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Abstract

An important open problem in wormhole routing has been to find a necessary and sufficient
condition for deadlock-free adaptive routing. Recently, Duato has solved this problem for a re-
stricted class of adaptive routing algorithms. In this paper, a necessary and sufficient condition is
proposed that can be used for any adaptive or nonadaptive routing algorithm for wormhol e routing,
aslong asonly local informationisrequired for routing. The underlying proof techniqueintroduces
anew type of dependency graph, the channel waiting graph, which omits most channel dependen-
ciesthat cannot be used to create a deadlock configuration. The necessary and sufficient condition
can be appliedin astraightforward manner to most routing algorithms. Thisisillustrated by proving
deadl ock freedom for apartially adaptive nonminimal mesh routing agorithm that does not require
virtual channels and a fully adaptive minimal hypercube routing algorithm with two virtual chan-
nels per physical channel. Both routing algorithms are more adaptive than any previously proposed
routing algorithm with similar virtual channel requirements.

Keywords: wormhole routing, routing algorithms, deadl ock freedom, channel waiting graph, nec-
essary and sufficient condition, mesh architectures, hypercube architectures.



1 Introduction

Wormhol erouting [9] has become the switching technique of choicein modern distributed-memory
multiprocessors such as the Intel Paragon, the Cray T3D, the MIT Jmachine, the Caltech MO-
SAIC, and the nCUBE-2/3. Implementations of wormhole routing typically divide each message
into packets, which are then divided into flits. The header flit of apacket containsthe routing infor-
mation and the data flits of the packet follow the header flit through the network. Since the network
treats each packet as a separate message, we use the terms message and packet interchangeably.
When the header arrives at an intermediate router, the router immediately forwards the message
header to aneighboring router if an output channel the message can useisavailable. The dataflits
then follow the header flit in a pipelined fashion. If the header is unable to proceed because no ap-
propriate output channel is free, the router buffers only afew flits, rather than the entire message.
Since the data flits contain no routing information, messages cannot share channels. Hence, each
channel in the path isreserved from the time the header flit acquires the channel until the last flit of
the message has traversed the channel. Since the flits of a message are forwarded as soon as pos-
sible, the message latency islargely insensitive to the distance between the source and destination.
On the other hand, packet switching buffers the entire message at every intermediate node before
forwarding any part of the message. Hence, wormhole routing has lower message latency when
thereislittle or no channel contention. In addition, wormhole routing requires only enough storage
at arouter to buffer afew flits, rather than the entire packet. These two properties account for the
popularity of wormhol e routing in distributed-memory multiprocessors. See Ni and McKinley [26]
for an in-depth discussion of wormhole routing.

The primary drawback to wormhole routing is the contention that can occur even with moder-
ate traffic, which leads to higher message latency. Whenever a message is unable to proceed due
to contention, the header and data flits are not removed from the network. Instead, the message
holds all the channels it currently occupies. Since al the channels in the path from the source to
the destination are held from the time they are acquired until the entire message has traversed the
channel (which isafter the entire path has been established except for relatively short messagesthat
fit in the intermediate channel buffers), performance degradation due to contention can be severe
and message | atency can be unacceptably high. A messagethat requires several channels can block
many messages while being transmitted. These blocked messages caninturn block other messages,
which further increases the message latency. Providing additional physical channel s between nodes
in the network can reduce both latency and contention. Thisisan expensive solution, however, and
can actually increase message latency if the routers are pin-out constrained. A more cost-effective
method of reducing message latency, proposed by Dally [7], isto allow multiplevirtual channelsto
sharethe same physical channel. Each virtual channel has a separate buffer, with multiple messages
multiplexed over the same physical channel. Both latency and contention can be further reduced by
using the multiple paths that exist in the network between the source and destination nodes. Dally
and Seitz [9] have shown, however, that since amessage holds channel s until the entire message has
been transmitted, a routing algorithm with no restrictions on the use of virtual or physical channels
can result in deadlock.

The simplest routing algorithms are nonadaptive and define a single path between the source
and destination. Adaptive routing algorithms, on the other hand, support multiple paths between
the source and destination. A routing algorithm is either minimal or nonminimal. Minimal routing



algorithms allow only shortest paths to be chosen, while nonminimal routing algorithms do not re-
quire messages to use only shortest paths. Minimal routing algorithms provide higher throughput
for high message traffic and are generally ssimpler to implement. Nonminimal routing agorithms
are useful for fault tolerance. Gaughan and Yalamanchili [15] present agood overview of adaptive
routing protocols.

Whether minimal or nonminimal, adaptive routing algorithms can be further differentiated by
thefraction of shortest pathsthey allow. Partially adaptive routing algorithmsdo not allow all mes-
sages to use any shortest path. Fully adaptive routing algorithms do allow al messagesto use any
shortest path. Although al fully adaptive routing algorithms allow a message to use any physical
channel that is part of a shortest path, different restrictions may be placed on the choice of virtual
channels on that physical channel. Hence, not al fully adaptive routing algorithms are equivalent.
Some fully adaptive routing algorithms allow more adaptiveness than others by placing fewer re-
strictions on the choice of virtual channels.

Since each virtual channel needs a separate buffer and the virtual channels are multiplexed over
the physical channel, the number of virtual channelsrequired by an adaptiverouting algorithm gives
agood approximation of the hardware cost of the router. Routing algorithmsthat require more vir-
tual channels need additional router control logic and are usually more complex. Multiplexing and
scheduling virtual channelson aphysical channel is more complicated with additional virtual chan-
nels. Router latency and cycle time also increase with the number of virtual channels[3], so fewer
virtual channels are generally better. Reducing the number of virtual channels needed for a given
degree of adaptiveness is accomplished by using a less restrictive routing agorithm [28]. Con-
versely, when the same number of virtual channelsis used, aless restrictive routing agorithm has
better performance than a more restrictive routing algorithm [18, 25].

Recent research on adaptive routing algorithms has partially addressed both of these issues by
reducing the virtual channel requirements and imposing fewer restrictions on the virtual channels.
A natural questionarises. Exactly how restrictive must arouting algorithm beto guarantee deadl ock
freedom? In other words, what isanecessary and sufficient condition for deadlock-freerouting? In
this paper, we present atheoretical result for minimizing the restrictionsimposed for deadlock-free
wormhole routing. Besides providing a necessary and sufficient condition for deadlock freedom,
the routing algorithms developed using this proof technique are substantially less restrictive than
previous routing algorithms. The only restriction we impose on the routing algorithmsis that only
local information available at the router is used to make the routing decision. In genera, routing is
done based solely on local information, because of the overhead of accumulating non-local infor-
mation and the additional router complexity that is required to utilize this information.

2 Previous Work

Designing deadl ock-free routing al gorithmsfor wormholerouting was simplified by Dally and Seitz
with a proof that an acyclic channel dependency graph guarantees deadl ock freedom [9]. Each ver-
tex of the channel dependency graph isavirtual channel. There isadirected edge from one virtual
channel to another if amessage is permitted to use the second virtual channel immediately after the
first. Since the graph is acyclic, deadlock freedom can be shown by assigning a numbering to the
edges of the graph, ensuring that all channels are used in strictly increasing or strictly decreasing



order.

Dally and Seitz proposed their proof technique for nonadaptive routing algorithms. Nonadap-
tive routing algorithms can be characterized by functions of theform R : C' x N x N — C, where
the input channel, belonging to the set of channels C', and the current and destination node, be-
longing to the set of nodes IV, define an output channel on which to route the message. An acyclic
channel dependency graph has a so been used as abasisfor devel oping adaptive routing algorithms
defined by relations of theform R : C' x N x N — C?, where aset of output channels, rather than
asingle channel, is defined on which to route the message[2, 4, 6, 10, 16, 17, 18, 21, 24, 30]. Since
aset of output channelsis provided, a selection function isthen used to sel ect which of these output
channels a message uses.

