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Abstract

Integrated formal and informal speci�cation techniques (FISTs) have been the focus of a number of
research projects since the mid-eighties. Research in this area aim at producing speci�cation techniques
that integrate concepts and notations used in mature formal speci�cation techniques (FSTs) and popular
graphical modeling methods such as Structured Analysis (SA) and Object-Oriented Analysis (OOA).

In this paper we illustrate, using the results of two case studies, two roles FSTs can play in the
context of less formal graphical requirements modeling and analysis techniques. In the �rst case study
discussed an extended Petri Net model is used to prototype a textbook SART (SA/Real-Time) model.
In this case, the formal model acts as a prototype, and is used to dynamically validate the requirements
expressed in the SART model. In the second case study an integrated OOA method (Fusion) and FST
(Z) is used to create requirements models that are graphical and analyzable. In this case, the formal
models act as more precise representations of the requirements captured by the graphical models.

1 Introduction

Software requirements engineering is concerned with the systematic analysis and speci�cation of software
requirements. One can view requirements engineering as a systematic approach to problem analysis and
speci�cation, where the goal is to obtain a precise statement of the problem in terms of goals that must be
met by the implemented system.

The graphical model-based techniques of Structured Analysis (SA) and Object-Oriented Analysis (OOA)
(henceforth referred to as informal speci�cation techniques (ISTs)) can provide the 
exibility (in terms of
ease of change) and modeling constructs needed to explore appropriate abstractions for problem concepts.
On the other hand, the lack of �rm semantic bases for these methods limits their e�ectiveness in validation
and subsequent veri�cation activities.

The need for precision suggests the use of formal speci�cation techniques (FSTs). FSTs utilize math-
ematical concepts and notation to precisely de�ne theories and models of application behavior. Precise
speci�cations facilitate e�ective communication among persons with a stake in the development of the soft-
ware. The ability to reason about properties captured in formal speci�cations allows developers to rigorously
assess the adequacy of their models.

FSTs and ISTs can complement each other in a software development project. For example, variants
of the SA method [6] are among the most widely used requirements speci�cation and analysis methods in
industry. Their simple, intuitively-appealing speci�cation concepts and notation are major factors behind
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their popularity. On the other hand, the lack of a �rm semantic basis for SA models severely inhibits their
use as bases for further development, in particular, their use as major references against which the quality
and applicability of implementations can be assessed. The lack of a �rm semantic basis also means there
is little support for rigorously reasoning about speci�ed properties, thus limiting the use of the models in
analyses of desired behaviors. These problems can be alleviated by replacing informally speci�ed parts of
SA models (e.g., data descriptions and process speci�cations) with formal speci�cations. The inclusion of
formal speci�cations in SA models facilitates a level of rigorous analysis not attainable in the less formal
expressions of SA models.

A signi�cant amount of research on the technical aspects of integrating FSTs and ISTs has taken place.
We refer to such integrated techniques as FISTs. Surveys of some these research e�orts can be found
in [11, 15]. In this paper we illustrate, via the results of two case studies, two ways in which FSTs can
complement and enhance the application of ISTs in the requirement engineering phase of development. In
Section 2 we describe the major results of a case study in which a formal model was used to prototype the
required behavior captured by informal, graphical models. We developed a formal operational model, in
the form of an extended Petri Net, for a textbook SART (SA/Real Time) [14] model of a vending machine.
Using the insights gained from building and exercising the operational model we were able to improve the
SART models (i.e., make them more accurate and informative). The development of the formal model was
done in a generative style, that is, a rigorously de�ned relationship between modeling concepts was used to
guide the transformation of the SART model to the extended Petri Net model [19].

In Section 3 we describe a case study in which an integrated Fusion [5] and Z [17] FIST was used to
develop a rigorous OOA model of a student advising system. The Z models we produced supplemented the
OOA models, that is, both the OOA models and the Z models are needed to get a complete picture of the
modeled behavior. The FST in this case was used to make more precise the concepts captured by the OOA
model. Section 4 contains our conclusions.

