-
ple [12] of an incoherent routing algorithm is presented. The processors and channels are shown in
Figure 1. The routing algorithm permits only minimal routing, with the exception of channel ��� � .
Channel ��� � can be used by a message destined for only node ��� . Clearly, this routing algorithm is
not coherent, since a message from � � to ��� can be routed through � � using channel �	� � , however,
a message from � � to � � cannot use channel �
� � .

The ����� for this routing algorithm has a False Resource Cycle and a True Cycle. A message
whose input channel is �	� � can wait for ��� � or ��� � . If the message waits for � � � , there is a True
Cycle from ��� � to � � � that uses ��� � . Otherwise, the True Cycle is a cycle from ��� � to �
� � that uses
�
� � . There is a False Resource Cycle that involves two messages. A message that occupies � � �
and �
� � and waits for ��� � and a message that occupies �
� � and ��� � and waits for ��� � . Obviously,
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this False Resource Cycle exists only because both messages simultaneously occupy � � � , which is
impossible.

6 Necessary and Sufficient Condition

A message is unable to proceed when all output channels the message is permitted to use are busy.
This situation can be resolved in one of two different ways: (1) The message could wait for a specific
output channel to become free or (2) The message could wait until any permitted output channel
becomes free. For case (1), the routing algorithm cannot choose to wait for an arbitrary channel,
but must choose a channel for which waiting is permitted. Although it is possible that the message
has more than one waiting channel, once a waiting channel is chosen, the message must wait for
that specific channel to become free. For case (2), the message also has the possibility of waiting on
a subset of more than one output channel. In fact, case (2) includes any routing algorithm that does
not conform to case (1). That is, any routing algorithm that does not select a specific waiting channel
and wait for that channel until it becomes free. We first prove a necessary and sufficient condition
for routing algorithms that belong to case (1), followed by a necessary and sufficient condition for
routing algorithms that belong to case (2).

Theorem 2 A routing algorithm, ��� , that requires a message to wait for a specific output channel
is deadlock-free iff ��� is wait-connected and the ����� for ��� has no True Cycles.

Proof. First note that ��� is wait-connected by definition. By Theorem 1, an acyclic ����� is a
sufficient condition for deadlock freedom. A False Resource Cycle cannot result in deadlock, so
any False Resource Cycles can be ignored. Since there are no True Cycles, the routing algorithm
is deadlock-free.

To prove necessity, assume that a True Cycle with � messages exists. A deadlock configuration
can be created from this True Cycle. For each

� �
� , allow message � & to occupy channel �

�
& ,

some additional channels if necessary, and then wait to acquire channel �
�
&�� � occupied by message

��&�� � . (Assume that ��& and �
�
& are defined as before.) Similarly, message � � occupies channel �

��
and waits for channel �

� � . Since this is a True Cycle, it is possible to generate a set of messages
that are able to occupy the appropriate channel(s) and then wait for the appropriate channel. To
force ��& to wait for the appropriate channel, it is necessary to guarantee that every output channel��& could use at this node is busy. For any output channel available to � & that is also available to
the source, assume the source has injected a message that is occupying this channel. If � � is not
suffix-closed, however, it is possible that some of the output channels available to �#& can be used
only by messages arriving on the input channel used by ��& . For these output channels, assume that
a previous message, � ( , used this input channel and was forwarded on one of the output channels.
In addition, the length of �
( is assumed to be short enough that it releases the input channel that � &
uses, however, � ( is long enough that it occupies the output channel at this node. By Assumption 2,� ( is not necessarily removed from the network immediately, so it is possible that � ( occupies this
output channel for a short amount of time. Hence, it is always possible to force � & to wait for �

�
&�� � .

Clearly, each message in the set is waiting for a channel occupied by another message in the set
and none of the messages can make progress. Therefore, a deadlock configuration can always be
constructed from a True Cycle.

�
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For routing algorithms that permit a message to wait for any of the output channels to become
free, an acyclic ����� is not a necessary condition. Since a blocked message may have multiple
waiting channels, messages may be able to avoid channels that form cycles in the ����� by using
an alternative channel that is not part of a cycle. Deadlock can be avoided, however, only if at
least one of the waiting channels is guaranteed to become free. For this reason, we selectively
remove edges from the ����� to resolve all True Cycles, as long as the routing algorithm for the
resulting graph, ����� � , remains wait-connected. We next prove that if no such ����� � exists, then
the routing algorithm is not deadlock-free. If such a ����� � does exist, however, then the following
theorem can be used to prove deadlock freedom.

Theorem 3 A routing algorithm, ��� , that permits a message to wait for any output channel is
deadlock-free iff ��� is wait-connected for some subgraph of the ����� , called ����� � , and this
��� � � has no True Cycles.