Glassand Ni [18] and Bouraand Das|2] have proposed methodol ogiesfor generating deadl ock-
free algorithms, but both proof techniques require an acyclic channel dependency graph. Glassand
Ni propose amethod of analyzing routing algorithms based on the permitted and prohibited depen-
dencies from one channel to another. These dependencies are characterized as turns, with the set of
possible turns defined by the topology. For example, meshes have 90° turns (when switching from
achannel in one dimension to a channel in a different dimension), 0° turns (when switching from
one channel to another channel in the same direction), and 180° turns (when switching from one
channel to a channel in the opposite direction of the same dimension). The turn model groups the
turns into cycles and breaks all cycles by prohibiting some turns. Thisis equivaent to removing
edges from the channel dependency graph. It isthen necessary to show that cycles cannot be cre-
ated from the remaining turns, based on the assumption that an acyclic channel dependency graph
isrequired for deadlock freedom. Boura and Das propose a method of proving deadlock freedom
by partitioning the channelsinto two sets and requiring messages to route completely in thefirst set
before using channels in the second set.

Duato [11, 13] proved that requiring an acyclic channel dependency graph istoo restrictive for
routing algorithms defined by relations of theform R : N x N — C?, where the current node and
the destination node, independent of the input channel, define the set of output channelson whichto
routethemessage. Cyclesarepermittedinthe channel dependency graphif some subset of channels
defines a connected routing subfunction with an acyclic extended channel dependency graph. An
extended channel dependency graph contains both the direct and the indirect dependencies. Each
edgein the channel dependency subgraph defines adirect dependency. Anindirect dependency isa
dependency between two channels in the subgraph that exists only because of the intermediate use
of one or more channels not in the subgraph. Berman, et al. [1] propose atorus routing agorithm
with arouting relation of theform R : C x N x N — CP? that alows cyclic dependencies among
the channels.

Dally and Aoki [8] prove deadlock freedom for arouting algorithm with cyclic dependenciesby
guaranteeing an acyclic packet wait-for graph. A packet wait-for graph is defined dynamically by
the packets in the network and contains an edge from packet p; to packet p; if packet p; iswaiting
for a channel held by packet p;.

All these proof techniques provide only a sufficient condition for deadlock-free adaptive rout-
ing. Although Dally and Seitz proved that an acyclic channel dependency graph is anecessary and
sufficient condition for nonadaptive routing algorithms [9], determining what constitutes a neces-
sary and sufficient condition for adaptive routing algorithms has remained an open problem.

Lin, McKinley, and Ni [23] propose a proof technique based on the observation that a rout-



ing algorithm is deadlock-free if none of the channelsin the network can be held forever. If every
message that uses a given channel is guaranteed to reach its destination, no matter which path (of
those allowed by the routing algorithm) the message takes, then a deadlock configuration cannot
arise from the use of this channel. Since sink channels cannot be part of a deadlock configuration,
the proof starts with the sink channels and works backward through the network. If it ispossibleto
show that no channel can be held forever by amessage, regardless of the destination and path taken,
then the routing algorithm is deadlock-free. This proof technique was proposed as a necessary and
sufficient condition, although Duato points out that only sufficiency is proved [14].

Duato [14] hasrecently proposed anecessary and sufficient condition for proving deadlock free-
dom for arestricted class of adaptive routing algorithms. This proof technique appliesonly to rout-
ing relations of theform R : N x N — CP. The proof requires the identification of a subset of
channels, C; C C', which has an acyclic extended channel dependency graph. Unlike the sufficient
condition, the set of channelsin C; can differ for different source-destination pairs. Hence, Duato
introduces the notion of cross dependencies. A cross dependency is a dependency from ¢; € C; to
c; € C1, where ¢; and ¢; are both in Cy, but for different source-destination pairs. Aswith regular
dependencies, there are direct cross dependencies and indirect cross dependencies. A routing algo-
rithm is deadlock-free if and only if some connected C exists with no cycles arising from direct,
indirect, direct cross, and indirect cross dependencies.

The technique proposed in this paper appliesto routing relations of theform R : C x N x N —
C?, while Duato’s proof technique is more restrictive and applies only to routing relations of the
foom R : N x N — CP?. Thelatter routing relations can always be converted to routing relations
of the former type by providing the same set of output channels for every input channel that the
message could have used to reach that node (including input from the source when the sourceisthe
current node). In general, however, routing relations of theform R : C' x N x N — C? cannot
be converted to routing relations of theform R : N x N — (P, since the set of output channels
can differ for the same destination when the message arrives on different input channels. In addi-
tion to requiring the routing relation to be of theform R : N x N — C?, Duato aso imposes two
further restrictions on the routing agorithms for which the proof technique is a necessary and suf-
ficient condition, neither of which isimposed by our proof technique. First, the routing algorithm
must provide aminimal path between every pair of nodes, even for nonminimal routing algorithms.
Second, the routing algorithm must be coherent. A routing algorithmis coherent if it permitsevery
partial path from any source to any destination to be used by the same source to reach an intermedi-
ate node on the path or by an intermediate node on the path to reach the same destination. In other
words, a coherent routing a gorithm that allows amessage from processor n; to n; to route through
processor n;, must allow a message to use the partial path between n; and n; when routing from
processor n; to processor ny, or from processor 7y, to processor ;. Although requiring coherence
may appear to be a modest restriction, in Section 9 we propose two simple routing algorithms that
are not coherent.

3 Assumptionsand Definitions

Severa assumptions and definitions are introduced to facilitate the presentation of the necessary
and sufficient condition. These are standard assumptions made when proving deadlock freedom



for wormhole routing algorithms and have al'so appeared in [9, 13].

1. A node can generate messages of arbitrary length destined for any other node at any rate.
2. A message arriving at its destination is eventually consumed.

3. Since wormhole routing is used, once a channel queue accepts the header flit of a message,
it must accept all theflits of the message before accepting any flits from another message.

4. A channél queue cannot contain flits belonging to more than one message at atime. The
channel must transmit the tail flit of the current message before the channel queue accepts
the header flit of the next message.

5. A node arbitrates among messages which simultaneously request the same output channel.
Messages already waiting for a channel are chosen in an order that prevents starvation.

Definition 1 Aninterconnection network I isastrongly connected directed multigraph, I = G(N, C),
where the vertices, n; € N, are the processors and the arcs, ¢; € C, are channels that connect
neighboring processors. Each channel, ¢;, can transmit messages from one processor, denoted s;,
to a neighboring processor, denoted d;.

Definition 2 A routing relation hastheform R : C' x N x N — C? and specifies a set of output
channels based on the input channel, the current node, and the destination of the message.

Definition 3 A selection function hasthe form S : C' x C? x FP — (' and chooses a single
output channel based on the input channel, the set of output channels, and the status of the output
channels. F' represents the possible states of an output channel. For fault-tolerant routing, F' =
{free, busy, faulty}; otherwise, F' = {free, busy}.

Definition 4 A routing algorithm R 4 on interconnection network I is represented by R 4(n;, n;)
and for each source-destination pair defines the set of paths available to a message. The routing
is accomplished by application of a routing relation and then a selection function at each router
between the source and destination of the message. The routing agorithm may be adaptive or non-
adaptive; minimal or nonminimal; fault-tolerant or not fault-tolerant.

Definition 5 Routing algorithm R 4 is prefix-closed if apath that R 4 permits from node n; to node
n; that routes through node ny, (n; # ny) impliesthat R4 also permits the partial path from n; to
the first occurrence of n;, on the path from n; to n; when n, isthe destination.

