
Fault-Tolerant Communication in Cube-Based Multiple-Bus Systems

Jie Wu

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

jie@cse.fau.edu

Abstract

We consider routing in multiple-bus systems with faulty nodes and buses. A cube-based

multiple-bus system is used as an example to demonstrate our approach. In such a system, proces-

sors are partitioned into two sets based on the bipartite graph definition, one set is called a processor

set and the other one becomes a bus set. A fault-tolerant routing scheme is proposed based on

limited global information of fault distribution captured by an integer called safety level associated

with each processor and bus. A safety level is an approximated measure of the number and distrib-

ution of faulty components in the neighborhood. Each processor (also called node) is considered as

an active entity while each bus is viewed as a passive one. The safety level of each bus is calculated

by one of its adjacent nodes. Optimal routing between two nodes is guaranteed if the safety level

of the source node is no less than the Hamming distance between the source and destination nodes.

The proposed routing scheme can also be used in disconnected cube-based multiple-bus systems,

where nodes are disjointed. The feasibility of optimal or suboptimal routing can by easily deter-

mined at the source node by comparing its safety level, its neighbors’ safety levels, together with

the Hamming distance between the source and destination nodes. The proposed scheme is the first

attempt to address fault-tolerant communication in a multiple-bus system.

Index Terms: Fault tolerance, hypercubes, multiple-bus systems, reliable communication, rout-

ing

1

1 Introduction

Interconnecting a large number of nodes is a major problem for the designer of a multicomputer

system. There are many different and often conflicting performance and reliability considerations

in choose a particular type of interconnection networks for a multicomputer system. Multiple-bus

architectures ([6], [7]) can be cost effective due to their low cost, high communication bandwidth and

graceful degradation in the presence of faults. In a multiple-bus network, nodes are connected through

multiple shared buses.

Recently, the hypergraph model [11] has been used to relate the multiple-bus network to the tra-

ditional point-to-point network. In a hypergraph, a hyperlink (a bus in a multiple-bus network)

connects two or more nodes. Therefore, hypergraph-based networks (also called hypernetworks) in-

clude the point-to-point network as a subclass. A multiple-bus system can be considered as a special

implementation of the hypernetwork. Although multiple-bus systems were extensively studied ([2]

and [5]), together with design issues and implementation aspects, very few papers exploited routing

capability of such systems, especially in a faulty environment. In a multicomputer system with a large

amount of nodes, fault tolerance capabilities become more important, including the one for one-to-one

routing.

Efficient one-to-one routing (or simply routing) is a key to the performance of a multiple-bus

network. Communication in fault-free multicomputer systems has been extensively studied. There

have been many fault-tolerant routing algorithms proposed in various literature. However, almost all of

them are based on the point-to-point network model. Most of them assume that each node knows either

only neighbors’ status or status of all the nodes. A model that uses the former assumption is called

local-information-based, while a model that uses the later assumption is called global-information-based.

Normally, a global-information-based model can obtain an optimal or suboptimal result; however, it

requires a separate process to collect global information. In general, global information is presented in

a tabular format and it is not easy to use. The local-information-based model uses a weaker but a more

reasonable assumption; however, local information can only be used to achieve local optimization and

most approaches based on this model are heuristic in nature. Therefore, the length of a routing path

is unpredictable in general and global optimization, such as time and traffic in routing, is different. A

routing algorithm that uses limited global information is a compromise between local-information- and

global-information-based approaches. Because this type of information is easy to update and maintain

and the optimality is still preserved, it is more cost effective than the others.

In this paper, we study fault-tolerant routing in a multiple-bus network using limited global infor-

mation. We use the cube-based multiple-bus system defined in this paper as an example. In [9], Wu

2

proposed a novel concept called safety level, which is an integer associated with each node in a hyper-

cube system. The safety level, a special type of limited global information, is a concise representation

of the distribution of faulty nodes. Basically, each node in an n-dimensional hypercube (also called

n-cube) is assigned a safety level k, where 0 ≤ k ≤ n, and this node is called k-safe. A k-safe node

indicates that there exists at least one Hamming distance path (i.e. the optimal path) from this node

to any node within k Hamming distance. The safety level of each node can be calculated using a simple

(n− 1)-round iterative algorithm which is independent of the number and distribution of faults in the

n-cube. Optimal routing between two nodes is guaranteed if the safety level of the source node is no

less than the Hamming distance between these two nodes. The feasibility of optimal or suboptimal

routing can by easily determined at the source node by comparing its safety level, its neighbors’ safety

levels, together with the Hamming distance between the source and destination nodes.

Optimal routing in multiple-bus networks is more complex than traditional point-to-point networks.

In a multiple-bus network, each intermediate node (including the source node) has to select a bus

among adjacent buses and then select an adjacent node (that shares the selected bus) as the next

forwarding node. Nodes in a multiple-bus system are adjacent if they share a common bus. In fault-

tolerant routing using the safety level concept, since each bus is a passive entity that cannot actively

collect safety information of adjacent nodes, each node needs to know safety levels of adjacent buses

and nodes; that is, each node needs to know safety status of neighbors (buses) and all the connected

nodes (through these buses). In this study, we show how safety levels are calculated in cube-based

multiple-bus systems and propose an optimal and a suboptimal fault-tolerant routing algorithms. Two

fault models are used in this study, one considers only bus faults and the other includes both bus and

nodes faults (the case with node faults only can be considered as a special case of the latter model).