2 The SART/Petri Net Case study

The goal of the SART/Petri Net case study was to rigorously analyze an SART model of the vending machine
problem taken from the book by Hatley and Pirbhai [14]. The analysis was done by building and exercising
a formal operational model of required behavior as modeled by the SART model. The operational model can
be viewed as a prototype, or an executable formal model of behavior, and as such, it contains implementation
details not present in the SART model. For this reason, the formal and the informal models are at di�erent
levels of abstraction. The operational model was created using an extended form of Petri Nets [19].

This case study illustrates how executable formal models can be used to enhance the application of
informal requirements modeling techniques. The experience outlined in the following subsections indicate
that building and exercising the prototype can yield insights that can be used to make the informal models
more accurate and informative.

For this approach to be e�ective there must be some assurance that the formal model captures the
behavior abstractly described in the informal model. We provide a basis for such assurance by imposing an
operational semantics on the SART model and de�ning a relationship, based on the semantics, between the
modeling concepts used in the SART and the Petri Net techniques. The dynamic semantics we impose on
SART models is based on our experiences with the use of such models in student projects and a particular
industrial application. We are not claiming that our semantices re
ects the most common interpretation (if
one exists!). We suspect that industrial applications of SART techniques are based on a variety of (often
implicitly de�ned) interpretations that may suit the particular domain in which the SART techniques are
applied. In this paper, our intent is to illustrate the bene�ts of explicitly de�ning a formal semantics for
SARTs.

In the subsections that follow we de�ne the relationships and show how it can be used to transform a
SART model to an executable extended Petri Net model.

2.1 Modeling requirements with SART

The SART requirements modeling techniques extend the applicability of traditional SA techniques to real-
time, reactive systems. An SART requirements model consists of the following major components:
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� Data 
ow diagrams (DFDs) model systems in terms of data 
ow dependencies between processes (also
called data transforms). A DFD can be viewed as a structural model of the functional aspects of a
system.

� Process speci�cations are informal processes descriptions depicted in DFDs.

� Control 
ow diagrams (CFDs) model control dependencies between processes. CFDs depict the control
signals that a�ect the state of a system and the behavior of DFD processes.

� Control speci�cations describe how control 
ows a�ect the state and hence the behavior of the system.
In this paper, the speci�cations are expressed in terms of state transition diagrams.

The vending machine is constrained to behave as follows [14]:

1. Only nickels, dimes, and quarters are to be accepted as valid contributions to a payment. All other
objects are rejected (rejected objects are called slugs).

2. Payment computation and product selection can only be activated after a valid coin is detected.

3. Coins must be returned and the customer noti�ed if a selection is not available.

4. Product prices must be changeable.

5. Return the customer's payment on request if he or she decides not to make a selection.

6. A product can only be dispensed if it is available and the payment is su�cient.

7. Disable product selection after the product is dispensed and until the next validated coin is detected.
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Coins

object

HELD COINS COINS

COIN PARAMETERS

PRICE TABLE

Get Product Validate
Price Payment9 8
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Figure 1: SART model of the vending machine problem

A combined 
at DFD and CFD model of the vending machine system, derived from the hierarchical DFD
and CFD models given in [14] is shown in Fig. 1(a). The round-edged boxes represent processes, the solid
arrows represent data 
ows, the dashed arrows represent control 
ows, and the parallel bars represent data
stores. Fig. 1(b) shows the state transition diagram describing how the control 
ows a�ect system states.
In the state transition diagram, states are represented by rectangular boxes, and a state transition from
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state Si to state Sk (i 6= k), resulting from the occurrence of an event represented by the control 
ow c, is
described by a labeled, directed arrow going from Si to Sk . The label on the arrow consists of the control

ow's name above a horizontal bar and a list of processes that are activated and/or deactivated as a result of
the transition below the bar. For example, the generation of the su�cient payment signal causes the system
to change state from S2 (Waiting For Selection) to S3 (Dispense Product), and also causes the activation of
the processes Dispense Change, Clear Payment and Dispense Product, and the deactivation of the process
Get Valid Selection (the process speci�cations are not given here because of page constraints).

The SART model for the vending machine is typical of the type of description produced by the SA tech-
niques. It utilizes simple graphical constructs to build an intuitively-appealing structure, and is supported
by informal descriptions of processing and data details that are not depicted in the diagrams. While the
techniques may be appropriate problem structuring aids, the lack of a well-de�ned semantics for the models
produced makes it di�cult to analyze speci�ed behavior rigorously.