Proof. If � � is wait-connected for the ����� and the ����� has no True Cycles, then the result
follows immediately from Theorem 2, with ����� ������� � . Assume the ��� � contains True
Cycles. In this case, ��� must be wait-connected for some ��� � � without True Cycles.

We first prove sufficiency. Consider a potential deadlock configuration for � � , involving a cycle
of � messages ( � � � ). This requires that every message in the configuration is waiting for channels
occupied by itself or another message in the cycle. Since �
� is wait-connected for ����� � , at least
one of the waiting channels for each message is in ����� � . Because ����� � has no True Cycles,
an output channel in ����� � eventually becomes free and some message in the set is forwarded.
There is no guarantee, however, that the output channel the message, � & , eventually acquires is a
channel in ����� � . (It is possible that � & is forwarded along a different channel before an output
channel in ����� � becomes free.) If ��& has reached its destination, then the cycle has been resolved.
Otherwise, whether or not � & acquires a channel in ����� � , ��& can acquire an output channel in
��� � � at the next node because ��� is wait-connected for ����� � . Hence, one of the messages can
always be routed and a deadlock configuration cannot occur.

We now prove necessity by showing that the routing algorithm is not deadlock-free if every
wait-connected ����� � has True Cycles. Assume that every wait-connected ����� � has True Cy-
cles. Hence, it is possible to generate a set of messages, each of which has no waiting channel
guaranteed to become available.

�
Furthermore, these messages are all blocking each other, since

otherwise it would be possible to guarantee that a waiting channel becomes free. Therefore, a wait-
connected ����� � without True Cycles must exist for every deadlock-free routing algorithm.

�

By using the necessary and sufficient condition just proposed, it is possible to prove that the
incoherent routing algorithm previously discussed is deadlock-free. The routing algorithm is not
deadlock-free, however, if a message waits for a specific channel to become free. Consider two
messages: one from � � to ��� and one from � � to ��� . Assume the message from � � to ��� occupies
�
� � and ��� � and the message from � � to ��� occupies �	� � , � � � , and ��� � . If this second message
waits for ��� � , then a deadlock configuration occurs. If this message instead waits for � � � , then a
deadlock configuration occurs when the first message occupies � � � instead of �	� � and the second
message occupies �	� � instead of ��� � . Since the routing algorithm does not know which channels

�
In fact, if even one of these messages, ��� , has a waiting channel that becomes free, then either all the messages

do or the remaining messages in the set (without ��� ) form a deadlock configuration.
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Figure 2: The ��� � for the Incoherent Routing Algorithm

have already been used by a message when selecting a waiting channel, the routing algorithm is not
deadlock-free if the message waits for a specific channel. On the other hand, if the message waits
for both ��� � and ��� � , then by Theorem 3 the routing algorithm is deadlock-free. Figure 2 depicts
the ����� for this routing algorithm. As discussed previously, there are True Cycles and a False
Resource Cycle in this channel waiting graph.

The ��� � has True Cycles, however it is possible to create a ��� � � with no True Cycles since
the routing algorithm is deadlock-free. Edges are removed from the ��� � to create ����� � using
the following observations:

� Since any message waiting for �	� � is guaranteed to reach � � and both ��� � and ��� � can be used
only by messages whose destination is � � , no message is required to wait for �
� � . Therefore,
the routing algorithm remains wait-connected for ����� � even if all edges to �	� � are removed
from the ����� .

� A message that arrives on �	� � while occupying � � � eventually acquires �	� � , since the message
occupying �	� � is destined for either � � or ��� . If the destination is � � , then the message has
reached its destination and �
� � will become free. If the destination is ��� , then the message
occupying ��� � is either occupying �	� � or waiting for �	� � . Since any message waiting for �	� �
eventually reaches � � , ��� � eventually becomes free. Similarly, a message that arrives on � � �
while occupying �	� � eventually acquires � � � . Therefore, the edge from � � � to ��� � and the
edge from ��� � to ��� � can be removed from ����� � to create a new ����� � and the routing
algorithm is still wait-connected for this new ����� � .

Figure 3 depicts ����� � after these two modifications have been made. There are no True Cycles
in ����� � . The only cycle in ����� � is a False Resource Cycle from � � � to �
� � and back to � � � ,
which requires that both messages in the cycle occupy ��� � . Since � � is wait-connected for ����� � ,
deadlock freedom follows immediately from Theorem 3. In the next section, we present a procedure
for distinguishing between False Resource Cycles and True Cycles.
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Figure 4: A False Resource Cycle for Minimal Routing

7 False Resource Cycles

The ����� is a static graph, however, the dependencies that arise among the channels are dynamic.
False Resource Cycles capture this notion of dynamic dependencies among the channels. When
two edges in the ����� require the use of a common channel, then these two dependencies cannot
occur simultaneously. A cycle in the ����� that is formed from such dependencies cannot occur in
reality, and hence, cannot lead to a deadlock configuration. False Resource Cycles can arise with
minimal or nonminimal routing. Duato’s incoherent routing algorithm is an example of the latter.
We now present an example of a False Resource Cycle for minimal routing.