Although the safety level as a special type of limited global information is used only for hypercubes

and its variants, the approach used in collecting safety status of neighboring nodes can be applied to

general systems and can be used in collecting other types of limited global information. Also, we have

shown that the safety level concept can be used to achieve optimization or suboptimization in collective

communication operations such as multicasting [10] and broadcasting [8] in a regular faulty hypercube.

Collective communication operations, defined by the Message Passing Interface (MPI) standard [1],

are fundamental in many applications and have been identified in many parallel languages. We believe

that our approach could be a promising one in achieving fault-tolerant routing, including fault-tolerant

collective communication, in general multiple-bus systems.

This paper is organized as follows: Section 2 defines some notation and preliminaries, where cube-

based multiple-bus systems are defined. The concept of safety level and its application in achieving

3

optimal and suboptimal fault-tolerant routing in regular hypercubes are reviewed. Section 3 proposes

a method which determines the safety level of each node in a cube-based multiple-bus system. An

optimal and a suboptimal routing algorithms using the safety level concept are proposed for cube-

based multiple-bus systems. We show that the proposed algorithms can also be used in disconnected

cube-based multiple-bus systems, where nodes are disconnected. Section 4 summaries our results and

discusses some future work.

2 Notation and Preliminaries

2.1 n-dimensional hypercubes

An n-cube, Qn, is a graph having 2n nodes labeled from 0 to 2n − 1. Two nodes are joined by an

edge (also called link) if their addresses, as binary numbers, differ in exactly one bit position. More

specifically, every node a has an address anan−1 · · · ai · · · a1 with ai ∈ {0,1}, 1 ≤ i ≤ n, and ai is called

the ith bit (dimension) of the address. We denote node ai the neighbor of a along dimension i. Symbol

⊕ denotes the bitwise exclusive OR operation. Let ek = enen−1 . . . ek . . . e1 where ek = 1, 1 ≤ k ≤ n,

and ej = 0, ∀j 6= k. For example 1101 ⊕ e3 = 1001. Clearly a⊕ ei represents setting or resetting the

ith bit of node a. The distance between two nodes s and d is equal to the Hamming distance between

their binary addresses, denoted by H(s, d).

A path connecting two nodes s and d is termed optimal path (also called Hamming distance path)

if its length is equal to the Hamming distance between these two nodes. Clearly, s⊕ d has value 1 at

H(s, d) bit positions corresponding to H(s, d) distinct dimensions. These H(s, d) dimensions are called

preferred dimensions and the corresponding nodes are termed preferred neighbors. The remaining

n−H(s, d) dimensions are called spare dimensions and the corresponding nodes are spare neighbors.

Clearly, an optimal path is obtained by using links at each of these H(s, d) preferred dimensions in

some order. For example, suppose s = 0101 and d = 1011 then s⊕d = 0101⊕1011 = 1110. Therefore,

dimensions 2, 3, 4 are preferred dimensions and dimension 1 is a spare dimension. Among neighbors

of s = 0101, nodes 1101, 0001, and 0111 are preferred neighbors and node 0100 is a spare neighbor.

Any path from s = 0101 to d = 1011 that uses links at dimensions 2, 3, and 4 in some order is an

optimal path, e.g., 0101 → 0001 → 1001 → 1011 is an optimal path between 0101 and 1011.

2.2 Safety levels

The materials in this subsection and the next one come from [8] and [9]. In a given n-cube, the safety

level of each node ranges from 0 to n. The safety level associated with a node is an approximation

4

of the number and distribution of faulty nodes in the neighborhood, rather than just the number of

faulty nodes. Let S(a) = k be the safety status of node a, where k is referred to as the level of safety,

and a is called k-safe. A faulty node is 0-safe which corresponds to the lowest level of safety, while

an n-safe node (also called a safe node) corresponds to the highest level of safety. A node with k-safe

status is called unsafe if k 6= n. Suppose seq1 and seq2 are two sequences of integer, seq1 ≥ seq2 if

and only if each element in seq1 is greater than or equal to the corresponding element in seq2.

Definition 1 [9]: The safety level of a faulty node is 0. For a nonfaulty node a, let (S0, S1, S2, ..., Sn−1),

0 ≤ Si ≤ n, be the nondecreasing safety level sequence of node a’s n neighboring nodes in an n-cube,

such that Si ≤ Si+1, 0 ≤ i < n− 1. The safety level of node a is defined as: If (S0, S1, S2, ..., Sn−1) ≥
(0, 1, 2, ..., n − 1), then S(a) = n else if (S0, S1, S2, ..., Sk−1) ≥ (0, 1, 2, ..., k − 1) ∧ (Sk = k − 1) then

S(a) = k.

The safety level of a nonfaulty node is recursively defined in terms of its neighbors’ safety levels. It

has been shown in [9] that for any given faulty hypercube, there is one and only one way to assign safety

levels to nodes that satisfies the safety level definition. The iterative algorithm GLOBAL STATUS

(GS) calculates the safety level of each node in n-cube Qn. We assume that all nonfaulty nodes have

n as their initial safety levels.