Development of the formal operational model from the SART model proceeded as follow:

1. With the help of formal transformation rules, an Extended Petri Net (EPN) structure was obtained
from the SART model.

2. Algebraic type speci�cations for data elements described in the SART model were de�ned.

3. De�nition of the EPN was completed by de�ning behavior of processes in terms of transition �ring and
data transformation rules.

4. The EPN was then converted to a machine executable form called Cabernets [16] and exercised.

2.2 An extended Petri Net model

The Extended Petri Net (EPN) model is based on the Modi�ed Petri Net model proposed by Yau and
Caglayan [19]. The EPN consists of a set of places, a set of data objects, and a set of transitions. Transitions
are connected to each other through places and data objects. The EPN incorporates data 
ow in regular
Petri Nets; therefore, it can be used to specify both functional and control aspects of a system.

The function M takes a place and returns its marking (i.e., the number of tokens in the place). A place
p is said to be enabled if M (p) > 0 and disabled if M (p) = 0. If there is a place, p, in an EPN for which
M (p) > 1 then the EPN is said to be in an unsafe state; normal (or safe) behaviors must be modeled in
terms of markings of 0 and 1.

Formally, an EPN transition T is represented by the 5-tuple

T = (I ;O ;D ;F ;G)

where I and O are the set of input and output places, respectively, D is the set of data objects, and F and
G are the control transfer speci�cation (CTS) and the date transfer speci�cation (DTS) of the transition,
respectively.

There are two types of data objects (i.e., elements of D): data variables and stores. An input (data)
variable has its contents removed during transition �ring, and an output variable has its contents replaced
during transition �ring. A variable whose data item has been removed is associated with the value empty .
A store contains data that persists over the executions of transitions. Execution of transitions may involve
reads and/or updates of associated stores.

F consists of an input place speci�cation and an output place speci�cation. An input place speci�cation
de�nes precisely the input place states that initiate the execution (�ring) of T . An output place speci�cation
de�nes the change of output places after execution of T . Predicates associated with output places have the
same function as those used in Predicate/Transition Nets [12], that is, an output place receives a token (as
a result of transition �ring) only when the predicate associated with the corresponding link is true. An
output place associated with a link that is associated with a predicate true receives a token as a result of
each transition �ring.

Data transfer speci�cations (DTSs) are expressed in terms of operations de�ned in algebraic speci�cations
[13] of the data types associated with the system being modeled. The speci�cations abstractly de�ne data
types in terms of operations that can create and manipulate instances of the types. Some types are considered
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primitive, that is, their de�nition is provided by the modeling language. Examples of such types are the
integer type (denoted by Z), natural numbers (denoted by N), and character.

For convenience, an EPN can be partitioned into two subnets: one for data 
ow (referred to as the
D-EPN) and the other for control 
ow (referred to as the C-EPN). See Fig. 3 for an example of an EPN.

Execution of an EPN is based on the following transition �ring rules:

� If the input place condition speci�ed in a transition's control transfer input speci�cation holds, then
the transition is said to be enabled. A transition �res immediately when enabled, and the output result
is observable instantaneously. On �ring, tokens in the input places of the transition are removed. The
e�ect of the transition's execution on the output places of the transition is determined by the output
speci�cation given in the transition's CTS.

� When a transition is executed the e�ects on the data variables and stores associated with the object
are determined by the Data Transfer Speci�cation (DTS).

2.3 Guidelines for transforming SART models to EPNs

Below we give the set of rules we de�ned to support the systematic transformation of SART models to EPNs
(these rules are depicted in Fig. 2):
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b
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*

b
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(b)
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c
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Before state transition

After state transition

(f)

Modeling State Transitions
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P

c
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P2 P1

S1

e_P2 e_P1
S2

P

c

ST

P2 P1

S1

e_P2 e_P1
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Figure 2: SART to EPN Transformations

1. A data transform is represented by a transition (called a process transition), a data store by a store,
and a data 
ow is associated with a place and a variable (the place indicates the occurrence of the
data 
ow while the variable gives the content). A data 
ow a from a process P1 to another process
P2 in a DFD is modeled in an EPN by connecting process transition P1 to process transition P2 via
a place (used to indicate the occurrence of data on a) and a variable (holds the contents of a). This
relationship is depicted in Fig. 2(a).

