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This paper presents a method for fault-tolerant broadcasting in faulty hypercubes 

using a new metric called local safety. A new concept of the broadcast subcube is intro-
duced, based on which various techniques are proposed to improve the performance of a 
broadcast algorithm. An unsafe hypercube can be split into a set of maximal safe sub-
cubes. We show that if these maximal safe subcubes meet certain requirements given in 
the paper, broadcasting can still be carried out successfully, and in some cases optimal 
broadcast is still possible. The sufficient condition for optimal broadcasting is also pre-
sented. Limited backtracks are utilized in the process of broadcasting by setting up a par-
tial broadcast tree. Extensive simulation results are presented. 
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1. INTRODUCTION 

The hypercube architecture can handle a reasonable amount of message traffic and 
also provide some degree of fault-tolerance [5].  Recently, Duato [4] and Ould-Khaoua 
[7] presented experimental studies and showed that hypercubes are quite suitable for dis-
tributed shared memory systems and multicomputers.   

Efficient broadcasting of data is one of the keys to the performance of a multicom-
puter.  Broadcasting is the process of transmitting data from a node called the source to 
all other nodes once and only once.  One-to-all fault-tolerant broadcasting in a faulty 
hypercube passes a message from a source to all fault-free nodes [3, 6, 10, 11, 13].  
Some limited-global-fault-information-based methods have been introduced to deal with 
fault-tolerant communication in hypercubes.  Lee and Hayes [6] proposed a 
fault-tolerant broadcast algorithm based on the safe node concept. Priority order is deter-
mined by the safety levels of neighbors.  Wu and Fernandez [13], and Chiu and Wu [2] 
refined the safe node concept. As in [6], a message can be broadcast reliably only if the 
binary n-cube is safe although reliable message passing is still possible in an unsafe hy-
percube in many cases.  A mechanism called the safety level was proposed to assist an 
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efficient fault-tolerant broadcast in [14].  Priority order for forwarding the broadcast 
data is determined by the safety level numbers.  A directed safety level [3] further im-
proves the performance of the algorithm presented in [14].  

We have noticed that some resilience properties of hypercube topology still have not 
been utilized by the above methods.  Local safety [15] is proposed in this paper to ex-
plore the resilience properties of the hypercube.  An unsafe hypercube can be split into a 
unique set of maximal safe subcubes. Message-passing inside a maximal safe subcube 
can be completed reliably.   

2. PRELIMINARIES 

A binary n-cube (or simply n-cube) has 2n nodes (or processors). Each node can be 
represented by a sequence of binary bits (anan-1 …a1), where ai ∈ {0, 1}. A subcube SC of 
a hypercube can be represented by a sequence of n bits cncn-1 …c2c1, where ci ∈ {0, 1, *} 
and “*” indicates a don’t care (can be assigned both 0 and 1).  The Hamming distance 
between nodes x and y is denoted as H(x, y).  The spanning subcube SC(x, y) is the 
smallest subcube that contains both x and y. s(i) is the neighbor of s along dimension i in 
the hypercube. Two nodes are connected by a bidirectional link if and only if the binary 
representations of the two nodes differ in exactly one bit.  We only consider mes-
sage-passing between fault-free nodes.  A path is feasible if there is no faulty node in it.  
A path is called a minimum path if the length of the path is equal to the Hamming dis-
tance from the source to the destination.  We consider only node faults, which can be 
extended to the mixed fault model of both node and link faults.  An incomplete span-
ning binomial tree is utilized to implement broadcasting.  Definition 2 presents the re-
fined safe node concept of [2, 13]. 

 
Definition 1  A binomial tree in an n-cube is a connected subgraph of an n-level span-
ning binomial tree with the same root node that connects all the nodes in the n-cube.  An 
incomplete spanning binomial tree in a faulty binary n-cube is a connected subgraph of 
an n-level spanning binomial tree with the same root node that connects all the fault-free 
nodes in the n-cube.  
 
Definition 2  A fault-free node in an n-cube is unsafe if it has at least two faulty 
neighbors, or three or more unsafe or faulty neighbors.  An unsafe node is ordinarily 
unsafe if it has at least one safe neighbor; otherwise, it is strongly unsafe.  A faulty hy-
percube is called unsafe if it contains no safe node; otherwise, it is a safe cube.  

 
The incomplete binomial tree for broadcasting a message in the faulty 4-cube is 

presented in Fig. 1.  Each fault-free node has a broadcast label indicating the range the 
message that should be distributed from the node.  A message is broadcast as follows: 
when a node receives a broadcast label (which is initialized to all 1’s), it resets a 1-bit in 
the broadcast label (say at dimension i) and sends the updated broadcast label to the 
neighbor.  This process is repeated until all the 1-bits in the original broadcast label are 
reset.   
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Fig. 1. Binomial-tree-based broadcasting via limited-global safety. 