Figure 1 shows the safety level of each node in a faulty 4-cube with four faulty nodes: 0011, 0100,

0110, and 1001, represented as black nodes. Based on the safety level definition, the safety levels of

all the nodes that have two (or more) faulty neighbors are changed to 1 after the first round, as in

the case for nodes 0001, 0010, 0111, 1011 in Figure 1 (b). That is, the effect of 0-safe status of faulty

nodes first propagate to their neighbors, then neighbors’ neighbors and so on. For example, after the

second round the safety levels of nodes 0000, 0101 change to 2 as shown in Figure 1 (c), because each

node has two 1-safe neighbors and one faulty neighbor. The safety level of each node remains stable

after two rounds and each value represents the final safety level of the corresponding node. It has

been proved [8] that for any faulty n-cube, n− 1 rounds of information exchanges are sufficient; that

is, ∆ = n− 1 in GS. There are several relevant properties of safety level summerized as follows:

Property 1 [8]: In a faulty n-cube with no more than n − 1 faulty nodes and with no faulty links,

each nonfaulty but unsafe node has a safe neighbor.

Property 2 [8]: If the safety level of a node is k (0 < k ≤ n), then there is at least one Hamming

distance path from this node to any node within k Hamming distance.

5

GLOBAL STATUS (GS):

{ Initially all nonfaulty nodes are n-safe and round = 1}
begin

while round ≤ ∆

parbegin

NODE STATUS(a), ∀ a ∈ Qn;

parend;

round := round +1;

end while;

end.

NODE STATUS(a):

begin

at node a determine a nondecreasing sequence of neighbors’ safety levels (S0, S1, S2, ..., Sn−1)

if (S0, S1, S2, ..., Sn−1) ≥ (0, 1, 2, ..., n− 1)

then mark a as n-safe (or safe);

if ((S0, S1, S2, ..., Sk−1) ≥ (0, 1, 2, ..., k − 1)) ∧ (Sk = k − 1)

then mark a as k-safe;

end.

6

1100 1000 0100 0000

1110 1010 0110 0010

1101 1001 0101 0001

1111 1011 0111 0011

4

4

4

4

4

1 1

1

1

2

2

s1

4

d2

d1 s2

1100 1000 0100 0000

1110 1010 0110 0010

1101 1001 0101 0001

1111 1011 0111 0011

4

4

4

4

4

1 1

1

1

4

44

1100 1000 0100 0000

1110 1010 0110 0010

1101 1001 0101 0001

1111 1011 0111 0011

4

4

4

4

4

4 4

4

44

4

(a)

(b)

(c)

4

Figure 1: A 4-cube with four faulty nodes.

7

2.3 Reliable routing using safety levels

Based on Property 2 and the definition of safety level, it is easy to identify an optimal path if the

safety level of the source node is no less than the Hamming distance between the source and destination

nodes: A Hamming distance path is generated by selecting a preferred neighbor with the highest safety

level at each routing step. If the safety level of the source node is less than the Hamming distance

between the source and destination nodes and the number of faults is less than the dimension of the

cube, based on Property 1 we can always forward the routing message to a safe neighbor and then

initiate a routing from this safe neighbor. Obviously, if the safe neighbor is a preferred neighbor, the

resultant path is still optimal; if the safety neighbor is a spare neighbor, the length of the resultant

path is the Hamming distance between the source and destination nodes plus two (the corresponding

routing algorithm is called suboptimal).

Consider the example in Figure 1 (c), where s1 = 1110 and d1 = 0001 are the source and destination

nodes, respectively. A navigation vector, defined as the bitwise exclusive OR of s1 and d1, is calculated

N1 = s1 ⊕ d1 = 1111; hence, the Hamming distance H(s1, d1) = 4. Also, the safety level of the source

node s1 is 4. Therefore, the optimal algorithm is applied. Among preferred neighbors of the source

node, nodes 1010, 1100, and 1111 have a safety level 4 and node 0110 has a safety level 0. A neighbor

with the highest safety level, say 1111 along dimension 1, is selected. The navigation vector N1 is

sent together with the routing message after resetting bit 1. At intermediate node 1111, based on the

navigation vector 1110, the preferred neighbor set is calculated which is {0111, 1011, 1101}. Among

preferred neighbors, node 1101 has the highest safety level (which is 4); therefore, 1101 is the next

intermediate node with navigation vector 1100. At node 1101, preferred neighbor 0101 (with a safety

level 2) is selected among two preferred neighbors (the other one is faulty neighbor 1001). At node 0101

with navigation vector 0100, there is only one preferred neighbor which is node 0001. Upon receiving

the routing message with navigation vector 0000, node 0001 identifies itself as the destination node

and terminates the routing process.

Consider another routing example in the faulty 4-cube of Figure 1 (c), where s2 = 0001 and

d2 = 1100 are the source and destination nodes, respectively. In this case, the safety level of the

source node (which is 1) is less than the Hamming distance between the source and destination nodes

(which is 3). However, there are two preferred neighbors (0000 and 0101) with a safety level of 2 (one

less than the Hamming distance between the source and destination nodes). Therefore, optimal routing

is still possible by selecting one of these two preferred neighbors, say node 0000. The corresponding

routing path is 0001 → 0000 → 1000 → 1100 as shown in Figure 1 (c).

The optimal and suboptimal routing algorithms can also be applied in faulty n-cubes (including

8

disconnected cubes) with even more than n−1 faulty nodes. Optimal routing can be used if the safety

level of the source node is no less than the Hamming distance between the source and destination

nodes, or one of the preferred neighbors’ safety level is no less than the Hamming distance minus

one. Suboptimal routing can be applied if one of the spared neighbors’ safety level is more than the

Hamming distance between the source and destination nodes.