2. A data 
ow from a process P1 to a data store DS is represented by an EPN in which transition P1
is connected to a store data object as input and output (see Fig. 2(b)). The input arc connecting the
store to the transition is needed to access the initial state (state before �ring) of the store.
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3. A data 
ow from a data store to a process is represented by an EPN (see Fig. 2(c)) in which the
process transition is connected to an input store data object. In this case, the state of the store after
execution is the same as the state before execution.

4. A data 
ow from an external entity to a process is modeled in an EPN as a process transition connected
to an input place (used to indicate the occurrence of the 
ow) and an input variable (see Fig. 2(d)).

5. A data 
ow from a process to an external entity is modeled as a process transition connected to an
output place (used to indicate the occurrence of output on the data 
ow) and an output variable (see
Fig. 2(e)).

6. The EPN model of the e�ect of control 
ows on the behavior of a system is obtained using information
contained in the CFD and the associated state transition diagram (STD). Each state transition depicted
in an STD is represented by an EPN structure. For example, consider a state transition from state
S1 to S2 resulting from the occurrence of a control 
ow, c, generated by a process P , that causes
the activation of process P1 and the deactivation of process P2 (see Fig. 2(f)). The control 
ow c is
modeled by a place connecting the process transition P (to which it is an output place) to the transition
ST representing the state transition (to which it is an input place). The state S1 is represented as an
input place to ST and the state S2 is represented as an output place of ST . The transitions associated
with P1 and P2 are associated with places e P1 and e P2, respectively, that are connected to ST .
A token in these places indicates that P1 and P2 are enabled. The place e P1 is connected to ST as
an output place, indicating that P1 is enabled by the transition, and e P2 is an input place to ST ,
indicating that P2 is disabled by the transition. The input speci�cation (not shown) indicates that
ST will �re whenever there is token in the place c. The result of the �ring depends on whether there
is a token in S1 or not. If there is no token in S1 (indicating that the system is not in state S1) then
only the token in c is consumed (if there is a token in e P2 it is not consumed) and no output tokens
are produced (in other words, signals do not wait for the system to reach a state in which it has an
e�ect; this is an example of an interpretation that may vary across uses of SART - some situations
may require signals to wait for the state to occur, in which case this particular �ring of the transition
will not occur). If there is a token in c and in S1 then the transition �res and puts a token in e P1
and in S2, and, if there is a token in e P2 before �ring, it is removed.

Using transformation rules 1 to 5, a D-EPN structure is obtained. The D-EPN structure for the SART
vending machine model is shown in Fig. 3. The generation of the D-EPN structure can be automated. The
DTSs cannot be generated automatically from informal natural language process speci�cations and must be
created by the modeler. The modeler can use the informal speci�cations as guides in their development of
more formal speci�cations of data transfer.

The C-EPN is developed using rules 1 to 6. The initial state of the C-EPN obtained for the vending
machine problem is shown in Fig. 4.

In the C-EPN, the place label `dn' is an inhibitor place for transition `n'. Place labels starting with `c'
in Fig. 4 represent conditions (control 
ows). Tokens in these places indicate that the associated conditions
hold (e.g., a token in c1 means that a coin has been detected). Place labels starting with `s' represent states.
A token in the following places indicates that the system is in the associated state:

s1: Idle state.

s2: Waiting for selection.

s3: Dispense product.

The transitions labeled `STn' represent state changes. For example, the state change resulting from the
occurrence of the event coin detected in the Idle state is represented by the state transition ST1.

2.4 Analyzing the EPN model

An EPN obtained from an SART model can be viewed as a formal operational interpretation of the SART
model. The interpretation can be used to `test' the model against the stated requirements by simulating
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Figure 3: D-EPN model of the vending machine problem

execution of the system according to the �ring rules of the EPN (as de�ned by the CTSs). A validator can
develop a set of scenarios (`test cases'), simulate them with the EPN, and observe the results.