Definition 6 Routing algorithm R 4 issuffix-closed if apath that R 4 permitsfrom node n; to node
n; that routesthrough noden, impliesthat R 4 also permitsthe partial path fromn, ton; whenny is
the source. Notethat every routing algorithm with arouting relation of theform R : N x N — C?
is suffix-closed.

Definition 7 Routing algorithm R 4 iscoherent if R 4 isprefix-closed, suffix-closed, and never routes
a message through the same node more than once.



Definition 8 A waiting channel is a channel at the source or an intermediate node for which the
message waits when the message is unable to proceed because every channel the message can use
is unavailable. A message may have multiple waiting channels at the source or an intermediate
node.

Definition 9 The channel waiting graph (CW G) for a given routing algorithm R 4 and intercon-
nection network I isadirected graph, CWG = G(C, E). The vertices of CW G are the channels
of 1. Thearcsof CW G are pairs of channels, (c;, ¢;), where ¢; isawaiting channel for amessage
that occupies ¢;. Formally,

E = {(C,’, Cj)‘ Ing, ny € N such that { -3 CiyeaeyCjy e } € RA(TLa, le)
and ¢; isawaiting channel for R 4(n,, ny) on this path}

Note: There is no requirement that the message waits for ¢; immediately after using c;, only that
the message islong enough to fill the channel queues from ¢; to ¢;. Since arbitrary message lengths
are permitted, this imposes no restrictions under our system model.

Definition 10 Routing algorithm R 4 is wait-connected if for every input channel on a path, there
exists a waiting channel through which the message can be routed. In other words, regardless of
which input channel the message uses (including the injection channel when the message is at the
source), there is aways an output channel for which the message can wait. Formally,

Vg, ny € N,Ve; € Csuchthat {... ¢, ...} € Ra(ng, mp)
de; € Co{...,ci,¢j, ...} € Ry(ng,mp) and
¢; isawaiting channel for R 4(n,, np) after using ¢;

Note: A message must be able to reach its destination. Hence, a blocked message must wait for at
least one output channel. Otherwise, this message is never delivered if it reaches an intermediate
node where all the output channels are busy. Therefore, any deadlock-free routing agorithm must
be wait-connected.

Definition 11 A configuration isan assignment of messagesto channels. The header and dataflits
of each message are stored in the channel queues and each channel queue holds flits from at most
one message. The leading channel is the channel the message has most recently acquired and its
channel queue contains the message header. Any other channels occupied by this message contain
only dataflits. A configuration islegal if each message in the configuration occupies one or more
consecutive channel's; the message header isstored at the head of the leading channel queuethat the
message occupi es; each message occupies only channelsthe routing algorithm permitsthe message
to use; and the storage capacity of each occupied channel has not been exceeded.

Definition 12 A deadlock configuration for routing algorithm R 4 on interconnection network 7
isanon-empty legal configuration consisting of a set of messages, m1, ma, ..., m,,n > 1, where
each message, m;, inthe set has acquired at least one channel. The header flit of m; has not reached
its destination and is unable to proceed because every output channel for m; isunavailable. More-
over, every waiting channel for m; is occupied by either dataflits of m; or the header or dataflits
of another message in the set. The dataflits at the head of any other channel queue held by m; are

6



unable to proceed because the next channel queue occupied by m; isfull. Thus, each messageis
blocked and must wait for an unavailable waiting channel held by another message in the set. Al-
ternatively, when n = 1, m, waits for a channel aready occupied by itself. The set of messages
can be ordered such that:

m,; waits for achannel occupied by m; Vi < n and
m,, waitsfor a channel occupied by m;

4 Livelock Freedom

Livelock occurs when amessage is always routed away from the destination. A livelock configura-
tion is possible only with nonminimal routing. If the message length exceeds the storage capacity
of all the channel queues in the network, however, the message finaly arrives a an intermediate
node where the message already occupies every output channel the message is permitted to use.
Hence, a sufficiently long message eventually deadlocks. Livelock could occur when a short mes-
sageisroutedinacycleof n channelsand the message canfit inn— 1 channel queues. The message
could then continually route to the same channel used the previous time through the cycle. By As-
sumption 5, however, this message cannot prevent other messages from using these channels when
the channels become free, so this message cannot create a deadlock configuration due solely to the
livelock problem. Hence, deadlock freedom can be proved even for routing algorithmsthat are not
livelock-free.

5 Sufficient Condition

Most techniques for proving that wormhole routing algorithms are deadl ock-free require that the
channel dependency graph be acyclic in some manner. The channel dependency graph describes
the order in which channels can be used. From Definition 12, however, it isclear that any deadlock
configurationisbased on the waiting channels, rather than the channelsa message could use. (The
idea of waiting channels was introduced independently by Lin, McKinley, and Ni [23], however,
the methodol ogy presented in this paper is hovel.) The routing algorithm may allow a message to
use achannel when the channel isfree, even if the messageisnot permitted to wait for this channel
when the channel isbusy. Thisisour motivation for using the CW G, sinceit ignores dependencies
that cannot result in deadlock. Since the channel waiting graph is a subset of the channel depen-
dency graph, requiring an acyclic channel waiting graph islessrestrictive than requiring an acyclic
channel dependency graph.

Theorem 1 If routing algorithm R 4 is wait-connected and the CW G for R 4 isacyclic, then R 4
is deadlock-free.

Proof. R4 iswait-connected, so every message aways has awaiting channel when all output chan-
nelsare busy. Assumethereisadeadlock configuration involving n messages. If n = 1, then there
isacycleinthe CWG from achannel to itself, which is not possible since the CW G is acyclic.
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Figure 1. Duato’s Example of an Incoherent Routing Algorithm

Otherwise, (Vi < n) thereisan edge in the CW G from every channel occupied by m; to the chan-
nel occupied by m; ., for which m; iswaiting (call this channel ¢;_ ;). Thereisalso an edge inthe
CW G from every channel occupied by m, to the channel occupied by m; for which m,, iswaiting
(call this channel ¢}). Hence, thereis an edge in the CW G from c; to ¢, (Vi < n) and from ¢},
to ¢;. The CWG@G for R, is acyclic, however, so no such set of edges is possible. Therefore, no
deadlock configuration exists and R 4 is deadlock-free. O

Anedgeinthe CW G requiresonly the existence of apath from some channel to awaiting chan-
nel. The specific intermediate channel s used between this channel and the waiting channel are not
considered when creating the CW G. Hence, it is possible that a cyclein the CW G exists only if
two or more messages occupy the same channel. For this reason, we divide cyclesin the CWG
into two classes: False Resource Cycles and True Cycles. A False Resource Cycleisacycleinthe
CW G that requires at |east one channel to be occupied simultaneously by more than one message
in order to create the cycle. Note that this shared channel is not necessarily within the cycle. Ob-
viously, a False Resource Cycle cannot occur, since this is physically impossible. (Even though
the configuration islegdl, it is not areachable configuration [5].) Therefore, a False Resource Cy-
cle cannot be used to create a deadlock configuration. A True Cycleisacycleinthe CWG that
permits every message in the cycle to occupy different channels. In Section 7, we provide a more
compl ete description of False Resource Cycles and present atechnique for distinguishing between
False Resource Cycles and True Cycles.

To illustrate the difference between False Resource Cycles and True Cycles, Duato’s exam-
ple[12] of an incoherent routing agorithm is presented. The processors and channels are shownin
Figure 1. Therouting agorithm permits only minimal routing, with the exception of channel cp,.
Channél cp, can be used by a message destined for only node n3. Clearly, thisrouting algorithmis
not coherent, since a message from n, to n3 can be routed through n, using channel cg,, however,
amessage from n, to n; cannot use channd cp,.