7.1 Example with Minimal Routing

The routing algorithm is presented for the ring (1D torus) shown in Figure 4, which also depicts
a False Resource Cycle that occurs when the messages are routed in the clockwise direction. The
multiprocessor shown in Figure 4 consists of ten nodes, labeled � � through ��� . There are four virtual
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channels per physical channel, except for the channel between nodes ��� and � � , which has five
virtual channels. There are six messages active in the network, � � through ��� . In the upper left-
hand corner of a node, S

�
is used to denote this node as the source of message � & . Likewise, in the

upper right-hand corner of a node, D
�

is used to denote this node as the destination of message �#& .
A message appears above each virtual channel that it currently occupies. For example, � � is using
the first virtual channel between � � and � � .

The routing algorithm permits a message to use
� � � if the destination of the message is an

even-numbered node and
� � � if the destination is an odd-numbered node. A message on

� � � or
� � � stays on

� � � or
� � � , respectively, until a wrap-around channel is used. The message then

switches from
� � & to � ��� &�� ���
	���
�� . In addition, any message routing from node ��� to (or through)

node � � is allowed to use
� ��� . After a message uses

� ��� , the message routes either on
� � � , if the

destination is an odd-numbered node, or on
� ��� , if the destination is an even-numbered node. It

is possible to create a cycle in the ��� � only if two messages arrive at node ��� and both messages
leave ��� on

� ��� . Clearly, both messages cannot occupy
� ��� at the same time, so this is a False

Resource Cycle. There are no True Cycles in the ����� , so deadlock freedom follows immediately
from Theorem 2.

7.2 Testing for False Resource Cycles

In order to create a cycle, each message in the set, � & , must acquire �
�
& before ��&�� � arrives at �

�
& .

This is always possible with a True Cycle, since each message occupies different channels. A False
Resource Cycle, however, requires that at least two messages in the cycle share a channel. A False
Resource Cycle can arise in two ways. Either a channel within the cycle is shared or a channel
outside the cycle is shared by at least two messages in the cycle prior to entering the cycle. If the
shared channel is part of the cycle, then each message, ��& , that uses the shared channel has already
acquired �

�
& . Hence, the False Resource Cycle would instead be a True Cycle if every ��& could reach

�
�
&�� � without sharing a channel. On the other hand, if the shared channel is used prior to the channels

in the cycle, then a False Resource Cycle results from the inability of � & to acquire �
�
& before ��&�� � .

The False Resource Cycle would instead be a True Cycle if ��& could reach �
�
& without using a shared

channel.
The first possibility to consider is a False Resource Cycle involving only the channels that form

the cycle. We need to consider channels at only those nodes that are used by more than one mes-
sage in the cycle. A message that can form its part of the cycle without using any node used by
another message in the cycle cannot be using a shared channel. Hence, ignore any message that
can route through nodes that no other message in the cycle can use. For the remaining messages,
see if a channel-disjoint path can be found for each message. This is done by arbitrarily choosing a
path for one of these remaining messages. Continue selecting channel-disjoint paths for the other
remaining messages. If a channel-disjoint path can be found for each message, then there is no False
Resource Cycle formed with the channels used in the cycle. Otherwise, backtrack, selecting a dif-
ferent channel-disjoint path for the previous message. If all possible paths have been considered
and there is still no channel-disjoint path for all messages, then this is a False Resource Cycle.

The second possibility to consider is a False Resource Cycle created only when at least two
messages share a channel that is used prior to the cycle. This possibility is considered only if a
channel-disjoint path within the cycle exists for each message in the cycle. Furthermore, this second
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possibility can occur only with routing algorithms that are not suffix-closed. If a routing algorithm is
suffix-closed, then any cycle can be formed without using channels outside the cycle. For routing
algorithms that are not suffix-closed, first ignore any message, ��& , that can route from �

�
& to �

�
&�� �

where the source of message � & could be at �
�
& . Next, ignore any message that could route to �

�
& using

nodes that no other message in the cycle can use. For the remaining messages, consider the paths
that a message could take to reach �

�
& . Proceed as in the previous case, selecting channel-disjoint

paths and backtracking as necessary. If a channel-disjoint path can be found for each message, then
this is a True Cycle. Otherwise, this cycle may be a False Resource Cycle. We do not have an
algorithmic method of determining this.