2.4 Cube-based multiple-bus systems

In this section, we propose a multiple-bus system based on the hypercube topology. A multiple-bus

system consists of three types of components: nodes, buses, and links. Each link connects one node to

one bus. A node can be connected to many buses and vice versa. In a cube-based multiple-bus system,

nodes in a hypercube are divided into two disjointed subsets, one is the node set and the other is the

bus set. More formally, we represent a hypercube by a bipartite graph (V (G), E(G)), where V (G) is

the set of nodes and E(G) is the set of links. The node set is partitioned into two subsets (node set

and bus set) such that no two nodes in the same subset are adjacent. Links are used to connect nodes

and buses.

Figure 2 (a) shows a regular faulty 3-cube and Figure 2 (b) shows the corresponding cube-based

multiple-bus system. Without loss of generality, we use nodes with an odd number of 1-bits in their

addresses as nodes and nodes with an even number of 1-bits in their addresses as buses. In the example

of Figure 2, {001, 010, 100, 111} forms a node set where each node is represented by a double cycle

and {000, 011, 101, 110} constitutes a bus set in which each node is represented by a cycle in Figure 2

(a) and a bus in Figure 2 (b). Again black nodes represent faulty nodes as shown in Figure 2 in which

all faulty nodes are in the bus set. A node and a bus are connected via a link iff their addresses differ

in exactly one bit. Two nodes are adjacent, i.e., they share a common bus, iff their addresses differ

in exactly two bits. Figure 2 (b) also shows the safety level of each node and bus. Each link can be

considered as part of the bus it connects. In this way, there are only two types of components: buses

and nodes.

There are several interesting topological properties of an n-cube-based multiple-bus system. Most

of them can be easily derived from hypercube properties. For example, each node is connected to n

buses and each bus is connected to n nodes. If the distance between two adjacent nodes is measured

as one unit, then the diameter of an n-cube-based multiple-bus system is bn
2 c.

9

(a) (b)

001 010 100 111

000

011

101

110

3 1 3 1

3

0

0

3

000

010

001

011

100

110 111

101

safety levels

Figure 2: A faulty 3-cube (a) and the corresponding cube-based multiple-bus system (b).

3 Fault-Tolerant Routing in Cube-Based Multiple-Bus Systems

3.1 Collecting safety level information

Fault-tolerant routing in a multiple-bus network is much more complex than the one in a regular

point-to-point network for the following reasons.

In a point-to-point network each intermediate node selects one out of n neighbors (in a network with

maximum node degree n) as its next forwarding node. For example, in an n-cube, each intermediate

node selects one node from its n neighbors. In a multiple-bus network, however, each intermediate

node first selects an adjacent bus (out of l connected buses) and then selects an adjacent node (out of

m adjacent nodes) along the selected bus. Therefore, in a multiple-bus network in which each node is

connected to l buses and each bus is connected to m nodes, each intermediate node has up to l ×m

options in selecting the next forwarding node. For example, in an n-cube-based multiple-bus system,

l = m = n; that is, each intermediate node has an order of O(n2) options.

Nodes are active entities, i.e., they can store data and make intelligent decisions (such as selecting

the next forwarding node). Buses are normally passive entities, i.e., they are just communication media

and cannot permanently store data and make (routing) decisions. Selecting an appropriate adjacent

bus at each intermediate node is not sufficient, because the selected bus cannot make a decision as to

which adjacent node the message should be forwarded to. The passive nature of buses also causes the

problem of collecting safety level information. For example, each bus cannot be actively involved in

collecting the safety status of its connected nodes in order to decide its own safety status. Therefore,

the safety status of each bus has to be calculated and maintained by one (or more) of its connected

10

nodes. To balance workload, each node should be responsible, if possible, for supplying safety level

information for the same number of adjacent buses.

We consider first a system with only bus faults. The first step is to calculate safety levels of all

the components (buses and nodes). In the cube-based multiple-bus system, we define the concept of

buddy pair in which a node and a bus with the same address except the first bit form a buddy pair.

For example, in the 3-cube as shown Figure 2 (b), {000, 001}, {010, 011}, {100, 101}, {110, 111} are

four buddy pairs. In calculating and distributing safety level information, each node is responsible for

safety level calculation and distribution of its buddy (bus). An extended GS algorithm called EGS

is defined, (a, a1) is a buddy pair where a is a node and a1 is its buddy bus, i.e., the neighbor along

dimension 1 in a regular hypercube. The result of EGS generates a safety matrix associated with each

node. Each safety matrix of a node contains safety information of nodes and buses within 2 Hamming

distance of this node.