The CW G for thisrouting algorithm has a Fal se Resource Cycle and a True Cycle. A message
whose input channel is cgy can wait for c4; or cyy. If the message waits for c41, thereisa True
Cyclefrom c4; t0 c41 that uses cg,. Otherwise, the True Cycleisacyclefrom ¢y t0 ¢y that uses
cpo. Thereis a Fase Resource Cycle that involves two messages. A message that occupies ¢ 4;
and cg, and waits for ¢y, and a message that occupies ¢y, and cg, and waitsfor c4;. Obvioudly,



this False Resource Cycle exists only because both messages simultaneously occupy cgo, Whichis
impossible.

6 Necessary and Sufficient Condition

A message is unable to proceed when al output channels the message is permitted to use are busy.
Thissituation can beresolvedinoneof two different ways. (1) Themessage could wait for aspecific
output channel to become free or (2) The message could wait until any permitted output channel
becomes free. For case (1), the routing algorithm cannot choose to wait for an arbitrary channel,
but must choose achannel for which waiting is permitted. Although it is possible that the message
has more than one waiting channel, once a waiting channel is chosen, the message must wait for
that specific channel to becomefree. For case(2), the message al so hasthe possibility of waiting on
asubset of more than one output channel. In fact, case (2) includes any routing algorithm that does
not conformto case (1). Thatis, any routing algorithm that does not sel ect aspecific waiting channel
and wait for that channel until it becomes free. We first prove a necessary and sufficient condition
for routing algorithms that belong to case (1), followed by a necessary and sufficient condition for
routing algorithms that belong to case (2).

Theorem 2 Arouting algorithm, R 4, that requires a message to wait for a specific output channel
is deadlock-freeiff R 4 iswait-connected and the CW G for R 4 hasno True Cycles.

Proof. First note that R 4 is wait-connected by definition. By Theorem 1, an acyclic CWG isa
sufficient condition for deadlock freedom. A False Resource Cycle cannot result in deadlock, so
any False Resource Cycles can beignored. Since there are no True Cycles, the routing algorithm
is deadlock-free.

To prove necessity, assumethat a True Cycle with n messages exists. A deadlock configuration
can be created from this True Cycle. For each i < n, alow message m; to occupy channel c;,
some additional channels if necessary, and then wait to acquire channel ¢;_ ; occupied by message
mit1. (Assume that m; and ¢, are defined as before.) Similarly, message m,, occupies channel ¢/,
and waits for channel ¢}. Since thisis a True Cycle, it is possible to generate a set of messages
that are able to occupy the appropriate channel(s) and then wait for the appropriate channel. To
force m; to wait for the appropriate channel, it is necessary to guarantee that every output channel
m, could use at this node is busy. For any output channel available to m; that is also available to
the source, assume the source has injected a message that is occupying this channel. If R 4 is not
suffix-closed, however, it is possible that some of the output channels available to m; can be used
only by messages arriving on the input channel used by m;. For these output channels, assume that
aprevious message, m;, used thisinput channel and was forwarded on one of the output channels.
In addition, the length of m; isassumed to be short enough that it rel eases the input channel that m;
uses, however, m; islong enough that it occupiesthe output channel at thisnode. By Assumption 2,
m; isnot necessarily removed from the network immediately, so it is possible that m ; occupiesthis
output channel for a short amount of time. Hence, it is always possible to force m; to wait for ¢ ;.
Clearly, each message in the set is waiting for a channel occupied by another message in the set
and none of the messages can make progress. Therefore, a deadlock configuration can always be
constructed from a True Cycle. O



For routing algorithms that permit a message to wait for any of the output channels to become
free, an acyclic CW G is not a necessary condition. Since a blocked message may have multiple
waiting channels, messages may be able to avoid channels that form cyclesin the CW G by using
an alternative channel that is not part of a cycle. Deadlock can be avoided, however, only if at
least one of the waiting channels is guaranteed to become free. For this reason, we selectively
remove edges from the CW G to resolve al True Cycles, as long as the routing algorithm for the
resulting graph, CW G, remains wait-connected. We next prove that if no such CW G’ exists, then
therouting algorithmis not deadlock-free. If suchaCW G’ does exist, however, then the following
theorem can be used to prove deadlock freedom.

Theorem 3 A routing algorithm, R4, that permits a message to wait for any output channel is
deadlock-free iff R 4 is wait-connected for some subgraph of the CW G, called CW G’, and this
CWG" hasno True Cycles.

Proof. If R, iswait-connected for the CW G and the CW G has no True Cycles, then the result
follows immediately from Theorem 2, with CWG = CWG'. Assume the CW G contains True
Cycles. Inthiscase, R4 must be wait-connected for some CW G’ without True Cycles.

Wefirst provesufficiency. Consider apotential deadlock configurationfor R 4, involvingacycle
of n messages(n > 0). Thisrequiresthat every messagein the configurationiswaiting for channels
occupied by itself or another messagein the cycle. Since R 4 iswait-connected for CW G’ at |least
one of the waiting channels for each message isin CWG'. Because CW G’ has no True Cycles,
an output channel in CW G’ eventually becomes free and some message in the set is forwarded.
There is no guarantee, however, that the output channel the message, m;, eventually acquiresis a
channel in CWG'. (It is possible that m; isforwarded along a different channel before an output
channel in CW G’ becomesfree.) If m; hasreached its destination, then the cycle hasbeen resol ved.
Otherwise, whether or not m; acquires a channel in CW G’, m; can acquire an output channel in
CW G' a the next node because R 4 iswait-connected for CTWG'. Hence, one of the messages can
always be routed and a deadlock configuration cannot occur.

We now prove necessity by showing that the routing algorithm is not deadlock-free if every
wait-connected CW G’ has True Cycles. Assume that every wait-connected CW G’ has True Cy-
cles. Hence, it is possible to generate a set of messages, each of which has no waiting channel
guaranteed to become available.! Furthermore, these messages are al blocking each other, since
otherwiseit would be possibleto guarantee that awaiting channel becomesfree. Therefore, await-
connected C'W G” without True Cycles must exist for every deadlock-free routing algorithm. O

By using the necessary and sufficient condition just proposed, it is possible to prove that the
incoherent routing algorithm previously discussed is deadlock-free. The routing algorithm is not
deadlock-free, however, if a message waits for a specific channel to become free. Consider two
messages. one from ny to n3 and one from n; to n3. Assume the message from n; to n3 occupies
ci and cgo and the message from ngy to n3 OCCUPIES ¢y, ca1, and cpy. If this second message
waits for ¢4, then a deadlock configuration occurs. If this message instead waits for ¢y, then a
deadlock configuration occurs when the first message occupies c 4, instead of ¢y, and the second
message occupies ¢y instead of c41. Since the routing algorithm does not know which channels

LIn fact, if even one of these messages, m;, has awaiting channel that becomes free, then either all the messages
do or the remaining messages in the set (without m;) form a deadlock configuration.
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Figure 2: The CW G for the Incoherent Routing Algorithm

have already been used by amessage when sel ecting awaiting channel, the routing algorithmis not
deadlock-free if the message waits for a specific channel. On the other hand, if the message waits
for both ¢4, and ¢y, then by Theorem 3 the routing algorithm is deadlock-free. Figure 2 depicts
the CW @G for this routing algorithm. As discussed previously, there are True Cycles and a False
Resource Cyclein this channel waiting graph.