A message that uses a shared channel outside the cycle can be short enough to release this chan-
nel after it has been used and hold only the channels that form its part of the cycle. Hence, even
though the channel is shared by more than one message in the cycle, the channel could be shared
consecutively rather than simultaneously. If the cycle can be formed when the shared channels are
used consecutively rather than simultaneously, then it is a True Cycle. Otherwise, it is a False Re-
source Cycle.

8 Identifying
��� ���

In this section, a formal design methodology for reducing the ����� to ����� � is described. This
methodology is needed only for routing algorithms that do not require a message to wait for a spe-
cific output channel. The design methodology requires the identification of all cycles in the ����� .
Since the number of cycles in the ����� could be exponential in the number of channels, finding
a ����� � requires an exponential time algorithm. Other general techniques for proving deadlock
freedom [11, 14, 23] also require exponential time in the worst case. The algorithm for reducing
the ��� � to ����� � has the following steps:

1. Create a list, � , of all cycles in the ����� . Each entry in � contains three sets: � � , the set
of edges that form the cycle, � � , the set of edges in the cycle the algorithm has attempted to
remove, and � � , the set of edges that are currently removed from the cycle. Initially, � � �
�
� ��� for all cycles in � . Also keep an ordered list of True Cycles that have been resolved.
This list is used for backtracking.

2. Remove all False Resource Cycles from � . This is done by examining each cycle in � using
the method described in Section 7.2 or informally by inspecting the ����� . Label the True
Cycles 	 � & � � ��� ��
 � ����� � � 	 and let

� ��� .
3. Remove an edge from 	�� & as long as the routing algorithm remains wait-connected. Any

edge that cannot be removed with the routing algorithm still wait-connected is added to �
� .
4. If every edge in 	�� & is required for the routing algorithm to remain wait-connected, then

backtrack to the previous True Cycle. Before backtracking, reset � � � �
� � � for 	 � & .
Remove the appropriate edge in � � from this previous True Cycle, but leave this edge in � � ,
since it has already been tried.
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5. Otherwise, 	 � & can be resolved, so add this edge to � � and �
� . Choose the next True Cycle
from � with �
� � � and � � does not contain any edge that is in � � for a resolved True Cycle.
Set

�
to the corresponding number for this cycle.

6. Repeat steps 3 – 5 until all True Cycles in � have been resolved or the routing algorithm has
backtracked to 	 � � and the algorithm has already attempted to remove every edge 	 � � . If all
True Cycles in � have been resolved, then the routing algorithm is deadlock-free and ����� �

consists of the edges that have not been removed. Otherwise, no acyclic ��� � � exists for
this routing algorithm, so the routing algorithm is not deadlock-free.

Example Reduction

Through inspection of the ����� , we have proved deadlock freedom for the incoherent routing al-
gorithm proposed by Duato. We now illustrate the formal methodology proposed in Section 8 by
proving deadlock freedom for the same routing algorithm.

Initially, � is the list of all cycles:

� �
� �

� � � � � � � � � � � � �
� � � � � � � � � � � �
� ��� � � � � � � ��
� � � � �
� � � � � � � � � � � ��� � � �
� � � � � � � � � � � �
� � � ��� � � � � � � � ���

Through either inspection or the application of the approach described in Section 7.2, the cycle�
� � � � �
� � � is shown to be a False Resource Cycle. Hence, this cycle is removed from � . All the

other cycles are True Cycles. After labeling the cycles, � is:

� �
�
	�� � � � � � � � � � � � � � � 	�� � � � �
� � � � � � � � � � 	 � � � � ��� � � � � � � � � �
	�� � � � � � � � ��� � � � � � � � � � 	 ��� � � �
� � � �
� � � � � � � � � �

Set
� ��� and remove ��� � from 	 � � . Since ��� � is also a waiting channel, the routing algorithm

is still wait-connected. Likewise, set
� � 
 and remove ��� � from 	 � � and then set

� � � and
remove ��� � from 	 � � . Next, set

� ��� and remove � � � from 	 � � . The routing algorithm is still
wait-connected, because the message that occupies � � � can wait for ��� � . Finally, set

� ��� and
remove ��� � from 	 ��� . The routing algorithm is no longer wait-connected, because a message that
occupies ��� � cannot wait for � � � or ��� � . Instead, remove �	� � from 	 ��� . This prevents a message
on �
� � from waiting for ��� � , however, the routing algorithm is still wait-connected, because � � �
can wait for ��� � . Note that this ����� � is different from the one depicted in Figure 3. All five True
Cycles have been resolved and the routing algorithm is still wait-connected, so the routing algorithm
is deadlock-free. � contains the following information:

� � 	
� 
�
	 � � � � � � � � � � � � � � � � � � � 	 � � � � �
� � � � �
� � � � ��� � � �
	 � � � � �
� � � � �
� � � � ��� � � � 	�� � � � � � � � ��� � � � � � � � � � � � � �
	 ��� � � �
� � � �
� � � � ��� � � �
� � � � ��� � �


 
�
�
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9 Routing Examples

In order to demonstrate the usefulness of the necessary and sufficient condition, a partially adap-
tive nonminimal routing algorithm for � -dimensional meshes is proposed. The routing algorithm
does not require any virtual channels and does not have an acyclic channel dependency graph. Our
methodology is also used to show deadlock freedom for a fully adaptive minimal hypercube routing
algorithm. The necessary and sufficient condition is then used to prove that any relaxation of the
restrictions imposed by the routing algorithm introduces the possibility of deadlock.

