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Background

e Wireless Networks are Ubiquitous
 WiF1
» 3G/4G Network

e Wireless Sensor Network

e Wireless Mesh Network

e Wireless Medium is shared

* The number of channels is limited -
* The bandwidth of channels is 1imited.mlﬂ;

 Spatial Reuse is conflict with Coverage
range f
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Wireless Network Optimization

FDM P S,

- Channel ~Leceecil Relation between
L © ool Interference and
Allocation

Capacity
TDM

*Link
Scheduling

Spatial Reuse
*Power Control

Interference Model
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WHY DO WE NEED A NEW MODE'”"

Accurate Measuremen Non-convex
{

A Quantized Conflict Fiqer- Me:saurpearlnen Classic Graph
Graph Model grained t Algorithm

Protocol Interference Coarse- Accumulative |l Classic Graph

Model (Conflict Graph) grained Interference Algorithm
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Physical Interference
Model (SINR Model)

} | Exhausting
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Motivation Example

((M)] RSS Measurement
GM Link pairs| RSS(uW)
AB,GH 0.55

’ GH
()

d CD,GH | 0.65

A EF.GH | 0.92 -

‘ % $ AB,CD | 0.45 /

CD,EF | 0.33

((M)] 2 H d. ﬁ ‘Rost | <610 b =F

Traditional conflict graph

0.45 O 0.16

@ @
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Motivation Example

AB,GH 0.55
CD,GH 0.65
EF,GH 0.92
AB,CD 0.45
CD,EF 0.33

((M)] RSS Measurement
M ‘ B % Link pairs | RSS(uW)
F

H ((M)] ‘Rest <010
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Interference
- 0.81

0.65
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QCG Definition

Pros

Quantized * Do not require an accurate RSS to
Conflict Graph get the same allocation Results

* Rough RSS representation could
increase the prediction accuracy

x X M
LCmaa:J

to map the RSS to the M-level weights in the graph

We apply a Step function f(:l?) —
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Properties of QCG

Exhaustive signal measurements at outdoor/indoor
WiFi networks

Avg # of APs # of
Dataset heard per measured
location locations
MetroFi Outdoor 7 70 2.3 30, 991
SWIM
Platform Indoor <1 10 5) 40

* Transformed into Quantized RSS Matrix
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Properties of QCG

e Explore the low—rank Property

10 20 30 40 50 60 70 1 2 3 6 7 8 9 10

4 5
# of Singular Value # of Singular Value
(a) MetroFi dataset. (b) SWIM dataset.
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Properties of QCG

 Explore the similarity between rows

(a) MetroFi dataset. (b) SWIM dataset.
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Efficient QCG Estimation

A .
Model . Exhaustive
Accurac measurements
y Our Goal
Non—measurément
methoéi\
® i

Measurement Cost

Our approach: measure a few, predict many
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Efficient QCG Estimation

e Basic ldea

Quantized
Conflict
Graph

Utilize the Properties of Quantized KSS Matrix

Treat Quantized RSS prediction as a Matrix Completion
Problem
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Efficient QCG Estimation

e Low-rank Approximation

A

min  rank(X)

A

X
S.t. Q%z'j = Tjj, (’L,]) e ()
Zf?ij e C,

Miss the similarity property between rows

“Measurement | | Rank " Propagation
Constraint Constraint Constraint
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Efficient QCG Estimation

e Similarity
o » (X —X)(X;l X;)

v ::\/235 (X — \/221 1 (X1 — )

* We applied the idea of k—nearest neighbor here

P z:keAu@j)Qs(kaj)xkj))
Y ZkeN(i,j) S(kaj)

Good to deal with the Matrix with small portion of Missing

Elements
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Efficient QCG Estimation

 (Comprehensive

e Trivial to combine the similarity and low-rank
approximation together and improve the accuracy

Use the low—-rank approximation to compute a matrix X

Compute the Similarity between rows in X

Apply the linear regression for k—largest similar rows to
compute weights

Compute un—known entries with the weights computed in last
step
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QCG-BASED OPTIMIZATION

Interference . Max K-cut
Emdmemesa * K channels, N nodes(links) - Problem
* Minimize the total network
interference
. ax Weighte
Scheduling * K channels, N nodes(links) Independent
* Minimize the total network Set
interference
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Evaluation

e Prediction Accuracy

S o

——Comprehensive
-©-Low-rank
—— Similarity

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Normalized MAE

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

00 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9

Portion of measured RSS

Comprehensive

Method

perform best with the
others mutually
complementary
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Normalized MAE
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—— Similarity

10

10

# of quantile

[ncrease the number of
levels larger than 10 only

slightly improve the
accuracy
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Evaluation

Wireless Network Optimization

Interference Reduction Ratio
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—*— RealMeasure
‘ ! ! | —--QCG
0.9%c -~ R A oo eeneens 1 BCG
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