The CW G has True Cycles, however it ispossibleto create aC'W G’ with no True Cyclessince
the routing algorithm is deadlock-free. Edges are removed from the CW G to create CW G’ using
the following observations:

e Sinceany messagewaiting for ¢ isguaranteed to reach nz and both ¢z, and ¢, can be used
only by messages whose destinationisns, no message isrequired to wait for cg,. Therefore,
the routing algorithm remainswait-connected for CW G’ evenif all edgesto cg, areremoved
fromthe CWG.

e A messagethat arriveson ¢, Whileoccupying c 4, eventually acquirescy, Sincethemessage
occupying cy1 is destined for either ny or ng. If the destination is n,, then the message has
reached its destination and ¢ will become free. If the destination is n3, then the message
occupying ¢y iseither occupying cyo Or waiting for c2. Since any messagewaiting for cyo
eventually reaches ns, cy; eventually becomes free. Similarly, amessagethat arriveson cp,
while occupying cg1 eventually acquires c4;. Therefore, the edge from c4; to ¢4, and the
edge from ¢y to ¢ can be removed from CW G’ to create anew CW G’ and the routing
algorithm is still wait-connected for thisnew CW G'.

Figure 3 depicts CW G’ after these two modifications have been made. Thereareno True Cycles
in CWG'. Theonly cyclein CWG' is a False Resource Cycle from c4; t0 ¢y and back to c 41,
which requiresthat both messagesin the cycle occupy cg2. Since R 4 iswait-connected for CW G,
deadlock freedom followsimmediately from Theorem 3. Inthe next section, we present aprocedure
for distinguishing between False Resource Cycles and True Cycles.
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7 False Resource Cycles

The CW G isastatic graph, however, the dependencies that arise among the channels are dynamic.
False Resource Cycles capture this notion of dynamic dependencies among the channels. When
two edges in the CW G require the use of a common channel, then these two dependencies cannot
occur simultaneoudly. A cycleinthe CW G that isformed from such dependencies cannot occur in
reality, and hence, cannot lead to a deadlock configuration. False Resource Cycles can arise with
minimal or nonminimal routing. Duato’s incoherent routing algorithm is an example of the latter.

Figure 4: A False Resource Cycle for Minimal Routing

We now present an example of a False Resource Cycle for minimal routing.

7.1 Examplewith Minimal Routing

Therouting algorithmis presented for thering (1D torus) shown in Figure 4, which aso depicts
a False Resource Cycle that occurs when the messages are routed in the clockwise direction. The
multiprocessor shown in Figure4 consistsof ten nodes, labeled ng throughng. Therearefour virtual
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channels per physical channel, except for the channel between nodes ng and ng, which has five
virtual channels. There are six messages active in the network, m through mg. In the upper left-
hand corner of anode, Si is used to denote this node as the source of message m;. Likewise, inthe
upper right-hand corner of anode, D is used to denote this node as the destination of message m;.
A message appears above each virtual channel that it currently occupies. For example, m; isusing
thefirst virtual channel between ny and n;.

The routing agorithm permits a message to use V' (', if the destination of the message is an
even-numbered node and V C;, if the destination is an odd-numbered node. A messageon V' C or
V(s stayson VCy or V Oy, respectively, until a wrap-around channel is used. The message then
switchesfrom V C; 1o V C(i12)ymoas- IN addition, any message routing from node ng to (or through)
nodeng isalowedtouse V (5. After amessage usesV (i, the messagerouteseither on V' (s, if the
destination is an odd-numbered node, or on V (4, if the destination is an even-numbered node. It
ispossibleto create acycleinthe CW G only if two messages arrive at node ng and both messages
leave ng on V(5. Clearly, both messages cannot occupy V (s at the same time, so thisisa False
Resource Cycle. Thereare no True Cyclesinthe CW G, so deadlock freedom followsimmediately
from Theorem 2.

7.2 Testing for False Resource Cycles

In order to create a cycle, each message in the set, m;, must acquire c; before m,;_; arrives at c;.
Thisisalways possiblewith a True Cycle, since each message occupies different channels. A False
Resource Cycle, however, requiresthat at least two messagesin the cycle share achannel. A False
Resource Cycle can arise in two ways. Either a channel within the cycle is shared or a channel
outside the cycle is shared by at least two messages in the cycle prior to entering the cycle. If the
shared channel is part of the cycle, then each message, m;, that uses the shared channel has aready
acquired ;. Hence, the Fal se Resource Cyclewouldinstead beaTrue Cycleif every m; could reach
c;, Without sharing achannel. Ontheother hand, if the shared channel isused prior to the channels
in the cycle, then a False Resource Cycle results from the inability of m; to acquire ¢; beforem;_; .
The False Resource Cyclewould instead bea True Cycleif m; could reach ¢; without using ashared
channel.

Thefirst possibility to consider isaFalse Resource Cycle involving only the channelsthat form
the cycle. We need to consider channels at only those nodes that are used by more than one mes-
sage in the cycle. A message that can form its part of the cycle without using any node used by
another message in the cycle cannot be using a shared channel. Hence, ignore any message that
can route through nodes that no other message in the cycle can use. For the remaining messages,
seeif achannel-digoint path can be found for each message. Thisisdone by arbitrarily choosing a
path for one of these remaining messages. Continue selecting channel-digoint paths for the other
remaining messages. If achannel-disjoint path can befound for each message, thenthereisno False
Resource Cycle formed with the channels used in the cycle. Otherwise, backtrack, selecting a dif-
ferent channel-digjoint path for the previous message. If al possible paths have been considered
and thereis still no channel-digioint path for all messages, then thisis a False Resource Cycle.

The second possibility to consider is a False Resource Cycle created only when at least two
messages share a channel that is used prior to the cycle. This possibility is considered only if a
channel-dig oint path within the cycleexistsfor each messageinthecycle. Furthermore, thissecond
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possibility can occur only with routing algorithmsthat are not suffix-closed. If arouting algorithmis
suffix-closed, then any cycle can be formed without using channels outside the cycle. For routing
algorithms that are not suffix-closed, first ignore any message, m;, that can route from c; to ¢,
wherethe source of messagem; could beat ¢,. Next, ignore any message that could routeto ¢ using
nodes that no other message in the cycle can use. For the remaining messages, consider the paths
that a message could take to reach ¢;. Proceed as in the previous case, selecting channel-digjoint
paths and backtracking as necessary. If achannel-digoint path can be found for each message, then
thisis a True Cycle. Otherwise, this cycle may be a False Resource Cycle. We do not have an
algorithmic method of determining this.

A messagethat uses a shared channel outside the cycle can be short enough to rel ease this chan-
nel after it has been used and hold only the channels that form its part of the cycle. Hence, even
though the channel is shared by more than one message in the cycle, the channel could be shared
consecutively rather than simultaneoudly. If the cycle can be formed when the shared channels are
used consecutively rather than simultaneously, then it isa True Cycle. Otherwisg, it isaFalse Re-
source Cycle.

8 ldentifying CW G’

In this section, a formal design methodology for reducing the CW G to CW G’ is described. This
methodology is needed only for routing algorithmsthat do not require a message to wait for a spe-
cific output channel. The design methodol ogy requiresthe identification of al cyclesinthe CWG.
Since the number of cyclesin the CW G could be exponential in the number of channels, finding
aCWG' requires an exponentia time algorithm. Other genera techniques for proving deadlock
freedom [11, 14, 23] aso require exponential time in the worst case. The agorithm for reducing
the CW G to CWG' has the following steps:

1. Create alist, L, of al cyclesin the CWG. Each entry in L contains three sets: s;, the set
of edges that form the cycle, s,, the set of edges in the cycle the algorithm has attempted to
remove, and ss, the set of edges that are currently removed from the cycle. Initialy, s, =
s3 = () for al cyclesin L. Also keep an ordered list of True Cycles that have been resolved.
Thislist isused for backtracking.

2. Remove al False Resource Cyclesfrom L. Thisisdone by examining each cyclein L using
the method described in Section 7.2 or informally by inspecting the CW G. Label the True
CyclesTC; (1 =1,2,...,n)andlet: = 1.