Definition 3  Broadcast subcube of a node is a subcube to which the node should 
broadcast the message.  

 
The broadcast subcube at u can be derived by replacing certain bits of u’s address 

with don’t cares.  These bits correspond to 1-bits in the broadcast label. Let node 10100 
in a 5-cube receive a broadcast label [11010].  The broadcast subcube of node 10100 is 
**1*0. Let node 01011 receive a broadcast label [11010]. The broadcast subcube of 
01011 is **0*1.  The broadcast subcube of the source of the broadcast message is the 
n-cube.  

Wu and Fernandez [13] have shown that any n-cube is safe if the number of faulty 
nodes is no more than n.  It is quite possible for an n-cube to be unsafe when it contains 
n or more than n faulty nodes [2, 13].  Fault-tolerant communication inside an unsafe 
n-cube is impossible according to the safe node concept [2, 6, 13].   
 
Definition 4  A node in an n-cube is locally unsafe inside a subcube if it has at least two 
faulty neighbors, or at least three locally unsafe or faulty neighbors inside the subcube; 
otherwise, it is locally safe in the subcube.  The subcube is unsafe if it contains no lo-
cally safe node; otherwise, it is a safe subcube.  Locally unsafe nodes inside a subcube 
SC are classified as follows: a locally unsafe node is locally ordinarily unsafe if it has at 
least one locally safe neighbor in SC; otherwise, it is a locally strongly unsafe node.  
 

A subcube can still be safe even though all the nodes outside of it are faulty.  A 
definition of a maximal safe subcube is presented as follows.  Each node keeps its own 
local safety information and that of its fault-free neighbors.  

 
Definition 5  An m-dimensional subcube is a maximal safe subcube if it is safe, and any 
k-dimensional (k ≥ m + 1) subcube that contains it is safe.  

3. FAULT-TOLERANT BROADCASTING IN A SAFE SUBCUBE 

Wu and Fernandez [13] proposed a fault-tolerant broadcast algorithm in a safe hy-
percube, which presents only optimal broadcasting based on the refined safe node con-
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cept (Definition 2).  It is believed that broadcasting is feasible in most cases if the 
broadcast subcube of the source is contained in a safe subcube.  A new algorithm sup-
porting non-optimal broadcasting is presented here.  Some effective steps are also in-
troduced in the following to improve the effectiveness of fault-tolerant broadcasting:  

 
• try to avoid sending the broadcast label and message to fault-free neighbors which have 

at least two faulty neighbors in the broadcast subcube;  
• consider a source that has at least two faulty neighbors in the broadcast subcube, and 

send the broadcast label to the last fault-free neighbor along dimension i without reset-
ting the i-th bit.  

 
Fig. 2. Avoidomg forwarding a message and label to nodes with at least two faulty neighbors in the 

broadcast subcube. 

In order to implement the first scheme, it is reasonable for each node s to keep an n 
× n matrix F to record its faulty neighbors and its fault-free neighbor’s faulty neighbors. 
This scheme is quite useful.  Consider the broadcast problem with the source 1010 in 
the faulty hypercube as given in Fig. 2.  It is clear that the message should be sent to 
0010 with broadcast label [0111] first because 0010 is safe in the 4-cube. The message 
can be passed optimally in its broadcast subcube 0***.  The message should be sent to 
1000 with label [0101] according to the safety information of 1010’s neighbors because 
1000 is ordinarily unsafe and 1011 is strongly unsafe [8]. This prevents the message from 
reaching 1101 as shown in Fig. 2(a). The message should be sent to 1011 with label [0110] 
according to the first scheme because 1000 has two faulty neighbors in its broadcast sub-
cube, which causes the message to reach all the nodes along minimum paths as shown in 
Fig. 2(b).  The reason that the above scheme can reach node 1101 as shown  
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Fig. 3. Fault-tolerant broadcasting using the modified label sending scheme. 

in Fig. 2, while the procedure in [8] cannot, is that an ordinarily unsafe node in the hy-
percube may be locally strongly unsafe in a subcube, while a strongly unsafe node in the 
hypercube may be locally safe in the subcube. 