9.1 Previous Routing Algorithms

Torus and hypercube topologies can be characterized as � -ary � -cubes, where � is the radix and �
is the dimension. For example, an 8D hypercube is a 2-ary 8-cube and a ��� � ��� torus is a 16-ary
2-cube. An � -dimensional mesh is similar to a torus, except a mesh does not have wrap-around
channels.

Partially adaptive routing algorithms for wormhole-routed hypercubes and meshes have been
proposed by many authors [2, 4, 10, 16, 18, 22, 30]. Boura and Das [2] as well as Glass and Ni [16,
18] have proposed methods for producing partially adaptive routing algorithms for hypercubes and
meshes. The partially adaptive routing algorithm for hypercubes proposed by Li [22] has the addi-
tional advantage of ensuring that the multiple paths are edge-disjoint for many source-destination
pairs. All three algorithms require only a single virtual channel per physical channel. In Section 9.2,
we show how to increase the adaptiveness in a mesh without virtual channels by using a routing al-
gorithm that permits cycles in the channel dependency graph.

The hypercube routing algorithm proposed by Draper and Ghosh [10] uses two virtual channels
for each physical channel. Each message routes in dimension order along the first set of channels,
but may skip some dimensions in which the message needs to route. The message then routes in
dimension order along the second set of channels. The message can no longer skip dimensions and
must wait for the channels to become free. The hypercube routing algorithm proposed by Yang
and Tsai [30] also requires two virtual channels per physical channel. A message first uses any
dimension in which it needs to route in a positive direction. When the message finishes with all
such dimensions or finds them all busy, the message repeats this process for all negative directions.
The message then switches to the second set of virtual channels and routes first in all remaining
positive directions and then in all remaining negative directions, waiting for busy channels when
necessary.

A fully adaptive hypercube routing algorithm has been proposed by several authors [11, 20, 23,
29]. This routing algorithm requires two virtual channels per physical channel. A message routes
in dimension order along the first set of virtual channels. Each message also has the possibility of
routing in any dimension that moves the message closer to the destination along the second set of
virtual channels.

Besides routing algorithms proposed specifically for hypercubes, any routing algorithm for ar-
bitrary dimension meshes or tori can be extended to hypercubes, since an � -dimensional hypercube
is a special case of an � -dimensional mesh or torus. Only a few fully adaptive routing algorithms
have been designed for � -dimensional mesh and torus topologies [1, 8, 21, 24, 27, 28]. When re-
stricted to hypercubes, the routing algorithms proposed by Jesshope, Miller, and Yantchev [21],
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and by Linder and Harden [24] require more virtual channels than the routing algorithm proposed
by Duato [11]. The routing algorithm proposed by Dally and Aoki [8] is more restrictive than the
routing algorithm proposed by Duato. The routing algorithm proposed by Berman, et al. [1], when
restricted to hypercubes, is equivalent to the routing algorithm proposed by Duato. Only the rout-
ing algorithm proposed by Schwiebert and Jayasimha [28], when modified for hypercubes, is more
adaptive than the routing algorithm proposed by Duato.

The routing algorithm proposed by Duato [11] uses the first set of virtual channels for nonadap-
tive routing and the second set of virtual channels for fully adaptive routing. In Section 9.3, we
show how to increase adaptiveness by using the first set of virtual channels for partially adaptive
routing.

9.2 Mesh Routing Algorithm

We now propose a partially adaptive nonminimal routing algorithm for meshes that does not contain
an acyclic channel dependency graph and does not require any virtual channels. (For a 2D mesh,
this routing algorithm is similar to north-last proposed by Glass and Ni [18, 19], although our rout-
ing algorithm permits messages to make more � ���!� turns.) This new routing algorithm, called the
Highest Positive Last routing algorithm, is defined below.

Let � be the highest dimension in which the message still needs to route in the negative direction
to reach the destination. The following set of restrictions is applied to the channels:

� A message can use any channel in a dimension lower than � , even if the message does not
need to route in that direction, so nonminimal routing is permitted. A message can also route
in the negative direction of dimension � .

