A Game-theoretic Approach to Storage Offloading in PoC-based Mobile Blockchain Mining

Suhan Jiang and Jie Wu
Dept. of Computer and Information Sciences
Temple University, USA

Blockchain Mining

- Blockchain is a digital ledger maintained by a P2P network
 - It records transactions in the form of chained blocks
 - It is duplicated and distributed across all miners in the network
- Mining is a process of adding new blocks
 - The mining network is decentralized
 - Miners must follow a consensus mechanism to append the blockchain
 - Example: Bitcoin and Proof of Work (PoW) mechanism

Proof-of-Capacity (PoC) Mechanism

- PoC-based blockchain mining
 - Mining is a deadline-finding race on miners' storage
 - Systems: Burst, Storj, Chia, SpaceMint
 - Steps: plotting and mining
 - Probability of finding the smallest deadline storage fraction = $\frac{\text{individual storage space}}{\text{network-wide storage space}}$

noi	scoop	0		j	•••	4095		
	1			v ₁ =350				
	2		\setminus	v ₂ =289				
	3			v ₃ =251				
	•••		1	• • •				
S _i V				$v_{s_i} = 511$				
	deadline $T_i = min\{v_1,, v_{s_i}\}$							

 m_i 's plot file

Motivation: Apply in Mobile Devices

- Few blockchain applications in mobile environments
 - Mobile devices cannot satisfy mining requirements
 - Limited storage space
 - PoC mining requires large space on the order of TB
 - Solution: storage offloading

- Offloading incurs two different mining method
 - self-mining and cloud-mining

Self-Mining vs. Cloud-Mining

Tradeoff between delay and cost

- Cloud-mining (1)
 - Employ VMs provided by CSP
 - Eliminate download delay
 - Increase cost on VM employment
- Self-mining (2)
 - Download scoops and compute locally
 - Avoid extra cost
 - Incur download delay (d)

Mining Reward, Cost, and Utility

- Individual utility (U_i) :
 - Difference between expected rewards and costs

$$U_i = RP_i - C_i$$

- R: single-round mining reward for the winner
- P_i : miner i's winning probability in a mining round
- C_i : miner i's cost in a mining round

$$C_i = C_i^s + C_i^c$$

storage computation

Problem Formulation

- ullet Nash game of n miners that maximizes utility U_i
 - Decide on how many storage units to buy from the CSP
 - Obecide on the ratio between cloud-mining (x_i) and self-mining (y_i)
- Miner objective
 - Obetermine x_i and y_i under budget limitation b_i to maximize $U_i = RP_i C_i$
 - Winning probability: $P_i = P_i^c + P_i^s$
 - effects of delay: $\beta(d,X) = 1 (1 \frac{d}{D})^X$, $X = \sum_{l=1}^n x_l$
 - d is the download delay and
 - D is the mining difficulty (block generation interval)

• Cost:
$$C_i = p_s(x_i + y_i) + p_c x_i$$

storage computation

Validation of Winning Probability

- P_i combines winning both in cloud-mining and self-mining
 - $P_i = P_i^c + P_i^s$

•
$$P_i^c = \frac{x_i}{S} + \frac{x_i}{X} \frac{Y}{S} \beta$$
, and $P_i^S = \frac{y_i}{S} - \frac{y_i}{Y} \frac{Y}{S} \beta = y_i \frac{1-\beta}{S}$

- where $X = \sum_{i=1}^{n} x_i$ and $Y = \sum_{i=1}^{n} y_i$
- \circ **Theorem 1**. P_i is valid to express winning probability of individual miners in a mobile blockchain mining network
 - Proof: We present the full verification process by checking that $\sum_{i=1}^{N} P_i = 1$ always holds.

Game Analysis

Theorem 2. A unique NE exists in a miner game.

A best-response algorithm to find the unique NE point.