As pointed out in the previous subsections, a data 
ow is associated with both a place and a data variable.
The place is used to model the occurrence of data on the 
ow and the variable holds the value. This requires
that the following relationship between data 
ow variables and places be maintained in an EPN as it moves
from state to state: a token in a data 
ow place requires that a value be present in the associated variable.
One way of ensuring that this relationship is maintained is by associating the output data 
ow places with
predicates that are true exactly when the conditions for data transfer to the corresponding variable are true.
In cases where data input to a process is from an external entity then each control transfer rule that removes
a token from this place must be predicated on the presence of data in the variable.

Before we can analyze the vending machine SART model, we need to de�ne its initial EPN state. The
initial EPN state is shown in Fig. 4:

� the state place, s1 has a token in it, indicating that the vending machine is in the Idle state; and

� the processes Get Valid Selection, Get Change Coin, Dispense Product, Clear Payment and Get Pay-
ment Coin are all disabled, that is, a token is present in the inhibitors associated with the corresponding
process transitions.

In order to execute the EPN on a machine we converted it to an existing machine-executable form called
Cabernet [16]. This conversion was done manually. Details of the conversion can be found in a forthcoming
technical report.

During development and execution of the EPN, we uncovered a number of problems with the EPN and
the SART model. Some of the problems we identi�ed and their resolutions are discussed below:

1. On examining the C-EPN we noted that there was a transition that had an empty set of input and
output places (transition 6). This raised a red 
ag and prompted the question `under what conditions is
this transition �red?'; a question that had to be resolved before a CTS is associated with the transition.
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Figure 4: Initial state for vending machine

We looked at the corresponding process Deposit Coins and noted that the reason for the lack of places
is a result of the lack of information related to the conditions under which the process is invoked. The
only inputs and outputs of this process are data stores. How does the process know when to read the
data store Held Coins? In other words, when do we make the held coins part of the general pool of
coins held in the vending machine? An examination of the role of Held Coins raised more questions. It
was not clear why it was needed in the current problem structure; in another structure Get Payment
Coin would need only to recover the coins from Held Coins. Rather than change the structure radically,
we chose the simpler approach; we eliminated the data store Held Coins and the process Deposit Coins
and made Accumulate Coins direct its output to the data store Coins .

2. In the EPN the coin value is accumulated when a coin is rejected as a slug because of a full repository
of coins. We resolved this problem by having Validate Coins output the valid object (validobj ) to
Accumulate Coins , which puts the physical coin in Coins and passes the value (value) to Accumulate
Payment only after it is determined that the coin repository is not full.

3. Payment is not cleared whenever payment entered by a customer is returned. We resolved this by
activating Clear Payment after payment is returned. This required the addition of a control 
ow from
Get Payment Coin, called payment returned , indicating that payment was returned.

4. The initial SART model assumed that enough coins for change will always be available. This is an
unreasonable assumption. The behavior we speci�ed returns payment (without dispensing product)
when there are no coins available for change.

The ability to rigorously `test' the SART model increases con�dence in the structure and properties
speci�ed. A weakness of Petri Nets is the complexity problem, that is, Petri Net models tend to become
too large for analysis even for a modest-size system. To solve this problem, a Petri Net model can be
organized hierarchically into several levels [18]. The lower level speci�cation can be described by replacing
each place in the speci�cation with a more detailed Petri Net through a re�nement process. The IPTES
project [7] has developed a Petri Net formalization of SART that addresses this problem, as well as supports
the speci�cation of time constraints.
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3 The Fusion/Z Case Study

In the second case study we used an integrated Fusion/Z FIST to develop requirements models for a student
advising system. We did not attempt to formalize all the Fusion analysis models, rather, we used formal
notations in place of less formal descriptions, and used formal techniques to specify and analyze the object
model. The problem tackled was originally stated for a student project class, but addressed a real-world
need.

In formalizing the Fusion analysis models we went through the following stages:

Stage 1: Object Modeling In this stage the focus was on modeling the static structure, that is, modeling
the static relationships among objects. The object model produced in this stage was formalized using
some formal translation rules that expressed relationships between Z constructs and constructs in the
object model.