EGS needs O(n) rounds of information exchanges by calling EXTENDED NODE STATUS(a) and

BROADCAST(a), each of which needs O(n) bus cycles, since O(n) messages are transferred on each

bus. Therefore, a total of O(n2) steps are needed for EGS. Applying the EXTENDED NODE STATUS

algorithm to node 001 of Figure 2, we have ls[1] = 1 (001’s safety level) and bs[1] = 3 (001’s buddy

000’s safety level). ls[2] = ls[3] = 0 are 011 and 101’s safety levels. bs[2] = bs[3] = 3 are 000’s

neighbors’ safety levels. S[i, j] of a node includes safety levels of the adjacent buses and nodes. That

is, safety levels of nodes and buses within 2 Hamming distance. S[i, j] at each node a is determined

through BROADCAST(a). Note that in a faulty cube-based multiple-bus system, a node may not be

able to obtain safety levels of all its adjacent nodes (through shared buses). In the example of Figure

2, node 001 cannot get the status of node 111, since both shared buses 101 and 011 are faulty. It can

be proved that through a two-round broadcasting process, each node can get status of all its adjacent

nodes provided the number of faulty buses is less than the dimension of the corresponding cube. The

first round is the step (1) of BROADCAST(a) and during the second round, each node broadcasts

safety level information, received in the first round, along adjacent buses. However, as we will see later,

there is no need to obtain status of all the adjacent nodes. Therefore, step (1) of BROADCAST(a) is

sufficient. In S[i, j] of a node a, although the safety level of node a is not directly included in S[i, j],

it can be easily derived from its neighbors’ safety levels.

Figure 3 (a) and (b) shows two safety matrices associated with nodes 001 and 100 in Figure 2 (b),

respectively. Note that the numbers in the first column are safety levels of adjacent buses and numbers

in the ith row (except the first column) represent safety status of adjacent nodes (that share the bus

along the ith dimension). More specifically, suppose S[i, j] is the safety matrix of node a, S[i, 1] is the

11

EXTENDED GLOBAL STATUS (EGS):

{ Initially all nonfaulty nodes are n-safe and round = 1}
begin

while round ≤ bn
2 c

parbegin

EXTENDED NODE STATUS(a), ∀ a in the node set;

parend;

round := round +1;

end while;

parbegin

BROADCAST(a), ∀ a in the node set;

parend

end.

EXTENDED NODE STATUS(a):

begin

initial safety levels of a and its buddy are stored in ls[1] and bs[1];

(1) send ls[1] to node(ai)1 along bus ai, 2 ≤ i ≤ n;

/* forward a’s safety level to (ai)1, bus ai’s buddy node */

broadcast bs[1] along bus a1;

/* broadcast the safety level of its buddy to buddy’s neighboring nodes */

(2) receive one message from bus ai (2 ≤ i ≤ n) and store it in ls[i];

receive n− 1 messages from bus a1 and store them appropriately in bs[i] (1 ≤ i ≤ n);

/* ls[i] (bs[i]) stores a’s (resp. a1’s) neighbors’ safety status */

(3) update ls[1] based on bs[1], ls[2], ls[3], ..., ls[n] and bs[1] based on ls[1], bs[2], bs[3], ..., bs[n];

/* two updates are based on the safety level definition */

end.

BROADCAST(a):

begin

(1) node a broadcasts ls[1] and bs[1] along bus ai, 1 ≤ i ≤ n;

(2) receive broadcast messages and store them in such a way that S[i, 1] is the safety level of

bus ai and S[i, j] is the safety level of the adjacent node of bus ai along dimension j − 1.

/* S[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ n + 1) is the safety matrix associated with node a */

end.

12

-

-

3 - 3 3

0 3 -

0 3 -

0

3

3

- 1 1

1 3

1 3

(a) (b)

j=1 2 3 4

3

2

3

j=1 2 3 4

2

*

*

i=1 i=1

Figure 3: Safety matrices S[i, j] associated with (a) node 001 in Figure 2 (b) with a safety level 1 and

(b) node 100 in Figure 2 (b) with a safety level 3.

safety level of the adjacent bus, ai, along the ith dimension. S[i, j] (1 ≤ i ≤ n, 2 ≤ j ≤ n + 1) is the

safety level of the adjacent node (ai)j−1 (through the adjacent bus ai). Clearly when i = j − 1, node

(ai)j−1 is node a itself. Therefore, we put - (a don’t-care symbol) in entries S[i, j] where i = j − 1.

If there is an adjacent node for which its safety level cannot be determined, we put symbol ∗ in the

corresponding entry in S[i, j].

In example of Figure 3, the safety levels of 001 and 100 are 1 and 3 based on the safety levels of

their adjacent buses, respectively. In Figure 3 (a), entries S[3, 3] and S[2, 4] are empty (with symbol ∗)
since node 001 cannot obtain the safety level of node 111. Clearly, node 100 can reach any other node

in one (bus) step. In the worst case, node 001 needs one more step by forwarding the message to the

safe adjacent bus 000 along dimension 1. Note that if we remove the first column of a safety matrix,

the resultant safety matrix is symmetric with respect to the principal diagonal and this is can be easily

shown using the fact that (ai)j = (aj)i. Therefore, we only need to keep either an upper-triangular or

lower-triangular matrix to save about half of memory space.

3.2 Routing in cube-based multiple-bus systems with bus faults

The performance of a routing process is measured by the number of buses traversed and this number

is called bus steps or simplely steps. The minimum number of steps between two nodes s and d is

equal to the Hamming distance between their binary addresses divided by two; that is, H(s,d)
2 . A

path with a minimum number of steps is called an optimal path. A path with one more step than the

minimum number is called a suboptimal path. Our approach here ensures that each routing path is

either optimal or suboptimal as long as the number of faults does not exceed certain threshold. In

13

the remaining discussion, we consider two fault models: One with only bus faults and the other with

both bus and node faults (the case with node faults only is covered by the later case). Note that the

routing algorithms are the same for both models, they differ in the way safety levels are calculated.