3. Remove an edge from T'C;; as long as the routing agorithm remains wait-connected. Any
edge that cannot be removed with the routing algorithm still wait-connected is added to ss.

4. If every edge in T'C; is required for the routing algorithm to remain wait-connected, then
backtrack to the previous True Cycle. Before backtracking, reset s, = s3 = () for TC;.
Remove the appropriate edge in s; from this previous True Cycle, but leave thisedgein s,,
sinceit has already been tried.
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5. Otherwise, T'C'; can be resolved, so add this edge to s, and s3. Choose the next True Cycle
from L with s; = () and s; does not contain any edge that isin s; for aresolved True Cycle.
Set 7 to the corresponding number for this cycle.

6. Repeat steps 3 —5 until all True Cyclesin L have been resolved or the routing algorithm has
backtracked to 7'C'; and the algorithm has already attempted to remove every edge7'C,. If dl
True Cyclesin L have been resolved, then the routing algorithm is deadl ock-free and CW G’
consists of the edges that have not been removed. Otherwise, no acyclic CW G’ exists for
this routing algorithm, so the routing algorithm is not deadl ock-free.

Example Reduction

Through inspection of the CW G, we have proved deadlock freedom for the incoherent routing al-
gorithm proposed by Duato. We now illustrate the formal methodology proposed in Section 8 by
proving deadlock freedom for the same routing algorithm.

Initialy, L isthelist of al cycles:

I :{ {car HOHO}, {can HOIH 0}, {cp}{0}{0}, }
{can, e HOHO}, {car, ca2 HOHOY, {emn, o HOH O}

Through either inspection or the application of the approach described in Section 7.2, the cycle
{ca1,cy1} 1sshown to be a False Resource Cycle. Hence, this cycle is removed from L. All the
other cycles are True Cycles. After labeling the cycles, L is:

I _ { TCy : {ca H{OHO}, TCo : {cm HOMHO}, TCs = {cp2}H{O}{0}, }
TCy:{car,cp {00}, TCs : {cu1, c }{0}{0}

Seti = 1 andremovecy, fromT'C,. Since cy, isasoawaiting channel, the routing algorithm
is still wait-connected. Likewise, set 7 = 2 and remove cy; from T'C, and then set 7 = 3 and
remove cgy from T'Cy. Next, set i = 4 and remove ¢4, from T'Cy. The routing algorithm is still
wait-connected, because the message that occupies ¢, can wait for ¢;. Finally, set ¢ = 5 and
remove cy; from T'Cs. Therouting algorithm is no longer wait-connected, because a message that
OCCUpi€es cgo cannot wait for c4; or . Instead, remove cp, from T'Cs. This prevents a message
on cyy from waiting for cgo, however, the routing algorithm is still wait-connected, because ¢y
can wait for cz2. Notethat this CW G’ isdifferent from the one depicted in Figure 3. All five True
Cycleshave been resolved and therouting al gorithmisstill wait-connected, so the routing algorithm
is deadlock-free. L contains the following information:

TC : {CA1}{CA1}{CA1},T02 : {CHl}{CHl}{CHl}a
L=< TCs:{cpo}{cp2H{ecpa}, TCys: {ca1,cB2}{cai}{car},
TCs : {CH1, CBQ}{CHl, CB2}{CB2}
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9 Routing Examples

In order to demonstrate the usefulness of the necessary and sufficient condition, a partialy adap-
tive nonminimal routing algorithm for n-dimensional meshes is proposed. The routing algorithm
does not require any virtual channels and does not have an acyclic channel dependency graph. Our
methodology isalso used to show deadlock freedom for afully adaptive minimal hypercube routing
algorithm. The necessary and sufficient condition is then used to prove that any relaxation of the
restrictions imposed by the routing algorithm introduces the possibility of deadlock.

9.1 Previous Routing Algorithms

Torus and hypercube topol ogies can be characterized as k-ary n-cubes, where k isthe radix and n
isthe dimension. For example, an 8D hypercube isa2-ary 8-cubeand a 16 x 16 torusisal16-ary
2-cube. An n-dimensional mesh is similar to a torus, except a mesh does not have wrap-around
channels.

Partially adaptive routing algorithms for wormhole-routed hypercubes and meshes have been
proposed by many authors|[2, 4, 10, 16, 18, 22, 30]. Bouraand Das[2] aswell as Glassand Ni [16,
18] have proposed methodsfor producing partially adaptive routing algorithms for hypercubes and
meshes. The partially adaptive routing algorithm for hypercubes proposed by Li [22] has the addi-
tional advantage of ensuring that the multiple paths are edge-disjoint for many source-destination
pairs. All threealgorithmsrequire only asinglevirtual channel per physical channel. In Section 9.2,
we show how to increase the adaptivenessin amesh without virtual channels by using arouting al-
gorithm that permits cycles in the channel dependency graph.

The hypercube routing algorithm proposed by Draper and Ghosh [10] usestwo virtua channels
for each physical channel. Each message routes in dimension order along the first set of channels,
but may skip some dimensions in which the message needs to route. The message then routes in
dimension order along the second set of channels. The message can no longer skip dimensions and
must wait for the channels to become free. The hypercube routing algorithm proposed by Yang
and Tsai [30] also requires two virtual channels per physical channel. A message first uses any
dimension in which it needs to route in a positive direction. When the message finishes with all
such dimensions or finds them all busy, the message repeats this process for all negative directions.
The message then switches to the second set of virtual channels and routes first in all remaining
positive directions and then in al remaining negative directions, waiting for busy channels when
necessary.

A fully adaptive hypercube routing al gorithm has been proposed by severa authors[11, 20, 23,
29]. Thisrouting agorithm requires two virtual channels per physical channel. A message routes
in dimension order along the first set of virtual channels. Each message aso has the possibility of
routing in any dimension that moves the message closer to the destination aong the second set of
virtua channels.

Besides routing al gorithms proposed specifically for hypercubes, any routing agorithm for ar-
bitrary dimension meshesor tori can be extended to hypercubes, since an n-dimensional hypercube
isaspecial case of an n-dimensiona mesh or torus. Only afew fully adaptive routing agorithms
have been designed for n-dimensional mesh and torus topologies|[1, 8, 21, 24, 27, 28]. When re-
stricted to hypercubes, the routing algorithms proposed by Jesshope, Miller, and Yantchev [21],
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and by Linder and Harden [24] require more virtual channels than the routing algorithm proposed
by Duato [11]. The routing agorithm proposed by Dally and Aoki [8] is more restrictive than the
routing algorithm proposed by Duato. The routing algorithm proposed by Berman, et al. [1], when
restricted to hypercubes, is equivalent to the routing algorithm proposed by Duato. Only the rout-
ing algorithm proposed by Schwiebert and Jayasimha|[28], when modified for hypercubes, is more
adaptive than the routing algorithm proposed by Duato.

Therouting algorithm proposed by Duato [11] usesthefirst set of virtual channelsfor nonadap-
tive routing and the second set of virtual channels for fully adaptive routing. In Section 9.3, we
show how to increase adaptiveness by using the first set of virtual channels for partialy adaptive
routing.

9.2 Mesh Routing Algorithm

We now propose apartialy adaptive nonminimal routing algorithm for meshesthat does not contain
an acyclic channel dependency graph and does not require any virtual channels. (For a 2D mesh,
thisrouting algorithmis similar to north-last proposed by Glassand Ni [18, 19], although our rout-
ing algorithm permits messages to make more 180° turns.) This new routing algorithm, called the
Highest Positive Last routing algorithm, is defined bel ow.