Stage 2: Operation Modeling In this stage the externally observable operations of the application were
modeled. In the Fusion method the operations are described using natural language. In our approach
we de�ned the e�ects of operations using Z. Our Z speci�cations can completely replace the Fusion
models of operations.

Stage 3: Lifecycle Modeling In this stage the constraints on the order in which operations can be exe-
cuted were de�ned. We used the Fusion lifecycle expressions; these representations are rigorous so we
did not attempt to formalize them.

The following subsections present some of the models we produced in Stages 1 and 2.

3.1 Modeling the Advising System Problem

The following is part of the original requirements statement for the advising system (see also [10]):

The project is concerned with providing automated support for undergraduate advising in
the Department of Computer Science and Engineering. An important component of the depart-
ment's undergraduate advising system is the student evaluation worksheet, which is used to keep
track of courses students have taken, are currently enrolled in, and plan to take. Your speci�c
task concerns developing a system that supports information retrieval and updating activities
associated with student worksheets.

The system should allow users to do the following:

1. Consistently create and destroy student worksheets.

2. Consistently update worksheet data. The system should be capable of informing users of
updates that violate departmental rules, e.g., the system should disallow the recording of
an enrollment when the student does not have the necessary pre-requisites.

3. Retrieve worksheets.
...

3.1.1 Stage 1 - Developing the Object Model

In Stage 1 we used an explore, formalize, re�ne development style (similar to the `explore, elaborate, validate'
process model described in [9, 10]). In the exploratory phase we modeled the structure using Fusion object
modeling concepts; no attempt was made to formalize the modeled concepts during this time. In Fig. 5 we
show part of the result of the exploratory task. In Fusion, the label + on an association indicates one or
more and the symbol � indicates zero or more. A black box on a relationship indicates that every instance of
the adjacent class must participate in the relationship. In the model a student must be assigned an advisor,
and must have a worksheet. A worksheet must be associated with one student. An advisor can be assigned
to zero or more students (the fact that an advisor is a faculty member is abstracted out of the model). To
support the formalization of the object model we de�ned relationships between Fusion associations and Z
concepts. The relationships became part of the Z mathematical toolkit we used to develop a more formal
expression of the object model. For more details about the toolkit see [2].

In formalizing the object model we took the following steps:
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assigned_to

1

GPA
admdate
catalogueyear
courses substituted
courses enrolled
courses completed

1
*

has

Worksheet

1

Advisor Student

name:NAME

dept:DEPT

name:NAME

addr:ADDR

Figure 5: Fusion model of advising system

1. Determine the given sets, constants, and global variables: In this step we considered the types declared
in the object model as candidates for given sets, constants, and global variables. We examined each
type in the object diagram to determine how they could be modeled. Some attributes did not have
types associated with them in which case we had to de�ne suitable types. For some of the other cases
we rede�ned the types in terms of more basic types.

The result of this set is a Z declaration of given sets, constants and global variables. Some of the
speci�cations that resulted from this step are given below:

[NAME ;AdvID ;StID ;ADDR;DEPT ]

[COURSE ;REQ ;DATE ;YEAR;BOOLEAN ;TERM ]

GRADE : PN

8 g : GRADE � 0 � g � 4

2. Associate a state schema with each object: The state schema for an object is obtained by treating
the attributes of the objects as schema declarations. Each schema also declares a variable, id , that
represents the identi�er of an instance. In cases where no types are associated with attributes or where
the type structure is unclear appropriate types must be de�ned. The speci�cations obtained in this
step are given below:

Advisor
name : NAME
id : AdvID
dept : DEPT

Student
name : NAME
id : StID
addr : DEPT

Worksheet
id :WksheetID
GPA : GRADE
adm date : DATE
cat year : YEAR
course sub : COURSE $ COURSE
course enr : COURSE 7! TERM
course comp : COURSE 7! P(TERM �GRADE )
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3. Using the mathematical toolkit, create a schema that describes the relationships among objects: In
this schema, the schemas de�ned for objects are used to instantiate the generic de�nitions of relations
in the mathematical toolkit. The speci�cation obtained is given below:

Diagram

assigned to : 1 � - � [Advisor ;Student ]

has : 1 � - 1[Student ;Worksheet ]

4. Create the state schema that ties all the above schemas together and specify any constraints not covered
in the above steps: Constraints that cannot be expressed in terms of Fusion graphical notation are
usually stated in natural language in the diagrams. In such cases the constraints should be re-expressed
in Z. In the state schema produced at this stage each object is modeled as a set of instances in Z. The
speci�cation we obtained at the end of this activity is given below:

AdvState
Diagram
advisors : PAdvisor
students : PStudent
worksheets : PWorksheet

domassigned to � advisors
ran assigned to = students
domhas = ranassigned to
ran has = worksheets

5. Evaluate model: The formal and informal models are examined closely to determine whether they
could be improved and/or simpli�ed.