Our method supports non-optimal broadcasting if optimal broadcasting is impossible.  
The second scheme can make many unreachable nodes reachable.  Consider that a mes-
sage that is broadcast from 1101 as shown in Fig. 3.  The source sends the message with 
a label [0111] to 0101 because 0101 is safe.  The message received by 0101 can be op-
timally sent to all the fault-free nodes inside its broadcast subcube as shown in Fig. 3(a).  
Node 1101 then sends the message to 1111 with a label [0101].  It is clear that the mes-
sage cannot reach 1000 by using the label sending scheme [5, 8].  As shown in Fig. 3(b), 
1101 sends label [0111] to node 0101, and sends label [0111] to node 1111 without reset-
ting the 2-nd bit. Node 1111 does not send the message back to 1101.  So far, node 1000 
is reachable from the source although the message is not passed along minimum paths.  
The above techniques can be used to broadcast a message along non-minimum paths 
when optimal broadcasting is unavailable, and when the broadcast subcube is contained 
in a maximal safe subcube.  The second scheme introduced above, which is important, 
makes the message deroute inside some small subcubes.  As shown in Fig. 3(b), the 
message is broadcast in 4 steps although it is not broadcast optimally.  The number of 
deroutes is limited to no more than 2.  Details about broadcasting a message inside a 
safe subcube can be found in [11].   
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4. FAULT-TOLERANT BROADCASTING WITH 
LIMITED BACKTRACKS 

Assume that each fault-free node keeps the local safety of its fault-free neighbors 
and of itself by using the scheme introduced in section 3.  We will show optimal broad-
casting is still possible in many cases even though the hypercube is unsafe. 

Theorem 1 An optimal broadcast from node s exists if s is locally safe in its broadcast 
subcube.  

 
Theorem 1 implies that a message can be broadcast optimally even though the 

n-cube is unsafe.  We construct several broadcast subcubes starting from the source. 
Consider that the source has at most one faulty neighbor in the n-cube.  Let Qn-1, Qn-2, 
Qn-3, …, Qn-m be broadcast subcubes of the fault-free neighbors s(i1), s(i2), …, s(im) (n − 1 ≤ 
m ≤ n) of the source, where i1, i2, …, im ∈ {1, 2, …, n} and the subscripts indicate the 
sizes of the corresponding broadcast subcubes.  The following theorem presents the suf-
ficient condition for the existence of an optimal broadcast inside an unsafe n-cube.  

 
Theorem 2 There exists an optimal broadcast if Qn-1, Qn-2, …, Qn-m are safe and s(i1), 
s(i2), …, s(im) are locally safe in the corresponding broadcast subcubes, respectively, even 
though the n-cube is unsafe.   

 

Fig. 4. Backtracking when setting up a partial broadcast tree. 

We consider an approach that deals with the way of partitioning the hypercube to 
meet the following condition: each fault-free neighbor receives a broadcast label stating 
that its broadcast subcube is contained in a maximal safe subcube in which the fault-free 
neighbor has less than two faulty nodes inside its broadcast subcube.  An empirical 
measure is utilized to handle the subcube partitioning when some fault-free neighbors of 
the source cannot meet the above conditions.   

 
safe(v) = size(k) ⋅ safety(v, k), 

where size(k) is the size of the maximal safe subcube k that contains the node v, in which 
the local safety information of the node is safety(v, k) (empirical constants 5 for locally 
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safe, 3 for locally ordinarily unsafe, 2 for locally strongly unsafe, and 0 for faulty).  Our 
algorithm allows backtracking when setting up a partial broadcast tree.  First, we try to 
find a maximal safe subcube that contains the biggest broadcast subcube, starting from 
the fault-free neighbor.  The algorithm can set up a partial broadcast tree as shown in 
Fig. 4, whose depth is at most 3 (3 is an empirical constant).  If a maximal safe subcube 
cannot be found to contain the broadcast subcube, we backtrack to the fault-free neighbor 
with the second most heuristic value. We continue the above process until a maximal safe 
subcube is found to contain the broadcast subcube of the largest broadcast subcube.  A 
similar technique is adopted to find a maximal safe subcube that contains the broadcast 
subcube of the second largest broadcast subcube. We continue the above process until a 
maximal safe subcube is found that contains the broadcast subcube of the source.  It 
should be noted that when the header of the broadcast message is forwarded to the next 
neighbor, the broadcast label of the node and the neighbor get a broadcast label with the 
corresponding bit reset, similar to the process of broadcasting.   
 
Algorithm broadcast2()  

 
1. If node s is the broadcast source, for i = 1 to n, label[i] ← 1; do 2, 3, 4. 
2. If the broadcast subcube of s is contained in a maximal safe subcube msc, then call    

broadcast1(s) based on the local safety information of msc; otherwise fbr ← 0; if s 
has at least two faulty neighbors in its broadcast subcube, then 5, otherwise 3, 4. 

3. While fbr = 0, do 
(a) fbr ← 1, for i = 1 to n  

(i)  if label[i] = 1 and the broadcast subcube of s(i) is contained in a maximal 
safe subcube, in which s(i) is locally safe, then (ii), 

(ii)  label[i] ← 0; send the message and label to s(i); call broadcast1(s(i)); fbr ← 
0. 

(b) for i = 1 to n 
(i)  if label[i] = 1 and the broadcast subcube of s(i) is contained in a maximal 

safe subcube, and if s(i) has at most one faulty neighbor inside the broadcast 
subcube, then (ii), 

(ii)  label[i] ← 0, send the message and the label to s(i); call broadcast1(s(i)); fbr 
← 0. 