Theorem 3. If all miners have identical budgets b, each miner's request in NE can be expressed as

$$x_{i}^{*} = \frac{b\beta(n-1)}{p_{c}(n-\beta)},$$

$$y_{i}^{*} = \frac{b[(1-\beta)np_{c} - \beta(n-1)p_{s}]}{p_{s}p_{c}(n-\beta)},$$
where $\beta = 1 - (1 - \frac{d}{D})^{nx_{i}^{*}}$

Best Response Algorithm

Algorithm 1 Best Response Algorithm

if $r^{(k)} = r^{(k-1)}$ then Stop

else set $k \leftarrow k + 1$

7:

```
Output: r = \{r_1, \dots, r_n\} where r_i = (x_i, y_i), i \in \{1, n\}

Input: Initialize k as 1 and pick a feasible starting point r^{(0)}

1: for round k do

2: for miner i do

3: Decide r_i^{(k)} = r_i^{(k-1)} + \Delta \frac{\partial U_i(r_i, r_{-i}^{(k-1)})}{\partial r_i}

4: Send the request r_i^{(k)} to CSP

5: CSP collects the request profile r^{(k)}
```

Extensions: Different Network Delays

- Uniform delay
 - All miners experience an identical download delay
- Variable delays
 - Miners use different network settings, e.g. 5G, 4G, or 3G

Theorem 4. there exists at least one NE in the miner game under the variable delay setting.

A best response algorithm with guaranteed convergence is used to find one NE point.

Experiment

- Testbed setting for storage offloading
 - Plotting: Google Cloud
 - Mining: Burstcoin, a PoC-based blockchain application
 Average block generation interval: 4 min
 Mining over a plot file of 18 TB: 30s to 60s
- Miners' optimal strategies
 - Unique equilibrium in uniform delay networks
 - Equilibrium in variable delay networks

Equilibrium in Uniform Delay

- Miner i's optimal strategy is affected by
 - CSP's price set (p_s, p_c)
 - Download delay d
 - Self budget as well as other miners' budgets

Equilibrium in Variable Delay

- Influences of delay ratio
 - Settings:
 - 3 types of networks with a delay of $\theta_i d$, i = 1, 2, 3
 - Each network is used by 20 miners
 - Each miner has an identical budget 200, $(p_s, p_c) = (1, 12)$
 - O Units sold (x, y), based on delay ratio, i.e., θ_1 : θ_2 : θ_3

Miners' strategy profiles under different delay ratios.

	Ty	Туре1		Туре2		Туре3	
$\theta_1:\theta_2:\theta_3$	x	\overline{y}	x	\overline{y}	x	\overline{y}	
3:4:5	7.3	88.9	11.8	0	16.8	0	
4:5:6	12	31.7	13	0	14.8	0	
5:6:7	12.3	4.4	13.3	0	14.2	0	

miners with longer delays invest more on cloud mining

Equilibrium in Variable Delay (cont'd)

- Influences of the CSP prices
 - Settings:
 - 3 types of networks (5G, 4G, and 3G), where θ_1 : θ_2 : θ_3 = 3: 20: 500
 - Type i network is used by 1 miner
 - Each miner has an identical budget 200
 - O Units sold, based on CSP prices (p_s, p_c)

Miners' strategy profiles under different price sets.

	5G		4	4G		3G	
(p_s,p_c)	x	y	X	y	X	y	
(5, 15)	0	40	10	0	10	0	
(5, 20)	0	40	6.25	8.75	8	0	
(5, 25)	0	40	2.5	24.7	6.7	0	
(5, 30)	0	40	0.3	37.8	5.7	0	

miners invest more on self mining as p_c increases

5. Conclusion

- A Nash game among mobile PoC miners
 - Consider delay and cost tradeoff in mobile mining environment
 - Model the relation between winning probability and delay
 - Solve a price-based resource management problem
- Two network settings:
 - Uniform vs variable
- Experiments to confirm theoretical analysis

Thank you

Q&A