Let h bethe highest dimensioninwhich the message still needsto routein the negativedirection
to reach the destination. The following set of restrictionsis applied to the channels:

e A message can use any channel in a dimension lower than &, even if the message does not
need to route in that direction, so nonminimal routing is permitted. A message can aso route
in the negative direction of dimension .

e A message that needs to route in only positive directions must use the positive channelsin
increasing dimension order, although the message is permitted to misroute in the negative
direction of ahigher dimension if desired.

¢ A messageisallowed to makea180° turn from the negative direction to the positive direction
if the message needsto routein the positivedirection. A messageis permitted to makea180°
turn from the positivedirection to the negative direction only when the message needsto route
in the negative direction of this dimension and some higher dimension.

e If all output channels a message can use are busy, the message waits for the channel in the
negative direction of dimension A. If the message needs to route only in positive directions,
then the message waits for the channel in the positive direction of the lowest dimension in
which the message needs to route.

Note: Alternatively, therouting algorithm could allow amessageto wait for any channel that moves
the message toward the destination. In this case, CW G’ consists of the waiting channels just de-
scribed and deadlock freedom is proved using Theorem 3.

TheHighest Positive Last routing algorithm hasarouting relation of theform R : Cx Nx N —
C?. For example, consider amessage that needsto route only East and North. When the messageis
due South of its destination, the message is permitted to route South if the input channel was East,
however, the message cannot route South if the input channel was North. (If thisrestriction is not
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imposed, the routing algorithm is not deadlock-free.) The routing algorithm is not coherent even
for minimal paths. For example, on an 8 x 8 x 8 mesh, a message from (4, 4, 2) to (5,5,1) can
route through (4, 5, 2), however, amessage from (4, 4, 2) to (5, 5, 2) cannot route through (4, 5, 2).
Finally, the routing algorithm does not have an acyclic channel dependency graph, but does have an
acyclic channel waiting graph. For example, amessage that needsto route in the negative direction
of the Z dimension can use the channelsinthe X and Y dimensionsin any order, but always waits
for the channel in the negative direction of the Z dimension. Duato’s proof technique cannot be
applied to the Highest Positive Last routing agorithm, because the routing relation is of the form
R:CxNxN — (CP.

The routing agorithm allows substantially more minimal paths than any previously proposed
mesh routing algorithm that requires only one channel. Previous partially adaptive routing algo-
rithmshaverequired an acyclic channel dependency graph. For example, Glassand Ni [19] propose
the negative-first routing algorithm for n-dimensional meshes. The negative-first routing algorithm
requires messagesto route in all negative directions and then all positive directions. The negative-
first routing algorithm aso permits nonminimal routing on the negative channels before using any
positive channels. Glass and Ni prove that an acyclic channel dependency graph prohibits at |east
n(n—1) 90° turnsfor an n-dimensiona mesh. With negative-first, amessage cannot use anegative
channel after using a positive channel, so each of the n positive channelsis prohibited from using
the negative channdl in the other n — 1 dimensions. The Highest Positive Last routing algorithm
does not allow a message to use a channel in alower dimension after using the positive channel in
a higher dimension, which restricts n(n — 1) 90° turns, however, the restrictions imposed by the
Highest Positive Last routing algorithm are not absolute. A message can use a positive channel be-
fore achannel in alower dimension whenever the message needs to route in the negative direction
of sometill higher dimension. Thisisasignificant relaxation of the routing restrictions, especially
on the positive channel in the lower dimensions. Although the positive channel in dimension i can-
not be used before the positive or negative channel in alower dimension, thisrestrictionisremoved
when the message a so needs to route in the negative direction of any dimension higher thani. The
lower the dimension, the more likely this restriction can be relaxed.

Theorem 4 The Highest Positive Last routing algorithmis deadl ock-free.

Proof. This proof uses the necessary and sufficient condition proved in Theorem 2. Any cyclein
the CW G requires at | east two dimensions, since a message routing in the positive direction cannot
wait for achannel in the negative direction without first routing in the negative direction of another
dimension. Consider any potential cycleinthe CW G involving the channel s used by the messages
that form the cycle. It is possible to partition this cycle into two hyperplanes by dividing the cycle
along the highest dimension used in the cycle. For the cycle to exist, some message must use a
channel in the positive direction of the highest dimension in the cycle and then wait for a channel
in another dimension in the positive half. In other words, some message must cross the partitionin
the positive direction and then wait for a channel in this half of the partition for the cycle to exist.
A message is not permitted to use a channel in the positive direction and then wait for a channel
in alower dimension without first using a channel in the negative direction of a higher dimension.
Since the message has already used the positive direction of the highest dimension in the cycle,
the message has not used the negative channel in astill higher dimension. Thus, no message in the
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cycle can satisfy thisrequirement and the CW GG isacyclic. Deadlock freedom followsimmediately
from Theorem 2. O

9.3 Hypercube Routing Algorithm

Thefollowing conventionsare used in thissection. Channelsare assumed to be bidirectional virtual
channels. VC? , isused to denotevirtual channel n in the + direction of dimension. For example,
VC?_ isvirtua channel one in the negative direction of the third dimension. An asterisk in the
superscript denotes all dimensions. Thus, V C5_ denotes the second virtual channel in the negative
direction of all dimensions.

Each node of an n-dimensional hypercube can be uniquely labeled using an » bit string. The
source of a message isdenoted S = (Sp—1, Sp—2, - - -, S1, So) and the destination is denoted D =
(dp-1,dp_o,-..,d1,dy). A message routes from the source to the destination by routing in dimen-
sionsin which the corresponding bit in the source differs from that of the destination. The message
routesin the positivedirection of dimensioni if s; = 0 and d; = 1. Similarly, the message routesin
the negative direction of dimension: if s; = 1 and d; = 0. With minimal routing, a message routes
in each dimension at most once and a message does not route in dimension s if s; = d;.

We now propose afully adaptive minimal routing algorithm for hypercubes. All previousfully
adaptive routing agorithms for hypercubes require nonadaptive routing on the first set of virtual
channels. This new routing algorithm permits partially adaptive routing on the first set of virtual
channels. Therouting algorithm, called the Enhanced Fully Adaptive routing agorithm, is defined
by the following steps:

e Assign two bidirectional virtua channelsto each dimension.

e Allow amessage to route aong the second virtual channel at any time.

Let [ be the lowest dimension in which the message still needs to route. The following set of re-
strictionsis applied to the first set of virtual channels:

e A message that needsto route in the negative direction of dimension/ can use any of thefirst
set of virtual channels.

e A message that needs to route in the positive direction of dimension ! must use VC1, .
e If all output channels a message can use are busy, the message waits for VC'.

Note: Alternatively, this routing algorithm could allow a message to wait for any output channel
it is permitted to use. For this alternative, CW G’ is restricted to the first virtual channel in the
lowest dimension in which the message needsto route. CW G’ isthen equivalent to the CW G just
defined. Hence, the proof of deadl ock freedom isunchanged, except that Theorem 3isused to prove
deadlock freedom.

This routing algorithm is substantially more adaptive than any previously proposed fully adap-
tive hypercube routing algorithm. The Enhanced Fully Adaptive routing algorithm restricts when
amessage can use thefirst virtual channel in the positive direction after using thefirst virtual chan-
nel in ahigher dimension. A message can use the first virtual channel in a higher dimension first
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Comparison of Enhanced, e-cube, and Duato’s Algorithms

1.0 &

[ [ [ [ [ [ [ [ [
LN  Enhanced <—
09 ";"'ﬁ""\';' """ - L o S ;'"Duatoy'#'!!'
| | | | | ~ecube &
0.8 - 3\ < : : : 1 1
g o T
3 |
= 0.6 : : :
g s s o s N i i s ; :
$oospo B
5 | | RN S N | | |
04 | S e SR R I e SR e 1
% 3 3 B S N | |
a 03 D o g R NG o 7
| | | | e | | e
02 | G e R e R
| | | | | o | | i
0L [ e e R o R i T R e .
s s s s s s s s [ RO
00 - - - - - - - - Ly
1 2 3 4 5 6 7 8 9 10 11 12
Hypercube Dimensions

Figure 5: Degree of Adaptivenessfor Hypercube Routing Algorithms

whenever the message needsto route in the negative direction of thelowest dimensioninwhich the
message still needs to route. Thisis a significant relaxation of the routing restrictions, especially
compared with using dimension-order routing on the first set of virtual channels.