� A message that needs to route in only positive directions must use the positive channels in
increasing dimension order, although the message is permitted to misroute in the negative
direction of a higher dimension if desired.

� A message is allowed to make a � ����� turn from the negative direction to the positive direction
if the message needs to route in the positive direction. A message is permitted to make a � �����
turn from the positive direction to the negative direction only when the message needs to route
in the negative direction of this dimension and some higher dimension.

� If all output channels a message can use are busy, the message waits for the channel in the
negative direction of dimension � . If the message needs to route only in positive directions,
then the message waits for the channel in the positive direction of the lowest dimension in
which the message needs to route.

Note: Alternatively, the routing algorithm could allow a message to wait for any channel that moves
the message toward the destination. In this case, ����� � consists of the waiting channels just de-
scribed and deadlock freedom is proved using Theorem 3.

The Highest Positive Last routing algorithm has a routing relation of the form ����� � ��� � �
� � . For example, consider a message that needs to route only East and North. When the message is
due South of its destination, the message is permitted to route South if the input channel was East,
however, the message cannot route South if the input channel was North. (If this restriction is not
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imposed, the routing algorithm is not deadlock-free.) The routing algorithm is not coherent even
for minimal paths. For example, on an � � � � � mesh, a message from � � � � ��
 	 to � � � � ��� 	 can
route through � � � � ��
 	 , however, a message from � � � � ��
 	 to � � � � ��
 	 cannot route through � � � � ��
 	 .
Finally, the routing algorithm does not have an acyclic channel dependency graph, but does have an
acyclic channel waiting graph. For example, a message that needs to route in the negative direction
of the � dimension can use the channels in the � and � dimensions in any order, but always waits
for the channel in the negative direction of the � dimension. Duato’s proof technique cannot be
applied to the Highest Positive Last routing algorithm, because the routing relation is of the form
����� � �$�#��� � � .

The routing algorithm allows substantially more minimal paths than any previously proposed
mesh routing algorithm that requires only one channel. Previous partially adaptive routing algo-
rithms have required an acyclic channel dependency graph. For example, Glass and Ni [19] propose
the negative-first routing algorithm for � -dimensional meshes. The negative-first routing algorithm
requires messages to route in all negative directions and then all positive directions. The negative-
first routing algorithm also permits nonminimal routing on the negative channels before using any
positive channels. Glass and Ni prove that an acyclic channel dependency graph prohibits at least
� � � � � 	 ����� turns for an � -dimensional mesh. With negative-first, a message cannot use a negative
channel after using a positive channel, so each of the � positive channels is prohibited from using
the negative channel in the other � ��� dimensions. The Highest Positive Last routing algorithm
does not allow a message to use a channel in a lower dimension after using the positive channel in
a higher dimension, which restricts � � � � � 	 ���!� turns, however, the restrictions imposed by the
Highest Positive Last routing algorithm are not absolute. A message can use a positive channel be-
fore a channel in a lower dimension whenever the message needs to route in the negative direction
of some still higher dimension. This is a significant relaxation of the routing restrictions, especially
on the positive channel in the lower dimensions. Although the positive channel in dimension

�
can-

not be used before the positive or negative channel in a lower dimension, this restriction is removed
when the message also needs to route in the negative direction of any dimension higher than

�
. The

lower the dimension, the more likely this restriction can be relaxed.

Theorem 4 The Highest Positive Last routing algorithm is deadlock-free.

Proof. This proof uses the necessary and sufficient condition proved in Theorem 2. Any cycle in
the ��� � requires at least two dimensions, since a message routing in the positive direction cannot
wait for a channel in the negative direction without first routing in the negative direction of another
dimension. Consider any potential cycle in the ����� involving the channels used by the messages
that form the cycle. It is possible to partition this cycle into two hyperplanes by dividing the cycle
along the highest dimension used in the cycle. For the cycle to exist, some message must use a
channel in the positive direction of the highest dimension in the cycle and then wait for a channel
in another dimension in the positive half. In other words, some message must cross the partition in
the positive direction and then wait for a channel in this half of the partition for the cycle to exist.
A message is not permitted to use a channel in the positive direction and then wait for a channel
in a lower dimension without first using a channel in the negative direction of a higher dimension.
Since the message has already used the positive direction of the highest dimension in the cycle,
the message has not used the negative channel in a still higher dimension. Thus, no message in the
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cycle can satisfy this requirement and the ����� is acyclic. Deadlock freedom follows immediately
from Theorem 2.

�

9.3 Hypercube Routing Algorithm

The following conventions are used in this section. Channels are assumed to be bidirectional virtual
channels.

� � &��� is used to denote virtual channel � in the
�

direction of dimension
�
. For example,

� � �� � is virtual channel one in the negative direction of the third dimension. An asterisk in the
superscript denotes all dimensions. Thus,

� ���� � denotes the second virtual channel in the negative
direction of all dimensions.