The routing in the cube-based multiple-bus system can be done in a similar way as in a regular

hypercube. Just treat all the buses and nodes as regular nodes in a regular hypercube. Therefore,

each adjacent bus (node) is either a preferred or spare neighbor with respect to an intermediate (or

source) node depending on the location of the intermediate and destination nodes. For example, bus

000 is a spare neighbor of node 001 if the destination node is 111, while bus 101 is a preferred neighbor

of node 001 for the same destination node. The major difference is that each node has to select a

neighbor (a bus) and the neighbor’s neighbor (a node); that is, an intermediate node first selects a

preferred adjacent bus with a highest safety level, and then picks a preferred adjacent node with the

highest safety level connected by the selected bus.

Let us examine several routing examples. Suppose nodes 100 and 001 are the source and destination

nodes in the example of Figure 2 (b). Since 100⊕001 = 101, preferred neighbors of node 100 are buses

along dimensions 1 and 3, that is, buses 101 and 000. Note that the first column of the safety matrix

(Figure 3 (b)) provides all the safety level information of neighboring buses. Among two preferred

neighbors (buses), the one along dimension 1 has a safety level 0 and the one along dimension 3 has

a safety level 3. Clearly the bus along dimension 3 is selected. To select a preferred adjacent node

connected via the selected bus, we only need to examine the safety levels in the corresponding row of

the associated safety matrix. In this case, there is only one preferred node (along dimension 1). The

resultant routing path is: 100 (node) → 000 (bus) → 001 (node). As an another example, assume

that nodes 001 and 111 are the source and destination nodes, respectively. Since 001 ⊕ 111 = 110,

preferred neighbors of node 001 are buses 101 and 011 and the Hamming distance between the source

and destination nodes is 2. Unfortunately, both preferred buses are faulty with a safety level of 0,

optimal routing is not possible. However, the safety level of the spare bus 000 is 3, which is one

more than the Hamming distance; that is, suboptimal is possible. In this case, the routing message is

routed to either node 100 or node 010 (both have the same safety level 3) and the destination node

111 is reached with one extra step via bus 110. Therefore, a total of 2 bus steps (4 regular steps) are

used in this case. Note that the size of each safety matrix is O(n2); however, the complexity of the

table lookup process at each intermediate step is O(n). Actually, exactly 2n operations are needed,

where first n operations are used to select the adjacent bus by examining the first column of the

safety matrix and another n operations are used to select the adjacent node in the selected row of the

safety matrix. Formally, the routing algorithm is described in UNICASTING AT SOURCE NODE

14

and UNICASTING AT INTERMEDIATE NODE, where S[i, j] (1 ≤ i ≤ n and 1 ≤ j ≤ n + 1) and ls

are the safety matrix and the safety level associated with each node, respectively.

Theorem 1: If the safety level of the source node is no less than the Hamming distance (H) between

the source and destination nodes, then the length of the resultant routing path is H
2 bus steps which is

optimal.

The proof can be easily done by using Theorem 5 from [8] and the proposed routing algorithm.

The routing algorithm in a cube-based multiple-bus system has the same complexity as in a regular

hypercube. Although 2n operations are needed in table lookup at each intermediate node, the total

number of steps is reduced by half. Actually, two steps in a regular hypercube are combined into

one (bus) step in a cube-based multiple-bus system. However, routing in a cube-based multiple-bus

system needs more memory space for safety matrices O(n2) at each node than for safety levels O(n)

in a regular hypercube. Again, this is not surprising, since each node in a cube-based multiple-bus

system needs to know the status of components within 2 Hamming distance.

When the source node’s safety level is less than the Hamming distance between the source and

destination nodes, if the total number of bus faults is less than the dimension of the corresponding

cube, the source node still has a safe adjacent bus (Property 1), i.e., any destination node is reachable

from this bus through an optimal path. Therefore, suboptimality is guaranteed.

Theorem 2: If there are at most n − 1 faulty buses in an n-cube-based multiple-bus system, the

proposed routing algorithm is at least suboptimal; that is, the length of the resultant path is either H
2

or H
2 + 1, where H is the Hamming distance between the source and destination nodes.

The proof to this theorem can be derived directly from Theorem 1 and Property 1.

3.3 Routing in cube-based multiple-bus systems with both bus and node faults

In this subsection we consider routing in cube-based multiple-bus systems with both bus and node

faults. Because buses and nodes are both nodes in a regular hypercube, the safety-level-based routing

can be directly applied once the safety level of each node and bus is identified. However, nodes (the

active entities) may fail while their buddy buses are still functioning. Then who are responsible for

calculating and distributing the safety levels of these buses?