Toillustratetheincrease in adaptiveness, we present the degree of adaptiveness of Duato’srout-
ing algorithm and the Enhanced Fully Adaptive routing algorithmin Figure 5. The degree of adap-
tivenessisthe ratio of the number of paths permitted by the routing algorithm, to the total number
of paths, averaged over all source-destination pairs [18]. For comparison, the degree of adaptive-
ness for e-cube (nonadaptive dimension-order) routing is aso shown. Surprisingly, the degree of
adaptiveness is not zero for nonadaptive routing, because nonadaptive routing always alows one
of paths and the degree of adaptiveness would be zero only if there were no permitted paths. There
arerelatively few pathswhen the sourceis near the destination, so even asingle path can represent a
relatively large portion of the paths. For example, nonadaptive routing can use half the paths when
the distance between the source and destination is two hops.

Theorem 5 The Enhanced Fully Adaptive routing algorithmis deadl ock-free.

Proof. This proof uses the necessary and sufficient condition proved in Theorem 2. R 4 is walit-
connected, since amessage isaways permitted to wait for virtual channel onein thelowest dimen-
sion in which the message needs to route. A message can wait for only V' C7, so any cyclein the
CW G must be created from waiting dependencies among the V' C7 channels (although V' C; chan-
nels could be used to create these dependencies). Since minimal routing is used, any cycle in the
CW G requiresat least two dimensionsand must use both directions of each dimensioninthecycle.
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Let [ be the lowest dimension of apotentia cycle. A cycleinthe CW G requires one of two situa-
tions: either amessage, m;, waitsfor VC1_ after using V C7 in ahigher dimension of the cycle or
m; usesV C!, or VCY, afterusingV Cy inahigher dimensionand thenwaitsfor VC inadifferent
higher dimension. (Since is the lowest dimension in the cycle, m; does not need to route in any
dimension lower than [ after using V' C in ahigher dimension. Otherwise m; would be waiting for
achannel in thislower dimension and / would not be the lowest dimension in the cycle.) Clearly,
neither situation can occur, sincem; cannot use V' C} in ahigher dimension when m; needsto route
inVC%. and ! isthe lowest dimension in which m; needsto route. Therefore, the routing algorithm
is deadlock-free. O

The Enhanced Fully Adaptive routing algorithm is not coherent. For example, consider the 3D
hypercube depicted in Figure 6. A messagefrom ns tony can routethroughn, using thefirst virtual
channel and then route through n3, however, a message from n; to n3 cannot route through n; us-
ing thefirst virtual channel. Thus, the Enhanced Fully Adaptive routing algorithm is not coherent,
becauseitisnot prefix-closed. Sincethe routing algorithmisnot coherent, Duato’s proof technique
cannot be used to prove Theorem 6.

Theorem 6 No restrictionsimposed on the Enhanced Fully Adaptive routing algorithmcan bere-
laxed without permitting a deadlock configuration.

Proof. Thereare no restrictionson the use of the second set of virtual channels, so therestrictionson
only thefirst set of virtual channelsmust be considered. Theonly restriction onthefirst set of virtual
channelsisthat achannel in ahigher dimension cannot be used by a message that needsto routein
the positive direction of the lowest dimension in which the message needs to route. Without |oss of
generdlity, let | be the lowest dimension and assume that the channel used in ahigher dimensionis
thefirst virtual channel in the positive direction of dimension . Thereisnow an edgeinthe CWG
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from VCi, to VC!i,. The CWG dready has edges from VC!, to VCi_, fromVCi_to VC!:_,
and from VC!_ to VC?, . These edges form a True Cycle. A message waits for only VC! and the
routing algorithm is not deadlock-freeif V' C! is not awaiting channel. Thus, from Theorem 2, the
routing algorithm is no longer deadlock-free. O

10 Conclusion

In this paper, we present a necessary and sufficient condition for deadl ock-free adaptive wormhole
routing and thus solve an important open problem. Our result is general; the only restriction im-
posed is the use of local information for routing. Although routing could be based on non-local
information being used by arouter, the overhead of accumulating and processing such information
limits any practical use of such routing schemes. Only reasonable assumptions have been made,
and hence the necessary and sufficient condition should be broadly applicable. For clarity of expo-
sition, we have considered routing relations of theform R : C x N x N — CP. Different routing
relations may require modest changes to the definitions, but the same proof techniques should be
applicable. For example, routing relationssuchas R: N x N x N — C?, where the source node
rather than the input channel isused for routing, could be used. Deadlock freedom for such routing
algorithms still depends on the relationship among waiting channels.

By characterizing the problem of proving deadlock freedom in terms of channel waiting instead
of channel usage, the proofs of deadlock freedom become natural and straightforward. \We consider
this observation and its consequences to be the primary contributions of this paper. The usefulness
of our proof technique has been demonstrated with a partialy adaptive nonminimal routing algo-
rithm for n-dimensional meshes. This routing agorithm is more adaptive than any other routing
algorithm proposed for meshes without additional channels. The proof technique described in this
paper has al so been used to prove deadl ock freedom for afully adaptive minimal routing algorithm
for hypercubes. Thisnew hypercube routing algorithm is substantially more adaptive than any pre-
vious fully adaptive routing algorithm for hypercubes. The necessary and sufficient condition can
also be used to devel op adaptive routing algorithms for the torus and other topol ogies.

We have shown that the restrictions on the Enhanced Fully Adaptive routing algorithm cannot
berelaxed without creating adeadl ock configuration. It ispossible, although unlikely, that arouting
algorithmwith adifferent set of restrictions could be deadl ock-free while being lessrestrictive. The
number of restrictions cannot be reduced, however, since thereis only one restriction for each pair
of dimensions.

The degree of adaptivenessis much higher with the Enhanced Fully Adaptive routing algorithm
than with any previous fully adaptive routing algorithm for hypercubes. Although the degree of
adaptiveness is an important theoretical measure of the adaptiveness of routing algorithms, addi-
tional comparisons are required to make a compl ete eval uation of the performance of routing algo-
rithms. For example, simulations with a variety of message traffic patterns, especialy traffic pat-
ternsderived from real applications should provide a better indication of the expected performance
of various routing algorithms.

A partial result has been given for distinguishing between False Resource Cycles and True Cy-
cles. Thistechnique can be applied to any suffix-closed routing algorithm, which represents all but
avery restricted class of routing algorithms. In practice, theidentification of False Resource Cycles
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should not require resorting to this formal technique. A formal approach is provided, however, for
cases where the irregularity of either the interconnection network or the routing algorithm prevent
astraightforward analysis.

The proof of Theorem 3 requires the identification of CW G’. Thisis needed only for routing
algorithms that do not require a message to wait for a specific output channel. In general, it should
be straightforward to determine CW G’ for regular topologies such as k-ary n-cubes and meshes.
M ost existing topologiesareregular and thisregularity isusually incorporated into the routing algo-
rithm. However, aformal design methodology has been provided for those caseswhereit isdifficult
to reduce the CW G to CWG'. This automates the task of proving deadlock freedom and should
be of use for routing algorithm designers.
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