Each node of an � -dimensional hypercube can be uniquely labeled using an � bit string. The
source of a message is denoted 
 � � � � � � � ��� � � � ����� � � � � � � 	 and the destination is denoted � �
� � � � � � � � � � � ����� � � � � � � 	 . A message routes from the source to the destination by routing in dimen-
sions in which the corresponding bit in the source differs from that of the destination. The message
routes in the positive direction of dimension

�
if � & ��� and � & ��� . Similarly, the message routes in

the negative direction of dimension
�

if � & ��� and ��& ��� . With minimal routing, a message routes
in each dimension at most once and a message does not route in dimension

�
if ��& � ��& .

We now propose a fully adaptive minimal routing algorithm for hypercubes. All previous fully
adaptive routing algorithms for hypercubes require nonadaptive routing on the first set of virtual
channels. This new routing algorithm permits partially adaptive routing on the first set of virtual
channels. The routing algorithm, called the Enhanced Fully Adaptive routing algorithm, is defined
by the following steps:

� Assign two bidirectional virtual channels to each dimension.

� Allow a message to route along the second virtual channel at any time.

Let � be the lowest dimension in which the message still needs to route. The following set of re-
strictions is applied to the first set of virtual channels:

� A message that needs to route in the negative direction of dimension � can use any of the first
set of virtual channels.

� A message that needs to route in the positive direction of dimension � must use
� ���� � .

� If all output channels a message can use are busy, the message waits for
� � �� .

Note: Alternatively, this routing algorithm could allow a message to wait for any output channel
it is permitted to use. For this alternative, ����� � is restricted to the first virtual channel in the
lowest dimension in which the message needs to route. ����� � is then equivalent to the ����� just
defined. Hence, the proof of deadlock freedom is unchanged, except that Theorem 3 is used to prove
deadlock freedom.

This routing algorithm is substantially more adaptive than any previously proposed fully adap-
tive hypercube routing algorithm. The Enhanced Fully Adaptive routing algorithm restricts when
a message can use the first virtual channel in the positive direction after using the first virtual chan-
nel in a higher dimension. A message can use the first virtual channel in a higher dimension first
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Figure 5: Degree of Adaptiveness for Hypercube Routing Algorithms

whenever the message needs to route in the negative direction of the lowest dimension in which the
message still needs to route. This is a significant relaxation of the routing restrictions, especially
compared with using dimension-order routing on the first set of virtual channels.

To illustrate the increase in adaptiveness, we present the degree of adaptiveness of Duato’s rout-
ing algorithm and the Enhanced Fully Adaptive routing algorithm in Figure 5. The degree of adap-
tiveness is the ratio of the number of paths permitted by the routing algorithm, to the total number
of paths, averaged over all source-destination pairs [18]. For comparison, the degree of adaptive-
ness for e-cube (nonadaptive dimension-order) routing is also shown. Surprisingly, the degree of
adaptiveness is not zero for nonadaptive routing, because nonadaptive routing always allows one
of paths and the degree of adaptiveness would be zero only if there were no permitted paths. There
are relatively few paths when the source is near the destination, so even a single path can represent a
relatively large portion of the paths. For example, nonadaptive routing can use half the paths when
the distance between the source and destination is two hops.

Theorem 5 The Enhanced Fully Adaptive routing algorithm is deadlock-free.

Proof. This proof uses the necessary and sufficient condition proved in Theorem 2. � � is wait-
connected, since a message is always permitted to wait for virtual channel one in the lowest dimen-
sion in which the message needs to route. A message can wait for only

� � �� , so any cycle in the
��� � must be created from waiting dependencies among the

� � �� channels (although
� � �� chan-

nels could be used to create these dependencies). Since minimal routing is used, any cycle in the
��� � requires at least two dimensions and must use both directions of each dimension in the cycle.
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Let � be the lowest dimension of a potential cycle. A cycle in the ����� requires one of two situa-
tions: either a message, � & , waits for

� � �� � after using
� � �� in a higher dimension of the cycle or

��& uses
� � �� � or

� � �� � after using
� � �� in a higher dimension and then waits for

� � �� in a different
higher dimension. (Since � is the lowest dimension in the cycle, � & does not need to route in any
dimension lower than � after using

� � �� in a higher dimension. Otherwise � & would be waiting for
a channel in this lower dimension and � would not be the lowest dimension in the cycle.) Clearly,
neither situation can occur, since � & cannot use

� � �� in a higher dimension when � & needs to route
in
� � �� and � is the lowest dimension in which � & needs to route. Therefore, the routing algorithm

is deadlock-free.
�

The Enhanced Fully Adaptive routing algorithm is not coherent. For example, consider the 3D
hypercube depicted in Figure 6. A message from ��� to ��� can route through � � using the first virtual
channel and then route through ��� , however, a message from � � to ��� cannot route through � � us-
ing the first virtual channel. Thus, the Enhanced Fully Adaptive routing algorithm is not coherent,
because it is not prefix-closed. Since the routing algorithm is not coherent, Duato’s proof technique
cannot be used to prove Theorem 6.