(c) for i = 1 to n 
(i)  if label[i] = 1 and the broadcast subcube of s(i) is contained in a maximal 

safe subcube, then (ii), 
(ii)  label[i] ← 0, send the message and label to s(i); call broadcast1(s(i)); fbr ← 

0. 
4. If there still exists a fault-free neighbor of s, which has not received the message 

and broadcast label, call the above backtracking process and send the message 
along the set up partial broadcast tree. 

5. Do the same steps as in 3 and 4; each time, only check whether node s(i) is the last 
unprocessed fault-free neighbor of s; if it is not, send the message and label by re-
setting label[i]; if s(i) is the last unprocessed fault-free neighbor of s, send the mes-
sage and label to s(i) without resetting label[i]. 
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A flag fbr , initially set to zero, is adopted to guide whether the broadcast should be 
continued or not.  Let us show how to generate the broadcast subcube of s(i) in step 3. 
For example, if node 10101 (v) has a broadcast label [11011], the broadcast subcube of 
00101 (v(5)) should be 0*1**, while the broadcast subcube of 10100 (v(1)) should be 
**1*0.  The following theorem presents a sufficient condition for optimal broadcasting 
inside an unsafe n-cube.  
 
Theorem 3 The algorithm broadcast2() can optimally broadcast the message of the 
source s in n steps if s has at most one faulty neighbor, and if a sequence of fault-free 
neighbors s(i1), s(i2), …, s(im) (n − 1 ≤ m ≤ n) is locally safe in a sequence of maximal safe 
subcubes which contain the broadcast subcubes of the nodes s(i1), s(i2), …, s(im), respec-
tively, where i1, i2, …, im ∈ {1, 2, …, n}. 

5. SIMULATION RESULTS 

Flit-level simulators were implemented in a centralized environment [1], which pro-
vided a comparison of the latency, throughput, broadcast ratio, and minimum broadcast 
ratio between [3, 14] and the proposed method under various conditions, including dif-
ferent faulty nodes, message lengths, and load rates.  Figs. 5-8 present flit-level per-
formance evaluations of the local safety, safety level and directed safety level. The mes-
sage length was 16 flits, the load rate (flit/node/cycle data inserted) was set to 1.0, and the 
buffer size was 64 flits.  Results for each pattern were obtained by running 30,000 cy-
cles on the system, where the start-up cycles (the first 10,000 cycles) were not included.  
Throughput was obtained by using the following expression:  

nodes free-fault of no.cycles

length messagemessages of no.
throughput

×
×= . 

 

Fig. 5. Performance comparison in 6-cubes. 
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Fig. 6. Performance comparison in 7-cubes. 

 

Fig. 7. Performance comparison in 8-cubes. 

 

Fig. 8. Performance comparison in 10-cubes. 
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Local safety was consistently better than the safety level under latency when broad-
casting a message.  The latency of a message based on the safety level was always 
greater than that of local safety.  The difference in latency between local safety and the 
two metrics became greater as the number of faults increased in a system.  Local safety 
was consistently better than the safety level under throughput when broadcasting a mes-
sage.  Local safety achieved much better throughput than directed safety did in almost 
all cases.  Local safety also achieved a better broadcast ratio than both the safety level 
and directed safety level did in all cases as shown in the figures. 

Fig. 9 presents performance of local safety when the message length was 64 flits and 
the buffer size was 256 flits, and when the system had various load rates. It is observed 
that the latency of a broadcast message increased drastically when the load rate reached 
1.4 for the faulty 10-cube with 80 faulty nodes.  As for the fault-free 10-cube, latency 
increases greatly when the load rate was about 1.6. Fig. 10 presents performance of local 
safety for messages of different sizes in a faulty 10-cube with 80 faulty nodes.  It is 
shown that the throughput and broadcast ratio of the system were not sensitive to the size 
of the message.  

 

Fig. 9. Performance evaluation of 10-cubes with different load rates. 

 

Fig. 10. Performance evaluation of 10-cubes with different message lengths. 
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6. CONCLUSIONS 

Local safety information was adopted in this study to handle fault-tolerant broad-
casting in wormhole-routed hypercubes.  Some further resilience of the hypercube to-
pology is utilized by the broadcast algorithm.  Local safety information is well utilized 
in the fault-tolerant broadcast algorithm by only considering the safety of the broadcast 
subcube. The sufficient condition for optimal broadcast of a message in an unsafe hyper-
cube has also been presented.  The proposed method allows limited backtracking for 
setting up a partial broadcast tree.  Extensive simulation results have been presented, 
and the proposed method compared with previous ones.  It has been shown that the 
proposed method greatly outperforms the previous methods [3, 14] in almost all cases. 
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