There are two possible solutions to this problem:

• The first solution tries to get around the problem by building buses as active entities. This can

be done by a bus controller capable of monitoring the (safety) status of connected nodes and

15

At source node s with routing message m and destination node d:

UNICASTING AT SOURCE NODE:

N = s⊕ d; H = H(s, d);

/∗ calculate the navigation vector and the Hamming distance ∗/
if (C1 : ls ≥ H) ∨ (C2 : ∃i(S[i, 1] ≥ H − 1 ∧N(i) = 1))

/ ∗ the safety level of the source node is at least equal to

the Hamming distance or a preferred neighbor’s safety level

is at least equal to the Hamming distance minus one ∗/
then OPTIMAL UNICASTING:

send (m, N ⊕ ei ⊕ ej) to the adjacent node (si)j via the adjacent bus si, where

S[i, 1] = max1≤k≤n{S[k, 1]|N(k) = 1} and S[i, j] = max2≤k≤n+1{S[i, k]|N(k) = 1}
/∗ send message m to the preferred adjacent node (si)j via the

preferred adjacent bus si together with N after resetting bits i and j ∗/
else if C3 : ∃ i(S[i, 1] ≥ H + 1 ∧Ni = 0)

/∗ one spare neighbor’s safety level is at least

equal to the Hamming distance plus one ∗/
then SUBOPTIMAL UNICASTING:

send (m, N ⊕ ei ⊕ ej) to the adjacent node (si)j via the adjacent bus si, where

S[i, 1] = max1≤k≤n{S[k, 1]|N(k) = 1} and S[i, j] = max2≤k≤n+1{S[i, k]|N(k) = 1}
else failure

At any intermediate node a with routing message m and navigation vector N :

UNICASTING AT INTERMEDIATE NODE

if N = 0 /∗ the navigation vector is empty ∗/
then stop /∗ the currect node is the destination node ∗/
else send (m, N ⊕ ei ⊕ ej) to the adjacent node (ai)j via the adjacent bus ai, where

S[i, 1] = max1≤k≤n{S[k, 1]|N(k) = 1} and S[i, j] = max2≤k≤n+1{S[i, k]|N(k) = 1}

16

0000

0011

0101

0110

1001

1010

1100

1111

0001 0010 0100 0111 1000 1011 1101 1110

1 1 1 4 1 4 4

2

0

2

0
0

4

4

4

Figure 4: A 4-cube-based multiple-bus system.

store safety information. In this way, each bus can calculate and maintain its own safety status

and the GS algorithm can be directly applied without modification.

• The second solution still treats each bus as a passive entity. When the buddy node of a bus fails,

an election process is carried out among all the nodes connected through this bus. The elected

node is the new buddy of the bus.

We focus here on the second solution since the first one is straightforward. Election [4] is a general

style of computation in parallel/distributed systems, in which one node from the node set is selected

to perform a particular task. In the routing example, after a node failure occurs, it is often necessary

to reorganize buddy pairs so that one healthy node can take over the buddy of the new faulty node.

A simple broadcast along buses that connect the faulty node can be designed to elect a new buddy

node based on a priori priority among connected nodes by these buses. Also, each adjacent node is

informed (through another round of broadcast) the id of the newly elected buddy.

Because each node is connected to more than one bus, it is possible that one node is selected as

a new buddy for many buses, while another one is the buddy for just one bus. That is, each node

may have different workloads of calculating safety levels of adjacent buses. Thus it is desirable to have

an algorithm to modify buddy pairs in case of node failures while still retain the original features of

load sharing among nodes. The concept of preferred list [3] can be used here: Each bus is equipped

with a backup list of its most preferred buddy nodes. Whenever its current buddy node fails, its next

most preferred node will be the new buddy. The preferred lists are designed in such a way that the

chance for each healthy node being selected as the new buddy of a bus is almost the same. A detailed

discussion and implementation of the preferred list concept can be found in [3].

Table 1 shows an example of preferred lists of all the buses in a 4-cube, where bit sequences at

the first row represent bus addresses and integers are preferred node addresses in decimal. Nodes in a

17

4

4

4

0

- 4 1 1

4 - 4 0

1 4 - 1

1 0 1 -

4

4

- 4

4 -

-

1 -

0

2

4 0

1 1

4 1 1

0 1

(a) (b)

i= 1

2

3

4

j=1 2 3 4 5

i= 1

2

3

4

j=1 2 3 4 5

Figure 5: Safety matrices associated with nodes (a) 1110 and (b) 1101 of Figure 4.

preferred list are ordered by preference. For example, the preferred list of bus 0000 is node 1 (0001).

The rest of the nodes in the buddy set of bus 0000 (in the decreasing preference order) are: nodes 2

(0010), 4 (0100), and 8 (1000). Figure 4 shows the cube-based multiple-bus system of Figure 1. In

this case, buses 0011, 0110, and 1001 are faulty and node 0100 is faulty. Based on Table 1, node 0100

(4) will be replaced by node 0111 (7) as the new buddy of bus 0101 and all the other buddy pairs

remain unchanged. Once buddy pairs are formed, EGS can be easily modified to identify safety levels

of all the components (nodes and buses). Figure 4 shows a routing process from node 1110 to node

0001 based on safety levels. Figure 5 shows two safety matrices associated with nodes 1110 and 1101

in Figure 4, respectively. Because 1110⊕ 0001 = 1111, all adjacent buses of node 1110 are preferred

ones and three of them have the same safety level of 4 (see Figure 5 (a)). Assume that the bus along

dimension 1 is selected, by inspecting the first row of Figure 5 (a), the adjacent node along dimension

2 has the highest safety level out of three possible choices (along preferred dimensions 2, 3, and 4).

That is, node 1101 is the selected intermediate node that forwards the routing message. At node 1101,

because 1101⊕ 0001 = 1100, only dimensions 3 and 4 are preferred ones. Obviously, the adjacent bus

along dimension 4 (with safety level 2) is selected based on the first column of Figure 5 (b) and the

corresponding preferred adjacent node is the destination node 0001.