Theorem 6 No restrictions imposed on the Enhanced Fully Adaptive routing algorithm can be re-
laxed without permitting a deadlock configuration.

Proof. There are no restrictions on the use of the second set of virtual channels, so the restrictions on
only the first set of virtual channels must be considered. The only restriction on the first set of virtual
channels is that a channel in a higher dimension cannot be used by a message that needs to route in
the positive direction of the lowest dimension in which the message needs to route. Without loss of
generality, let � be the lowest dimension and assume that the channel used in a higher dimension is
the first virtual channel in the positive direction of dimension

�
. There is now an edge in the �����
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from
� � &� � to

� � �� � . The ����� already has edges from
� � �� � to

� � &� � , from
� � &� � to

� � �� � ,
and from

� � �� � to
� � &� � . These edges form a True Cycle. A message waits for only

� � �� and the
routing algorithm is not deadlock-free if

� � �� is not a waiting channel. Thus, from Theorem 2, the
routing algorithm is no longer deadlock-free.

�

10 Conclusion

In this paper, we present a necessary and sufficient condition for deadlock-free adaptive wormhole
routing and thus solve an important open problem. Our result is general; the only restriction im-
posed is the use of local information for routing. Although routing could be based on non-local
information being used by a router, the overhead of accumulating and processing such information
limits any practical use of such routing schemes. Only reasonable assumptions have been made,
and hence the necessary and sufficient condition should be broadly applicable. For clarity of expo-
sition, we have considered routing relations of the form ����� �#� �#��� � � . Different routing
relations may require modest changes to the definitions, but the same proof techniques should be
applicable. For example, routing relations such as ����� �#� �#��� � � , where the source node
rather than the input channel is used for routing, could be used. Deadlock freedom for such routing
algorithms still depends on the relationship among waiting channels.

By characterizing the problem of proving deadlock freedom in terms of channel waiting instead
of channel usage, the proofs of deadlock freedom become natural and straightforward. We consider
this observation and its consequences to be the primary contributions of this paper. The usefulness
of our proof technique has been demonstrated with a partially adaptive nonminimal routing algo-
rithm for � -dimensional meshes. This routing algorithm is more adaptive than any other routing
algorithm proposed for meshes without additional channels. The proof technique described in this
paper has also been used to prove deadlock freedom for a fully adaptive minimal routing algorithm
for hypercubes. This new hypercube routing algorithm is substantially more adaptive than any pre-
vious fully adaptive routing algorithm for hypercubes. The necessary and sufficient condition can
also be used to develop adaptive routing algorithms for the torus and other topologies.

We have shown that the restrictions on the Enhanced Fully Adaptive routing algorithm cannot
be relaxed without creating a deadlock configuration. It is possible, although unlikely, that a routing
algorithm with a different set of restrictions could be deadlock-free while being less restrictive. The
number of restrictions cannot be reduced, however, since there is only one restriction for each pair
of dimensions.

The degree of adaptiveness is much higher with the Enhanced Fully Adaptive routing algorithm
than with any previous fully adaptive routing algorithm for hypercubes. Although the degree of
adaptiveness is an important theoretical measure of the adaptiveness of routing algorithms, addi-
tional comparisons are required to make a complete evaluation of the performance of routing algo-
rithms. For example, simulations with a variety of message traffic patterns, especially traffic pat-
terns derived from real applications should provide a better indication of the expected performance
of various routing algorithms.

A partial result has been given for distinguishing between False Resource Cycles and True Cy-
cles. This technique can be applied to any suffix-closed routing algorithm, which represents all but
a very restricted class of routing algorithms. In practice, the identification of False Resource Cycles
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should not require resorting to this formal technique. A formal approach is provided, however, for
cases where the irregularity of either the interconnection network or the routing algorithm prevent
a straightforward analysis.

The proof of Theorem 3 requires the identification of ����� � . This is needed only for routing
algorithms that do not require a message to wait for a specific output channel. In general, it should
be straightforward to determine ����� � for regular topologies such as � -ary � -cubes and meshes.
Most existing topologies are regular and this regularity is usually incorporated into the routing algo-
rithm. However, a formal design methodology has been provided for those cases where it is difficult
to reduce the ����� to ����� � . This automates the task of proving deadlock freedom and should
be of use for routing algorithm designers.
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