In the latter activity we reexamined our graphical model and decided that a more informative model
could be obtained by treating COURSE and TERM as objects. The relationships among these objects were
obtained from the Z relations involving these objects. The result of the restructuring is shown in Fig. 6.

assigned_to
name:NAME
 
dept:DEPT

Advisor

Student

name:NAME
 
addr:ADDR

enrolled in

course
completed

grade

offered in

course
substituted

GPA
admdate
catalogueyear
courses substituted
courses enrolled
courses completed

Worksheet

recorded
  by

name:CNAME

Course Term
**

* *

* *

1

+

Student Course Activity

* 1

1

1

Figure 6: Modi�ed Fusion model of advising system
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3.2 Stage 2 - Developing the Operation Model: An example

In this stage, a description of each operation is created and formalized. The descriptions are �rst given in
the Fusion format. Below is a Fusion description of an operation of the advising system, together with its
formalization:

Post grade to worksheet operation:

Operation: update gr

Description: Post grade for one class completed.

Reads: supplied student ; course

Changes: evaluation ws : course comp

Sends: none

Assumes: Student has completed the course.

Result: The student's evaluation ws : course comp is updated.

update gr
id? : ID
course? : COURSE
grade? : GRADE
�AdvState
term : TERM

9 s : Student ; w ;w 0 :Worksheet j has(s) = w �
s :id = id? ^
course? 2 domw :course enr ^
term = w :course enr(course?) ^
(course? 2 domw :course comp ^

w 0:course comp(course?) = w :course comp(course?)
[f(term; grade?)g) _

(course? 62 domw :course comp ^
w 0:course comp = w :course comp
[fcourse? 7! f(term; grade?)gg) ^

w 0:adm date = w :adm date ^
w 0:cat year = w :cat year ^
w 0:course enr = w :course enr ^
w 0:course sub = w :course sub ^
w 0:GPA = w :GPA ^
has 0 = (has n fs 7! wg) [ fs 7! w 0g

4 Conclusion

The results of our case studies are a good indication that the application of FISTs to requirements speci�-
cation and analysis can bring about the following bene�ts:

� Support for the analysis and validation of requirements modeling through the use of executable formal
models.

� Support for early problem analysis in the form of 
exible tools that permit the building of structures
that appeal more to intuition than formality, as well as support for more rigorous problem analysis
through the formal reexpression of structures and content.

� Use could lead to an understanding of required properties that may not be possible with sole use of
formal or informal speci�cation techniques.
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� Bene�ts associated with the use of informal models (for example, ease of use, readability) and bene�ts
associated with formal models (for example, less chance of misinterpretation, support for rigorous
analysis and veri�cation activities) are not necessarily impaired by their integration. In fact, formal
and informal models can complement each other.

The de�nedness of the relationship between the formal and informal concepts and notations determines
whether one can partially automate the transformation of informal to formal models. If the relationship
is well-de�ned, and can be codi�ed to some extent, then the set of rules can become the basis for a tool
that generates portions of the formal model from information available in the informal models. Lack of
well-de�ned rules, though, does not preclude the integration of techniques, as was shown in the Fusion/Z
case study. In such cases, the transformation is more dependent on human skill.

There is some work on developing tools to support FISTs (e.g., see [1, 4, 7, 8]). We are currently working
on a tool called FuZE that supports the use of a Fusion/Z FIST for requirements modeling and analysis
[3, 4]. As the �eld develops we expect to see more tools appear. In particular, extensions to CASE tools for
traditional techniques that allow for the creation of formal models, or that provide formal interpretations of
symbols are envisaged.
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