Both Theorems 1 and 2 still apply to cube-based multiple-bus systems with both bus and node

faults (the number of bus faults is now changed to the number of bus and node faults). The proof is

straightforward.

18

Table 1: Preferred lists of buses in a 4-cube.

preference 0000 0011 0101 0110 1001 1010 1100 1111

I 1 2 4 7 8 11 13 14

II 2 1 7 4 11 8 14 13

III 4 7 1 2 13 14 8 11

VI 8 11 13 14 1 2 4 7

0000

0011

0101

0110

1001

1010

1100

1111

0001 0010 0100 0111 1000 1011 1101 1110

3 1 1 1 1 1 1 1

2

2

2

0

2

0

0

0

Figure 6: A disconnected 4-cube-based multiple-bus system.

19

3.4 Disconnected cube-based multiple-bus systems

In this section, we show that the proposed routing scheme can be applied to various faulty cube-based

multiple-bus systems, including disconnected ones. To our best knowledge, our approach is the first

one that addresses routing in disconnected multiple-bus systems.

We illustrate this approach by considering a disconnected cube-based multiple-bus example. Figure

6 shows a disconnected cube-based multiple-bus system with four faulty buses: 0110, 1010, 1100, and

1111. Clearly, any routing initiated at node 1110 will fail. The source node detects this by checking its

adjacent bus’ safety levels and its own safety level. However, routing is possible if it is initiated from the

other part of the partition. For example, in a routing process with the source node s1 = 1101 and the

destination node d1 = 0001, the Hamming distance between the source and destination nodes is 2 and

the safety level of the source node is 2. Therefore, optimal routing is possible and the corresponding

path is shown in Figure 6. In another example, where s2 = 0111 and d2 = 1011, although the safety

level of the source node (which is 1) is less than the Hamming distance (which is 2), the preferred

bus 0011’s safety level is 2, which is more than the the Hamming distance minus one. Again optimal

routing is possible in this case (see Figure 6). When the destination node is 1110, any routing will

fail and this can be easily detected at the source node, say 0111. At node 0111, the safety level of

the source node is 1, which is less than the Hamming distance H(0111, 1110) = 2 (condition C1 of

the routing algorithm fails) and none of the preferred neighbors’ (0110 and 1111) safety level is more

than the Hamming distance minus one (condition C2 fails), hence there is no optimal routing. Both

spare neighbors’ (0101 and 0011) safety levels are 2 which is less than the Hamming distance plus one

(condition C3 also fails), and hence there is no suboptimal routing. Therefore, this routing process is

aborted at the source node.

4 Conclusions

We have proposed an optimal and a suboptimal routing algorithms for cube-based multiple-bus sys-

tems. These algorithm use limited global information captured by a safety level associated with each

node and bus. The safety level can be calculated through a simple bn
2 c-round of information exchanges

among adjacent nodes in an n-cube. The source node can easily decide to perform either optimal or

suboptimal routing, based on its safety level, its neighbors’ (bus’s) safety levels, and the Hamming

distance between the source and destination nodes, A source node can also identify cases when opti-

mal and suboptimal paths are blocked by faulty nodes and buses or when the corresponding routing

tries to forward a message to another part in a disconnected system. The proposed approach is the

20

first attempt to address fault-tolerant routing in multiple-bus systems. Our next step is to generalize

this approach to a more general class of multiple-bus systems and to study fault-tolerant collective

communication in such systems.

References

[1] Message passing interface forum. MPI: A Message-Passing Interface Standard. May 1994.

[2] D. Bulka and J. B. Dugan. Design and analysis of multibus systems using projective geometry.

Proc. of the 22th International Symposium on Fault-Tolerant Computing. 1992, 122-129.

[3] Y. C. Chang and K. G. Shin. Load sharing in hypercube multicomputers in the presence of node

failures. Proc. of the 21st International Symposium on Fault-Tolerant Computing. 1991, 188-195.

[4] H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions on Comput-

ers. 31, (1), Jan. 1982, 48-59.

[5] H. K. Ku and J. P. Hayes. Connectivity and fault tolerance of multiple-bus systems. Proc. of

24th International Symposium on Fault-Tolerant Computing. 1994, 372-381.

[6] T. Lang, M. Valero, and I. Alegre. Bandwidth of crossbar and multiple-bus connections for

multiprocessors. IEEE Transactions on Computers. 31, 1982, 1227-1234.

[7] L. D. Wittie. Communication structures for large networks of microcomputers computers. IEEE

Transactions on Computers. 41, 1981, 264-273.

[8] J. Wu. Safety levels – an efficient mechanism for achieving reliable broadcasting in hypercubes.

IEEE Transactions on Computers. 44, (5), May 1995, 702-705.

[9] J. Wu. Unicasting in faulty hypercubes using safety levels. IEEE Transactions on Computers.

46, (2), Feb. 1997, 241-247.

[10] J. Wu and K. Yao. Fault-tolerant multicasting in hypercubes using limited global information.

IEEE Transactions on Computers. 44, (9), Sept. 1995, 1162-1166.

[11] S. Q. Zheng. Sparse hypernetworks based on steiner triple systems. Proc. of the 1995 Internaitonal

Conference on Parallel Processing. 1995, I 92- I 95.

21

